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Abstract: Background: Klebsiella pneumoniae is a concerning pathogen, responsible for hospital-
associated outbreaks. Multi drug resistant (MDR) strains are especially hard to treat. We conducted
whole-genome sequencing on a MDR K. pneumoniae strain in order to identify genomic features
potentially linked to its phenotype. Methods: DNA sequencing was performed on the Illumina iSeq
100 platform. Genome assembly was carried out with SPAdes. The genome was annotated with
RASTtk. Typing was performed with MLST and Kaptive. Antibiotic resistance genes were detected
with AMRFinderPlus and Abricate, and further verified with BLAST. Results: The strain exhibited
resistance to ceftazidime/avibactam and cefiderocol, but remained susceptible to carbapenems. The
strain belonged to sequence type ST101, serotype O1:K17. The analysis of antibiotic resistance genes
indicated that the strain carried a novel KPC variant, designated as KPC-203, featuring a EL deletion
at amino acid position 166–167, within the Ω-loop, and a nine-amino-acid insertion (LAVYTRAPM)
at position 259. Sequence alterations were found in porin genes ompK35 and ompK36. Unlike
molecular testing, which was able to detect the KPC-203 variant, all phenotypic carbapenemase
detection methods achieved negative results. Conclusions: KPC-203, a novel KPC variant, showed a
sequence modification in a cephalosporin resistance-associated hotspot. Interestingly, such alterations
typically correlate with the restoration of carbapenem susceptibility. We hypothesize that KPC-203
likely led to resistance to ceftazidime/avibactam and cefiderocol, while maintaining susceptibility to
carbapenems.

Keywords: Klebsiella pneumoniae; KPC-203; carbapenemase detection; KPC variants; ceftazidime/
avibactam resistance; cefiderocol resistance; genome sequencing

1. Introduction

Klebsiella pneumoniae is a Gram-negative opportunistic pathogen of significant concern
due to its capacity to disseminate in clinical settings, resulting in high mortality rates [1].
Carbapenemase-producing strains are of particular significance owing to their ability to
hydrolyze main β-lactam antibiotics [2]. Carbapenemase-producing Klebsiella pneumoniae
(KPC-Kp) has emerged globally as one of the most clinically relevant multidrug-resistant
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pathogens due to the limited number of effective therapeutic options, the high mortality
rates of associated infections, and its widespread ability to spread in health care facilities
worldwide [3]. Among the newly approved drugs, β-lactam/β-lactam inhibitor combina-
tions such as ceftazidime/avibactam have been widely used in the clinic to treat KPC-Kp
infections in recent years [4,5]. The use of ceftazidime/avibactam has been associated
with a reduction in both mortality rates and the prescription of carbapenems, amino-
glycosides, and tigecycline when compared to the other regimens [5]. However, in vivo
selection events of ceftazidime/avibactam-resistant strains and nosocomial outbreaks of
ceftazidime/avibactam-resistant KPC-Kp have been reported in Italy soon after the drug
was introduced into the clinical setting [6,7]. Acquired resistance to ceftazidime/avibactam
is mainly due to amino acid substitutions in β-lactamases, alterations in OmpK35/36
porins, and/or the overexpression of efflux pumps. Currently, from an epidemiological
point of view, the most common resistance mechanism is the expression of KPC variants
characterized by single amino acid substitutions between positions 164–179 in the Ω-loop
region [8,9]. These variants are characterized by impaired carbapenemase activity and the
restoration of carbapenem susceptibility. Moreover, while molecular testing is capable of
detecting all KPC Ω-loop mutants, lateral flow immunoassays and main phenotypic car-
bapenamse detection methods fail to detect these variants with diminished carbapenemase
activity [7,10,11].

In this study, we analyzed the genome of a K. pneumoniae clinical strain harboring
a novel KPC variant, characterized by impaired carbapenemase activity and potentially
implicated in the development of resistance to ceftazidime/avibactam.

