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Abstract: Zika virus (ZIKV), a mosquito-borne flavivirus, is prominently associated with micro-
cephaly in babies born to infected mothers as well as Guillain-Barré Syndrome in adults. Each
cell type infected by ZIKV—neuronal cells (radial glial cells, neuronal progenitor cells, astrocytes,
microglia cells, and glioblastoma stem cells) and non-neuronal cells (primary fibroblasts, epidermal
keratinocytes, dendritic cells, monocytes, macrophages, and Sertoli cells)—displays its own charac-
teristic changes to their cell physiology and has various impacts on disease. Here, we provide an
in-depth review of the ZIKV life cycle and its cellular targets, and discuss the current knowledge
of how infections cause neuropathologies, as well as what approaches researchers are currently
taking to further advance such knowledge. A key aspect of ZIKV neuropathogenesis is virus-induced
neuronal apoptosis via numerous mechanisms including cell cycle dysregulation, mitochondrial
fragmentation, ER stress, and the unfolded protein response. These, in turn, result in the activation of
p53-mediated intrinsic cell death pathways. A full spectrum of infection models including stem cells
and co-cultures, transwells to simulate blood–tissue barriers, brain-region-specific organoids, and
animal models have been developed for ZIKV research.

Keywords: Zika virus; neuropathogenesis; neuronal apoptosis; microcephaly; Guillain-Barré
Syndrome; cell cycle dysregulation; organoid models; animal models; blood–brain barrier

1. Zika Virus and Its Replication

Zika virus (ZIKV) is a flavivirus of the Flaviviridae family. Its main route of transmis-
sion is via the Aedes aegypti mosquito [1]. Other transmission routes, such as mother-to-
child, sexual, and blood-borne, have also been reported [1]. A ZIKV infection is usually
asymptomatic. However, specific ZIKV strains that have recently emerged are associated
with neurological diseases such as encephalitis and Guillain-Barré Syndrome (GBS) [2,3].
In the event of maternal ZIKV infection during pregnancy, the risk for the development
of microcephaly and congenital fetal malformations is increased [4]. The mechanisms by
which ZIKV causes these diseases have not been fully understood. In this review, we will
explore the infection and effects of ZIKV in the body, especially the impact on the nervous
system. We will also discuss recent advancements in both laboratory research (in vivo and
in vitro) and clinical studies that have significantly contributed to our understanding of the
neurological diseases caused by ZIKV.

1.1. ZIKV Genome and Proteins

While some flaviviruses such as DENV have multiple serotypes [5], ZIKV only forms
one serotype with two main lineages: an African lineage and an Asian lineage. MR766
is the original African strain isolated in 1947 from the Ziika forest in Uganda [6]. Other
African strains include ZIKV-MP1751 (Uganda, 1962) and Dakar 41525 (Senegal, 1984).
The most recent outbreaks observed, which were linked to more severe diseases around
2015-2016 in South America, were caused by viruses within the Asian lineage such as
PRVABC-59 (Puerto Rico, 2015), FB-GWUH-2016 (Guatemala, 2016), MEX1-44 (Mexico,
2016), and SZ01 (Samoa/Shenzhen, 2016). Related earlier Asian isolates include FSS13025
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(Cambodia, 2010), H/PF/2013 (French Polynesia, 2013), Haiti/1225/2014 (Haiti, 2014), and
p6-740 (Malaysia, 1966) [7].

ZIKV contains a 10.7kb positive-sense single-strand RNA (ssRNA) genome, which
encodes three structural and seven nonstructural (NS) proteins. Following the 5’ noncoding
region, the structural genes encode capsid (C), a precursor peptide linked to the membrane
protein (prM), and an envelope (E) protein. They are followed by the nonstructural genes
NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5, and, lastly, the noncoding region at the 3’
end without a poly(A) tail [8,9]. The genome is translated into one single polyprotein which
is cleaved by host and viral proteases to produce the discrete viral proteins (Figure 1).
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Figure 1. ZIKV virion, genome, and polyproteins. The topology of the viral proteins in the ER
membrane as well as sites of protease processing are shown. Green arrows indicate viral NS3 protease
cleavage sites; black and orange indicate host protease sites (Created with BioRender.com, accessed
on 1 May 2024).

The functions of each protein have been described extensively. Overall, the structural
proteins are involved in virion assembly, absorption, and cell entry, while the NS proteins
facilitate the replication and translation of the viral genome, as well as the regulation of the
host immune response [10]. A more specific description of each protein’s function in the
replication cycle can be found in Table 1.

Table 1. ZIKV viral proteins and their functions in viral replication.

Protein Functions and Characteristics References

Structural proteins

Envelope (E) Binding to cellular receptors and entry into host cells
Ubiquitination of the envelope proteins by E3-ubiquitin ligase TRIM7 [11]

Membrane (prM/M)
Pr peptide is cleaved from the membrane protein as the virus moves through

the trans-Golgi network during maturation by furin (like) proteases
Potentially involved in E-protein folding prior to cleavage

[12]

Capsid (C) Encapsulating the RNA genome and viral core assembly [13,14]

Non-structural (NS)
proteins

NS1 Forming replication compartments in the endoplasmic reticulum (ER) lumen
and immune evasion [15]

NS2A Dual function in viral RNA synthesis and virion assembly
Recruitment of NS2B/3 complex for cleavage of C protein of polyprotein [16]

NS2B Membrane-bound cofactor that stabilizes protease and helicase activity of NS3 [17]

NS3 Serine protease (N-terminus) and RNA helicase (C-terminus) activities. [18]

NS4A Membrane-bound protein that induces remodeling of the ER membrane [19]

NS4B A component of the ER membrane-associated replication complex [20]

NS5 RNA-dependent RNA polymerase (N-terminus) and methyltransferase
(C-terminus) and immune regulation of host cell [21]
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1.2. ZIKV Replication

The life stages of ZIKV infection follow that of the typical replication cycle of a positive-
strand RNA virus which includes viral entry, the translation and replication of the viral
genome, the production of the new virus, and, lastly, the maturation and release of new
virions from the host cell (Figure 2).

Pathogens 2024, 13, x FOR PEER REVIEW 4 of 26 
 

 

  
Figure 2. Generalized ZIKV infection cycle (Created with BioRender.com, accessed on 27 June 2024). 

2. Cells Infected by ZIKV 
ZIKV has been shown to infect and replicate in human skin fibroblasts, keratinocytes, 

monocytes, macrophages, and endothelial cells, as well as neuronal cells such as neuronal 
progenitor cells (NPCs) and radial glial cells. Each cell type displays unique infection char-
acteristics which underlie the broad tissue tropism and disease development associated 
with ZIKV. 

2.1. Non-Neuronal Cells Infected by ZIKV 
Among the non-neuronal cells susceptible to ZIKV infection are skin cells, placental 

cells, blood cells, and Sertoli cells (Figure 3). For instance, in the skin, primary fibroblasts, 
epidermal keratinocytes, and dendritic cells have been demonstrated to be susceptible to 
ZIKV infection [58]. In blood, the main targets for ZIKV are monocytes and macrophages 
[59,60]. Ayala-Nunez et al. reported that ZIKV triggers the activation of monocytes’ adhe-
sive properties and facilitates their transmigration across the blood–brain barrier (BBB) 
[61], suggesting that monocytes may act as carriers for ZIKV entry into the brain. Addi-
tionally, macrophages have been found to be vulnerable to ZIKV infection [62–64], alt-
hough viral replication is limited due to the virus’ inability to counteract STAT1/STAT2 
phosphorylation and the antiviral interferon response [62]. Endothelial cells, specifically 
brain microvasculature endothelial cells (BMECs), form the BBB and are supported by 
astrocytes and pericytes [65]. ZIKV (PRVABC59 or MR766) has been shown to infect 
BMECs and cross the BBB without disrupting barrier function [66,67]. The involvement of 
suppressed IFN-β signaling and the suppression of IFITM1 are correlated with ZIKV in-
fection in BMECs [66,68]. Similarly, human umbilical vein endothelial cells can be infected 
by ZIKV [27,33]. The susceptibility of placental cells to ZIKV infection varies in vitro [69–
71], potentially due to the secretion of type III interferon [71] and the different responses 
to them in the different in vitro systems used [69–71]. Furthermore, Hofbauer cells (pla-
cental stromal macrophages) exhibit increased proliferation and hyperplasia following 
ZIKV infection [72]. Sertoli cells, the barrier and immune cells found within testes, are 
readily infected by ZIKV [73] and show a robust immune response signaling through RIG-
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To enter the cell, the virion attaches to the target cell surface via an interaction between
the viral envelope (E) protein and specific cellular receptors. Dendritic cell-specific intracel-
lular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) [22], the phosphatidyl serine
(PS) receptor proteins AXL [23], neural cell adhesion molecule (NCAM1) [24], heat shock
protein 70 (HSP70) [25], and integrin αvβ5 [26] are examples of reported entry receptors.
The function of AXL and related PS receptors in ZIKV entry is highly controversial. Of
the many publications addressing this question, there is an approximately even split be-
tween yes and no in terms of the answer [23,27–46]. Even studies using definitive ablation
methods such as gene knockout came up with opposite conclusions. Moreover, among
the studies showing a positive result for the PS receptors’ involvement in flavivirus in-
fection, there is disagreement on the mechanism of action, with hypotheses ranging from
PS-mediated attachment/entry [33,47–49] to the suppression of the antiviral interferon
(IFN) response [23,39,40,50].