2. Materials and Methods
2.1. Bacterial Strain

The K. pneumoniae strain (named 11pa15) was isolated on the 15 October 2022 from
a blood sample collected from an 84-year-old male patient hospitalized at G. F. Ingras-
sia Hospital in Palermo, Italy. Species identification was performed using the MALDI
Biotyper (Bruker, Billerica, MA, USA) system. Antimicrobial susceptibility testing was per-
formed using the Sensititre EUMDROXF panel (ThermoFisher Scientific, Monza, Italy) for
amikacin, aztreonam, cefepime, ceftazidime/avibactam, ceftolozane/tazobactam, eravacy-
cline, fosfomycin, imipenem, meropenem, piperacillin/tazobactam, tigecyclin, tobramycin,
meropenem/vaborbactam, and imipenem/relebactam. Cefiderocol susceptibility was de-
termined by reference broth microdilution using ID-CAMHB (Bruker Daltonics GmbH Co.
KG, Bremen, Germany), with a cefiderocol concentration range of 0.03–32 mg/L. MICs
were interpreted following the EUCAST guidelines (v13.1).

2.2. Carbapenemase Detection

Carbapenemase detection was performed using a commercial genotypic assay (Xpert®

Carba-R; Cepheid, Sunnyvale, CA, USA). Five phenotypic carbapenemase detection meth-
ods were evaluated: the modified carbapenem inactivation method (mCIM), Rapidec
CarbaNP (Biomerieux, Marcy-l’Étoile, France), the Disc Diffusion Synergy test (KPC, MBL
and OXA-48 Confirm Kit, Rosco Diagnostica, Albertslund, Denmark), and two LFIAs (NG-
Test CARBA 5- NG Biotech, Guipry-Messac, France; RESIST-5 O.O.K.N.V- Coris Bioconcept,
Gembloux, Belgium).

2.3. Whole-Genome Sequencing and Bioinformatics

Whole-genome DNA sequencing was executed in order to characterize the genomic
features associated with the strain phenotype. Total DNA was extracted from overnight
culture on Mueller–Hinton agar plates (ThermoFisher Scientific, Monza, Italy) using the
Dneasy Blood & Tissue Kit (Qiagen, Hilden, Germany) and cleaned up using the AMPure
XP Bead-Based Reagent (Beckman Coulter, Brea, CA, USA). Paired-end libraries were
prepared using the Illumina DNA Prep Kit and sequenced on the Illumina iSeq 100 sys-
tem (Illumina, San Diego, CA, USA). Read quality was evaluated with FastQC v0.12.1
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(https://www.bioinformatics.babraham.ac.uk/projects/fastqc; accessed on 1 January 2024),
followed by adapter trimming with Trimmomatic v0.39 (https://github.com/usadellab/
Trimmomatic; accessed on 1 January 2024). Genome assembly was carried out using
SPAdes v3.15.2 (https://github.com/ablab/spades; accessed on 1 January 2024). Multi-
locus sequence type was determined by comparing the genome with schemes from the
PubMLST website (https://pubmlst.org/; accessed on 1 January 2024) using MLST v2.23.0
(https://github.com/tseemann/mlst; accessed on 1 January 2024), while serotype identifi-
cation was performed with Kaptive v2.0.6 (https://github.com/klebgenomics/Kaptive;
accessed on 1 January 2024). Plasmid replicon types were determined with PlasmidFinder
v2.1.6 (https://cge.food.dtu.dk/services/PlasmidFinder/; accessed on 1 January 2024).
Genomic features were predicted using RASTtk v4.0. (https://github.com/TheSEED/
RASTtk-Distribution; accessed on 1 January 2024). Genes correlated with antibiotic
resistance, virulence and stress response were detected with AMRFinderPlus v3.11.14
(https://github.com/ncbi/amr; accessed on 1 January 2024) and Abricate v1.0.1 (https:
//github.com/tseemann/abricate), and the sequences were further investigated using
BLAST v2.14.0 (https://blast.ncbi.nlm.nih.gov/Blast.cgi; accessed on 1 January 2024).