Virion binding to the cell surface is followed by clathrin-mediated endocytosis, leading
to the formation of an endosome containing the virus [51,52]. The acidification of the
endosome triggers the fusion of the endosomal and viral membrane, resulting in the release
of the viral genome into the cytoplasm. Next, the positive-sense RNA genome is translated
into the polyprotein, the cleaving of which releases the structural and NS viral proteins.
In addition, the genome is transcribed into a negative-sense RNA, which serves as the
template for RNA replication carried out by the viral RNA-dependent RNA polymerase
NS5 and assisted by the additional NS proteins. The production of viral particles occurs
within structurally distinct replication organelles along the ER cisternae [53]. As the ZIKV
proteins move through the trans-Golgi network, viral assembly and maturation occurs.
During maturation, the pr peptide is cleaved from the membrane protein, transforming the
viral outer membrane from an immature rough structure to the mature smooth icosahedral
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shape [54–56]. This process is thought to be mediated by a cleavage site that is recognized
by furin or furin-like proteases residing in the Golgi complex [57]. Lastly, newly produced
viruses are released from the cell via exocytosis.

2. Cells Infected by ZIKV

ZIKV has been shown to infect and replicate in human skin fibroblasts, keratinocytes,
monocytes, macrophages, and endothelial cells, as well as neuronal cells such as neuronal
progenitor cells (NPCs) and radial glial cells. Each cell type displays unique infection
characteristics which underlie the broad tissue tropism and disease development associated
with ZIKV.

2.1. Non-Neuronal Cells Infected by ZIKV

Among the non-neuronal cells susceptible to ZIKV infection are skin cells, placental
cells, blood cells, and Sertoli cells (Figure 3). For instance, in the skin, primary fibrob-
lasts, epidermal keratinocytes, and dendritic cells have been demonstrated to be sus-
ceptible to ZIKV infection [58]. In blood, the main targets for ZIKV are monocytes and
macrophages [59,60]. Ayala-Nunez et al. reported that ZIKV triggers the activation of
monocytes’ adhesive properties and facilitates their transmigration across the blood–brain
barrier (BBB) [61], suggesting that monocytes may act as carriers for ZIKV entry into
the brain. Additionally, macrophages have been found to be vulnerable to ZIKV infec-
tion [62–64], although viral replication is limited due to the virus’ inability to counteract
STAT1/STAT2 phosphorylation and the antiviral interferon response [62]. Endothelial
cells, specifically brain microvasculature endothelial cells (BMECs), form the BBB and
are supported by astrocytes and pericytes [65]. ZIKV (PRVABC59 or MR766) has been
shown to infect BMECs and cross the BBB without disrupting barrier function [66,67]. The
involvement of suppressed IFN-β signaling and the suppression of IFITM1 are correlated
with ZIKV infection in BMECs [66,68]. Similarly, human umbilical vein endothelial cells can
be infected by ZIKV [27,33]. The susceptibility of placental cells to ZIKV infection varies
in vitro [69–71], potentially due to the secretion of type III interferon [71] and the different
responses to them in the different in vitro systems used [69–71]. Furthermore, Hofbauer
cells (placental stromal macrophages) exhibit increased proliferation and hyperplasia fol-
lowing ZIKV infection [72]. Sertoli cells, the barrier and immune cells found within testes,
are readily infected by ZIKV [73] and show a robust immune response signaling through
RIG-I and MDA5 signaling [74]. However, bone morphogenic protein (BMP6) signaling in
Sertoli cells was suppressed by ZIKV, impairing the BMP6-dependent increase in IFN-β,
p-IRF3, and p-STAT1 levels. The infection of Sertoli cells has been connected to altered
spermatogenesis in mice [75].

2.2. Cells of the Nervous System That Are Infected by ZIKV

With a clear association between ZIKV and neurological disorders, particularly mi-
crocephaly in newborns, it is crucial that we understand the impact of ZIKV on brain
development and the underlying factors that may contribute to the onset of microcephaly.
The nervous tissue consists of neurons and neuroglia, with the latter supporting neuronal
cells in their functions. Throughout neuronal development, neural cells undergo matura-
tion and migration from the ventricular zone (VZ) towards the cerebral cortex through the
subventricular zone (SVZ) and intermediate zone, presenting many opportunities for ZIKV
to impact development.

2.2.1. Radial Glial Cells

Radial glial cells are the primary cells that originate from the neuroepithelium during
the process of neuronal development and are responsible for the development of all neurons
found in the mature brain [76]. Initially, these cells localize across the VZ and migrate
towards the cortical plate. Wu et al. (2016) showed that infection of pregnant mice with
ZIKV resulted in infection of radial glial cells in the VZ of the fetus [77]. This viral infection
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subsequently leads to a reduction in the proliferation of cortical neural progenitor cells,
ultimately causing abnormalities in the brain development of the offspring mice [77].
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2.2.2. Neuronal Progenitor Cells

NPCs differentiate from radial glial cells by asymmetric division [78]. Each division
produces a self-renewed radial glial cell and an NPC. Dividing NPCs are also known as
basal progenitor cells [79] or intermediate progenitor cells [80]. These cells are predomi-
nantly located in the SVZ and play a crucial role in embryonic brain development. The
disruption of this process due to ZIKV infection can have severe consequences on neuronal
development and has been proposed as a primary factor contributing to microcephaly.
Accordingly, ZIKV infection has been linked to cell cycle arrest and attenuated growth in
human neuronal progenitor cells (hNPCs) [81,82]. It was also reported that the cell cycle
is prolonged in infected NPCs as compared to that in uninfected cells, and infected NPCs
experienced neuronal death and axonal rarefaction [83]. These data indicate that ZIKV
infection disrupts the development and maturation of NPCs, which can lead to cortical
thinning. ZIKV also exhibits strain-specific infection patterns in hNPCs. The African ZIKV
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stain (MR766) infects hNPCs at a higher rate (69.8% at MOI 0.02) compared to the Asian
strain (FSS13025) (46.7% at MOI 0.04) at 64 h.p.i. [84]; whether this strain-specific difference
is related to neuro-disease severity is currently unknown.