3. Results

The antimicrobial susceptibility pattern of the K. pneumoniae 11pa15 strain is shown
in Table 1. The strain showed resistance to ceftazidime/avibactam and cefiderocol
(MICs > 16 µg/mL and 4 µg/mL, respectively), susceptibility to meropenem, imipenem
(MICs 1 µg/mL and ≤1 µg/mL, respectively), and to combinations of meropenem/
vaborbactam and imipenem/relebactam (MICs 0.5 µg/mL and 0.25 µg/mL, respectively).

Table 1. MIC values for all compounds tested on the K. pneumoniae 11pa15 strain and respective
interpretation according to the latest EUCAST guidelines (v13.1) (https://www.eucast.org/clinical_
breakpoints accessed on 1 January 2024).

Antibiotic MIC (µg/mL) MIC Interpretation

amikacin >32 resistant
aztreonam ≤1 susceptible
cefepime 16 resistant
ceftazidime/avibactam >16 resistant
ceftolozane/tazobactam >8 resistant
eravacycline >0.5 resistant
fosfomycin >64 resistant
imipenem ≤1 susceptible
meropenem 1 susceptible
piperacillin/tazobactam 8 susceptible
tigecyclin ≤0.5 susceptible
tobramycin >4 resistant
meropenem/vaborbactam 0.5 susceptible
imipenem/relebactam 0.25 susceptible
cefiderocol 4 resistant

A total of 1,163,626 paired-end reads with a length of 151 bp were obtained by Illumina
sequencing. Genome assembly produced a draft with a total size of 5,671,248 bp, composed
of 72 contigs ranging from 505,895 to 282 bp in length (median length 27,477 bp). The
genome had a 56.84% G+C content, an N50 of 223,646, and 30× mean coverage. Genome-
based typing revealed that the strain belonged to the multi-locus sequence type ST101,
serotype O1:K17. In addition, the strain harbored plasmid replicons belonging to the
incompatibility types Col156, Col440II, ColRNAI, IncFIA(HI1), IncFIB(Mar), IncFII(K), and
IncR. Genes linked with resistance to several antibiotics were found, including amino-
glycosides (aadA1, acrD, ant(2′′)-Ia, armA, cpxA, cpxR), β-lactams (ampH, blaKPC, blaSHV-1),
chloramphenicol (catA1), fosfomycin (fosA), macrolides (mph(E), msr(E)), quinolones (oqxA,
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oqxB20, gyrA), sulfonamides (sul1), tetracyclines (rpsJ), as well as multiple genes involved
in multi-drug efflux (acrA, acrB, asmA, baeR, baeS, crp, emrD, emrR, kpnE-H, marA, mdfA,
mdtA-C, msbA, phoP, phoQ, pmrA, pmrB, pmrD, ramA, smvA, soxS). The sequence analysis
of the porin genes associated with carbapenem resistance revealed that ompK35 had a
sequence interruption at amino acid position 62, while ompK36 exhibited a double insertion
(aspartic acid and threonine) at amino acid position 136. No alterations were found in
ompK37. Virulence genes with roles in invasion (ompA), pilus formation (yagV-Z, ykgK),
yersiniabactin (fyuA, irp1, irp2, ybtA, ybtE, ybtP, ybtQ, ybtS, ybtT, ybtU, ybtX) and enter-
obactin (entA, entB, fepC) biosynthesis were detected. Sequence analysis of the blaKPC gene
revealed that the strain carried KPC-203, a KPC-3 variant never described before. This
variant had a 96.36% sequence identity to KPC-3 and exhibited a double deletion (glutamic
acid and leucine) at amino acid positions 166 and 167, as well as a nine-amino-acid long
(LAVYTRAPM) insertion at position 259. Unlike Xpert® Carba-R, molecular testing, which
was able to detect the KPC-203 variant, all phenotypic carbapenemase detection methods
achieved negative results.