2.2.3. Astrocytes

Astrocytes, also known as astroglia, are star-shaped glial cells present in the brain
and spinal cord. They represent one of the most common cell types in the brain and
play various dynamic roles such as the secretion or absorption of neural transmitters
and the maintenance of the BBB through biochemical regulation of the endothelial cells
forming the BBB. Astrocytes are susceptible to neurotropic flavivirus infection [85]. ZIKV
replication in astrocytes was detected in mice brains [86] and more recent in vitro studies
have shown that primary human astrocytes remain infected and shed virus for over a
month [87,88]. This prolonged infection may play a crucial role in causing neuronal
damage, as evidenced by the dysregulation of genes involved in the morphogenesis of
the epithelium, adherens junctions, and focal adhesions [87]. Furthermore, during ZIKV
infection, a limited cytokine response has been observed. The cytokine response to infection
with MR766 or PRVABC59 is mainly limited to CXCL10, IL-6/8/12, and CCL5 [89,90]. This
immune response correlates with significant structural alterations in the cells. Electron
tomography revealed an increase in small vacuoles containing neurosecretory vesicles
and collapsed endoplasmic reticulum cisternae, indicating extensive cellular remodeling
following infection [89]. Live cell imaging further revealed increases in the mobility of
vesicles upon ZIKV infection [91].

2.2.4. Microglia

Microglia, the primary immune cells of the central nervous system (CNS), are resident
macrophages that are distributed throughout the brain and spinal cord. Originating from
yolk-sac progenitors, these cells migrate into the CNS during early development, before the
closure of the BBB [92]. Microglia are sustained through local proliferation and function
to maintain homeostasis and defend against pathogens. However, they have also been
implicated as potential carriers of ZIKV during vertical transmission in early pregnancy,
which can contribute to the development of microcephaly. This is particularly significant
as the biogenesis of microglia occurs in close proximity to the maternal vasculature [93].
It has been hypothesized that invading microglia could potentially carry ZIKV. The virus
released from the microglia could infect immature neuronal stem cells during the early
stages of pregnancy, even before the initiation of angiogenesis in the developing brain [93].
While most neuronal cells display signs of cell death upon infection, a relatively high
viral load is required to infect microglia (up to a multiplicity of infection of 10) without
inducing apoptosis [94–96]. Such prolonged infection may facilitate viral dissemination.
In addition to releasing the virus to the surrounding environment, microglia induce a
robust proinflammatory response upon infection through the expression of inflammatory
molecules such as IFN-α, IFN-β, TNF-α, IL-1β, IL-6, MCP-1, NO, and iNOS. This has
been shown with the Asian lineage ZIKV-H/FP/2013 and African lineage ZIKV-MP1751
infection [95], as well as the Asian lineage ZIKV strain SZ01 [97] and ZIKV stain MEX1-
44 [83]. The release of the inflammatory molecules from microglia may impact surrounding
neurons. The increased expression of NO and iNOS from microglia has been associated
with NO-mediated neuronal cell death [98]. Furthermore, flavivirus infection leads to a shift
in the polarization of microglia towards the proinflammatory M1 type, which promotes
inflammation and neurotoxicity within the CNS [99]. While microglia overall play a vital
role in immune response and maintaining homeostasis in the CNS, they can also serve as
carriers of pathogens like ZIKV, potentially causing severe consequences once infected.

2.2.5. Glioblastoma Stem Cells

In addition to the healthy neuronal cells present in the brain, glioblastoma stem cells
(GSCs) from patients have been found to be highly permissive to ZIKV [100]. ZIKV infects
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glioblastoma stem cells in a manner that relies on the presence of SOX2, leading to a decrease
in tumor growth through the induction of apoptotic cell death. Furthermore, SOX2 plays
a role in facilitating ZIKV infection by suppressing the innate immune response. When
glioblastoma stem cell organoids were infected with ZIKV, it resulted in the upregulation
of genes associated with the interferon response, programmed cell death, TLR signaling,
and, notably, inflammasome signaling [26]. Findings suggest that ZIKV could be utilized
as an oncolytic virus for the targeting of glioblastoma [101,102]. There are two goals in the
use of ZIKV as an oncolytic virus for cancer treatment. Firstly, ZIKV can cross the BBB,
allowing it to enter the brain which conventional drugs are prohibited/prevented from
by the barrier. Secondly, ZIKV preferentially killed GSCs over NPCs and neuronal cells
upon infection [26]. This was supported by studies in mice and rats where induced brain
tumors shrank upon intracranial ZIKV (H/PF/2013) injection [103]. Additionally, mice
inoculated with ZIKV (MR766 or PE243) intravenously showed detectable levels of viral
RNA in the brain tissue while preserving BBB integrity initially. Upon prolonged infection
and increased inflammation, cytopathic effects were observed, potentially leading to slight
disruptions of the BBB over time [104].

In summary, the diverse range of cells that ZIKV can infect underscores the complexity
of its pathogenicity and the need for further research in this area (Figure 4).
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3. ZIKV Neuropathogenesis—Neuronal Diseases

Neuropathogenesis refers to the process by which diseases or disorders affect the
nervous system, leading to the development and subsequent progression of neurological
symptoms. Numerous conditions that can negatively impact the nervous system include
neurodegenerative diseases (Alzheimer’s and Parkinson’s disease), infections (meningitis
or encephalitis), brain tumors, and autoimmune disorders (multiple sclerosis). Viruses that
target the nervous system are classified as neurotropic viruses. Of the Flavivirus genus,
ZIKV, Japanese encephalitis virus (JEV), West Nile virus (WNV), and Tick-born encephalitis
virus (TBEV) are a few examples of neurotropic viruses [105].

3.1. Neuronal Development, Congenital ZIKV Syndrome, and Microcephaly

A prominent manifestation resulting from ZIKV infection is microcephaly which is
characterized by an abnormally small head circumference. During the ZIKV outbreak in
South America in 2015/16, a considerable number of cases of microcephaly associated
with ZIKV were reported. These cases involved pregnant mothers who had contracted
ZIKV during pregnancy and subsequently gave birth to infants with microcephaly [3,106].
The risk of microcephaly was particularly high when the infection occurred early in preg-
nancy [107,108]. A case–control study from Brazil determined the association between
ZIKV infection during pregnancy and the development of microcephaly in infants to be
significant [109]. ZIKV-induced neurodevelopmental disorder is associated with deficien-
cies in brain development due to the improper differentiation of specific cells, cortical
thinning, and neuronal cell death. It has been proposed that ZIKV has the ability to cross
the placental barrier and infect neuronal progenitor cells, disrupting their proliferation and
differentiation, ultimately leading to impaired brain growth, accompanied by abnormal
skull formation [110,111]. Additionally, other abnormalities commonly observed in congen-
ital ZIKV syndrome include calcifications primarily at the cortico-subcortical junction of the
white matter, cortical malformations, ventriculomegaly (dilated lateral ventricles), cerebel-
lar hypoplasia (reduced cerebellar volume), and corpus callosum dysgenesis [107,112]. Less
commonly encountered were lissencephaly (“smooth brain”) and pachygyria (aberrations
in cerebral convolutions) [113].

While neuronal cells, especially neuronal progenitor cells, are quite susceptible to
ZIKV-induced apoptosis, astrocytes and Sertoli cells are not as likely to undergo apoptosis
upon infection. Nevertheless, ZIKV infection of astrocytes can impact neuronal cell death
indirectly. Astrocytes can be infected but a majority of the infected cells, regardless of virus
strain, remain resistant to apoptosis and can shed the virus up to 28 days post-infection
despite a strong anti-viral response [87]. During this prolonged shedding period, an
increase in neuronal apoptosis surrounding the infected astrocytes was observed. This
indicates that astrocytes could act as a reservoir for ZIKV within the CNS [114]. This
observation has also been reported in brain tissue from a 20-week gestation fetus with
a confirmed ZIKV infection [115]. Similar results have also been seen in the settings of
DENV [116] and WNV infection [117]. This type of bystander apoptosis can be a result
of either virus-shedding or cytokine secretion from infected neighboring cells such as
astrocytes or microglia [94,118] (Figure 5a).