4. Discussion

The development of new KPC variants associated with ceftazidime/avibactam re-
sistance is a public alarm: to date, more than 150 blaKPC variants have been reported
worldwide, and most of the new variants have been discovered in the past 3 years [12,13].
Many of the discovered variants are derived from the wild-type forms KPC-2 and KPC-3
and have mutations in the omega loop region, among the most reported being KPC-31 and
KPC-33. Currently, there are still no guidelines or expert consensus to make recommenda-
tions for the diagnosis and treatment of infections caused by bacteria producing the new
KPC variants.

Herein, we characterized the genome of a ceftazidime/avibactam-resistant K. pneu-
moniae clinical strain carrying a novel KPC-3 variant, designated as KPC-203. This variant
exhibited a double deletion within the Ω-loop (residues 164–179), a well-established hotspot
associated with CAZ/AVI-resistance. Mutations in the omega loop domain result in an
increased affinity for ceftazidime and a weakened affinity for avibactam by changing the
structure of KPC, thus mediating bacterial resistance to ceftazidime/avibactam [12,13].
Moreover, the strain exhibited a low-level resistance to cefiderocol, a new approved drug
approved for treatment of multi drug resistant Gram-negative infections. This finding is
in agreement with several reports that showed that specific mutations in the omega loop
of the KPC enzyme can lead to increased hydrolysis of cefiderocol, which is structurally
similar to ceftazidime, resulting in cross-resistance toward both ceftazidime/avibactam
and cefiderocol [14–17].

Notably, the deletion within the Ω-loop (residues 164–179) observed in the K. pneumoniae
11pa15 strain was associated with carbapenems susceptibility and the negativity of the
main phenotypic carbapenemase detection methods, including both commercial lateral flow
immunossays. This represents an important diagnostic issue, as the rapid identification
of KPC is essential in treating carbapenemase-producing Enterobacterales infections [5].
The emergence of KPC variants upsets the conventional thinking of clinical microbiologists
about carbapenemase detection and discourages the practice of inferring susceptibility to
ceftazidime/avibactam from carbapenemase detection results. Moreover, since phenotypic
assays have been highly favored due to their low cost, they are therefore widely used for the
confirmation of carbapenemase production in active surveillance programs. Obtaining false-
negative results for carbapenemases causes strains expressing these new variants to escape
active surveillance programs, facilitating easy dissemination in the hospital setting [7,18].
Based on the above information, the spread of KPC variants requires the implementation of
measures, such as: i. performing ceftazidime/avibactam susceptibility testing in conjunction
with carbapenemase testing; ii. performing molecular testing for carbapenemase detection or
the application of diagnostic algorithms based on both genotypic and phenotypic testing [5];
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iii. implementing selective and differential culture media in active surveillance programs to
highlight the ceftazidime/avibactam-resistant isolates [18].

The study has some limitations. The main limitation is that we assessed the KPC-203
enzyme variant using genomic sequence analysis and phenotype expressed by the
K. pneumoniae strain. Further studies are warranted to functionally characterize KPC-203
in order to confirm the direct association between the new KPC variant and the observed
resistance phenotype, thus excluding the impact of other resistance mechanisms. Sec-
ondly, the medical history of the patient from whom the bacterial strain was isolated,
including the source of infection and the antimicrobial therapy that led to the selection
of the strain, was not investigated.

5. Conclusions

Here, we characterized the genome of a K. pneumoniae clinical isolate carrying a
novel KPC-3 variant, designated as KPC-203, and associated with cross-resistance to
ceftazidime/avibactam and cefiderocol. Notably, modifications in this region have been
documented to potentially restore susceptibility to carbapenems, which may explain the
phenotypic profile of our strain. In conclusion, future research should focus on reporting
novel KPC variants, given their relevance in the context of clinical outbreaks. In addition,
the development of rapid tests able to identify KPC variants associated with resistance to
new β-lactam/β-lactamase inhibitor combinations is desirable.
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