3.2. Guillain-Barré Syndrome in Adults

In addition to neurological complications in infants and negative outcomes during
pregnancy, ZIKV has also been linked to the development of GBS in adults. GBS is charac-
terized by a sudden onset of muscle weakness and ascending paralysis from the immune
system’s attack on the peripheral nervous system. During the ZIKV outbreaks in Latin
America and French Polynesia, an increase of up to 9.8-fold in GBS was reported [119–121].
Antibody-dependent enhancement (ADE) and molecular mimicry are among the proposed
mechanisms for ZIKV-associated GBS development (Figure 5b). ADE describes a phe-
nomenon observed in viral infection where pre-existing antibodies bind to a virus without
effectively neutralizing it. Conversely, these antibodies facilitate viral entry into host cells
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through interactions with Fc receptors on immune cells, thereby enhancing viral infectiv-
ity [122]. Pre-existing and elevated levels of antibodies to DENV and ZIKV have been
found in the sera of patients with ZIKV-associated GBS [123,124]. Additionally, an analysis
of anti-DENV monoclonal antibodies revealed that a majority of them also reacted with
ZIKV [123]. Aligning with this information, most patients showing ZIKV-associated GBS
had evidence of prior DENV infection, suggesting a potential synergistic effect between
ZIKV and pre-existing DENV immunity in triggering GBS [125]. On the other hand, the
presence of other infections like Mycoplasma pneumoniae in individuals with ZIKV can
exacerbate GBS development through immune dysregulation [125,126]. In addition to
compounding infections, ZIKV may also enhance the production of certain autoimmune
antibodies relevant to GBS. For example, an increase in anti-ganglioside IgG and IgM anti-
bodies was detected in ZIKV patients with GBS [127,128]. Moreover, the presence of shared
immunological epitopes between ZIKV and human proteins associated with demyelination
and axonal neuropathy suggests a role of molecular mimicry in the development of GBS
upon ZIKV infection [129]. Specifically, a glycan loop (GL) region of the envelope protein
contains an IVNDT motif. This motif is conserved in two human neuronal proteins, Heat
Shock 70 kDa protein 12A (HSP70 12A) and voltage-dependent L-type calcium channel
subunit alpha-1C (Cav1.2) [130].
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CNS invasion by ZIKV can trigger neuroinflammatory responses that result in neu-
ronal damage and peripheral neuropathy [131]. Variations in the ZIKV genome, particularly
in the NS1 gene, may enhance its neurovirulence and ability to evade the immune system,
increasing the risk of GBS [132,133]. The virus’s persistence in the CNS, supported by
pro-inflammatory and anti-apoptotic pathways, worsens neurological complications in-
cluding GBS [134]. ZIKV has also been shown to directly infect human peripheral neurons
and Schwann cells, leading to substantial cell death [135,136]. NS1 has been suggested to
elicit neutrophil extracellular traps induced by the upregulation of CXCL1 and IL-1β as
well as the activation of caspase 3. These alterations may injure the peripheral nervous
system [137]. These findings collectively emphasize the complex interplay between vi-
ral infection, host immunity, and neurological complications, thus necessitating further
investigation into the precise mechanisms driving GBS in the context of ZIKV infection.

4. ZIKV Neuropathogenesis—Cellular Mechanisms
4.1. Cell Cycle Perturbation and Mitotic Catastrophe

ZIKV replication in infected cells has been shown to induce DNA damage by causing
double-stranded breaks (DSBs) in the host genome [82,138]. These DSBs activate the
DNA damage response (DDR) pathway through ATM/Chk2 signaling. The DSBs can be
detected with an increase in γH2Ax observed in infected cells [82,138,139], which recruits
p53-binding protein 1 (53BP1) and activates the p53 pathways. The expression of p53 has
been shown to be upregulated in ZIKV infection with PRVABC59, which limits cell growth
via p21/PUMA [139]. The ATR/Chk1 signaling pathway is not activated by ZIKV [82,140],
indicating that single-stranded breaks are not induced upon ZIKV infection. Along with
the activation of ATM/Chk2, CDC25 phosphorylation, and cyclin A and cyclin E prevent
neuronal progenitor cells from progressing through S-phase, blocking successful DNA
replication. The arrest of NPCs in S-phase via the drugs Aphidicolin or Thymidine has
been shown to increase ZIKV replication [82]. However, the specific ZIKV proteins that are
capable of inducing this DNA damage remain unknown.

Unresolved DNA damage induced by ZIKV infection also impacts mitosis. ZIKV has
been found to induce mitotic catastrophe in hNPCs [140]. Rychlowska et al. identified
that this catastrophe is triggered by mitotic entry in the presence of DNA damage, due to
the ZIKV-mediated depletion of nuclear polynucleotide 5′-kinase 3′-phosphatase (PNKP).
PNKP is a critical DNA damage repair enzyme that has been found to relocate into the
cytoplasm together with NS1 upon ZIKV infection. They further report that ZIKV can
activate the cytoplasmic CycA/CDK1 complex, which triggers an unscheduled mitotic entry
despite DNA damage [140]. This mitotic catastrophe was also observed when the Envelop
protein was overexpressed in neuronal crest cells PC12 cells [141]. As inhibitors of caspase-3
and caspase-9, not caspase-8, could block the apoptosis in these cells, ZIKV likely triggers
the apoptosis in these cells via an intrinsic cell death signaling pathway. Additionally,
ZIKV infection may affect the recruitment of centrosomal proteins and has been suggested
to result in centrosomal structural defects. This affects the symmetric division of NPCs,
potentially depleting the NPC pool and, ultimately, impairing VZ development [142].

4.2. Mitochondrial Fragmentation

Mitochondrial fragmentation correlated to apoptosis was previously observed in cells
infected by other flaviviruses. The overexpression of DENV proteins has been shown
to alter mitochondrial bioenergetics, leading to changes in the mitochondrial membrane
potential, and ultrastructural alterations such as mitochondrial swelling and membrane
blebs [143,144]. These are characteristic changes seen in cells undergoing apoptosis [145].
ZIKV infection in neuronal stem cells (hNSCs) and glioblastoma cells (SNB-19) disrupts
mitochondrial dynamics through a decrease in MFN2 protein levels, leading to changes in
the mitochondrial network structure that may contribute to ZIKV-mediated neuronal cell
death [146]. It has been found that ZIKV infection induces the conformational activation of
Bax in the mitochondria and the subsequent activation of caspase 3 [147]. The reduction in



Pathogens 2024, 13, 555 11 of 24

Bax expression inhibited the cytochrome C release from the mitochondria and preserved
the mitochondrial membrane potential, which has been found to decrease upon ZIKV
infection. The knockdown of Bax resulted in decreased cell apoptosis in the neuroblastoma
cell line SH-SY5Y cells upon ZIKV infection [147].

4.3. Endoplasmic Reticulum Stress and Unfolded Protein Response

During ZIKV infection, viral replication and translation occur on the endoplasmic
reticulum (ER) membrane. The remodeling of the ER membrane and localization of all viral
proteins to the ER facilitate efficient replication [18,148]. The ZIKV-induced remodeling
of the ER has been observed in diverse cell types derived from humans (Huh7, hNPCs,
SK-N-SH, and HeLa), primates (Vero), and mosquitos (C6/36) [149–152]. These structural
modifications create a protective environment for viral genome replication, allowing for
optimized viral replication. The expression of viral proteins increases the protein folding
demand and activates ER stress sensor transmembrane proteins (PERK, ATF6, and IRE1),
stimulating the unfolded protein response (UPR) [150,153–155]. The UPR is a conserved
mechanism which resolves and facilitates proper protein folding in the ER by upregulating
the expression of chaperone proteins such as GRP78, calnexin, calreticulin, and protein
disulfide isomerase (PDI) [150,153,154].

If the UPR response is unsuccessful in restoring ER homeostasis and proper protein
folding, prolonged ER stress can occur. Prolonged ER stress due to continuing viral
replication has been linked to the formation of stress granules (SGs), which negatively
impact viral genome replication [156]. Accordingly, ZIKV has been found to suppress the
formation of SGs through the upregulation of hosts Growth Arrest and DNA-Damage-
inducible 34 (GADD34) protein [153]. The inhibition of GADD34, in turn, suppresses ZIKV
replication [157]. The viral proteins capsid, NS3/NS2B3, and NS4A have been shown to
interfere with SG formation in A549 and human fetal astrocytes [158].

The UPR also activates the ER-specific autophagy process called reticulophagy, to tar-
get viral proteins for degradation [159]. ZIKV and Dengue virus evade reticulophagy by the
NS2B3-mediated cleavage of Family with Sequence Similarity 134 Member B (FAM134B),
a reticulophagy receptor protein [160]. Lastly, the total ER stress burden caused by ZIKV
infection can induce paraptosis-like cell death through the PI3K/Akt signaling axis, which
induces large cytoplasmic vacuoles [161].

4.4. Central Regulators—p53 and Caspase-3 Activation

Multiple cellular stresses—DNA damage, cell cycle arrest, mitochondrial fragmen-
tation, and the UPR—can result in apoptosis upon ZIKV infection through the intrinsic
apoptotic pathway and caspase-3 activation. The general activation of apoptosis has
been shown for many ZIKV strains, although strain-specific mechanisms have been de-
scribed. FSS13025, H/PF/2013 and Haiti/1225/2014 have been shown to increase p53
expression [84,141,162], which inhibits BCL-2 and leads to the activation of Bax- and
caspase-3-induced apoptosis. Infections with FSS13025 resulted in less apoptosis when
the cells were treated with a p53 inhibitor [84]. MR766, on the other hand, inhibits p53
and signals through the JNK pathways, activating serine 139 phosphorylation of histone
H2Ax (γH2Ax), which upregulates caspase-3- and PARP-induced apoptosis in hNPCs
and hNSCs [84,139]. PRVABC59 infection does not increase PARP cleavage or caspase-3
activation in hNSCs, but it upregulates the serine 15 phosphorylation of p53, leading to
p21/PUMA expression which, ultimately, limits cell growth [139]. Overall, the activation of
these pathways may result in a smaller cortical neuronal progenitor cell population which
leads to a smaller brain size with damaged brain structures.

4.5. Immune Response and Neuroinflammation

The pathogenesis of ZIKV infection is also closely connected to the modulation of the
host immune response, particularly interferon and inflammatory pathways. An analysis of
the transcriptome in ZIKV-infected developing brains has shown a significant increase in
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genes related to the immune response, especially those involved in the interferon response
(OASl2, USP18, IFIT1, MX2, OAS1b, IFIT3, LIGP1, DDX60, IFI44, and IRF7) [83] and
cytokine production (IL-1β, TNF, CXCL10, IFN-B1, and TLR3) [163]. MR766 triggers
the activation of innate immune receptors such as TLR3, which disrupts genes related to
neurodevelopment and decreases organoid volume [164]. Furthermore, ZIKV nonstructural
proteins, particularly NS5, have varying effects on type I and type II interferon signaling
pathways, inhibiting type I while stimulating type II interferon signaling. The NS5 protein
of several ZIKV strains (PRVABC-59, MR766, and H/PF/ 2013) has been found to induce
STAT2 but not STAT1 degradation, which affects the STAT1–STAT2–IRF9 complex and
the subsequent activation interferon-stimulated response elements (ISREs) leading to a
decrease in interferon-stimulated gene (ISG) expression [165,166]. On the other hand, the
STAT1–STAT1 complex formation was actually increased by PRVABC59 infection, leading
to upregulated IFN-γ stimulated genes including the pro-inflammatory cytokine CXCL10.
Inhibiting the IFN-γ receptor and subsequent signaling suppressed ZIKV replication and
the viral induction of Type II ISGs [166]. A summary of IFN-β induction and signaling by
different viral strains and in multiple cell types is provided in Table 2.

Table 2. Interferon beta induction by different ZIKV strains depending on cell types. Bold highlights
indication effect on type I interferon response.

Cell type Virus strain Effect References

A549

MR766 Reduced phosphorylation of JAK1 and STAT1, which ultimately reduces
IFN-β and downstream ISGs by NS5 [10]

H/PF/2013
Individual proteins NS5 binds with STAT2 and targets it for degradation [167]

Z11060330
Individual proteins

NS2B3 impairs JAK-STAT pathway by degrading Jak1 and inhibition of
virus-induced apoptosis

NS1 and NS4B inhibit type I IFN production by affecting TBK1
[10]

HEK293T

PRVABC59 Suppressed IFN-β induction by binding to TBK1 [168]

PRVABC59
Individual proteins NS5 binds with STAT2 and targets it for degradation [166]

FSS13025 Inhibits IFN-β production via inhibition of TBK1 activity by NS2A, NS2B,
and NS4B and inhibition of IRF3 by NS4A and NS5 [168]

DAKAR 41525 Suppressed IFN-β induction by binding to TBK1 [168]

Dendritic cells MR766, PRVABC59,
DAKAR 41525, P6-740

High levels of IFN-β RNA transcript levels
but restricted IFN-β protein translation [169]

Astrocyte MR766, PRVABC59,
R103451 12-fold increase in IFN-β secretion compared to uninfected cells [170]

NPCs MEX1-44 Increase in IFN-β secretion levels [83]

Glioblastoma
(U87, U251, LN229) MR766 Reduced IFN-β expression compared to Sendai virus (SeV) [10]

The ZIKV-induced inflammatory response has been linked to the disruption of the
BBB and subsequent neuroinflammation. ZIKV-infected endothelial cells, pericytes, and
astrocytes—all are part of the BBB—show an increased expression of inflammatory cy-
tokines (IL-6 and IL-8) and chemokines (CXCL10 and CCL5) in a human brain-like en-
dothelial cell (hBLEC) model [171]. This inflammation, together with leukocyte recruit-
ment [171,172] and impaired blood vessel development in the brain [173], could contribute
to ZIKV neuroinvasiveness.

In summary, the neuronal apoptosis induced by ZIKV is a result of a multifaceted
interplay between viral factors and host responses. The activation of apoptotic pathways
by different viral strains and the initiation of bystander apoptosis through inflammatory
cascades are just some of the ways in which ZIKV infection disrupts the normal func-
tioning of developing neuronal tissues. This disruption is further exacerbated by mitotic
catastrophe, mitochondrial fragmentation, and ribosomal stress, all of which contribute to
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the severe cellular damage observed. Additionally, the modulation of immune responses,
particularly interferon signaling, adds to the complexity of the interactions between the
host and the virus in ZIKV pathogenesis. The disruption of the BBB and the occurrence
of neuroinflammation further enhance the neurovirulence of ZIKV. Therefore, it is crucial
to understand these highly specific mechanisms in order to develop effective therapeutic
interventions and preventive strategies against the neurodevelopmental abnormalities
associated with ZIKV.

5. Models Used for ZIKV Research—Advantages and Limitations

The research to study the mechanism described above has been conducted utilizing
numerous cell types, culture modalities, or more complex systems such as 3D organoid
and animal models. Each model has its advantages but also its own unique limitations that
need to be considered when interpreting results.

5.1. Stem Cells and Co-Culture

Cell culture models are commonly used to understand cell-specific infection mecha-
nisms and characteristics. iPSCs-derived cells have been a critical component in studying
ZIKV infection and modeling its impact on neuronal development at different stages [174].
To better understand the complex interactions among various cell types in the brain, co-
culture models have been utilized. These models replicate the interplay between different
cell types and their surrounding environment more accurately. Specific models used to
mimic BBB have been described. Medina and Tang optimized a BBB model based on iPSCs
differentiated into brain microvascular endothelial cells [175,176], whereas Clé et al. utilized
human brain-like endothelial cells (hBLECs) from human umbilical cord blood [171]. Both
models involve the differentiation of cells into BBB-like endothelial cells and the culturing
of neuronal cells or astrocytes on the other side of a transwell. It has been shown that ZIKV
is capable of crossing the barrier and infecting cells such as astrocytes in the lower chamber
of a transwell [66,171]. Although these studies provided significant insights into potential
mechanisms by which ZIKV invades the CNS, the models are still limited by the number
of cell types included.

5.2. 3D Brain Organoid Models

The ability of 3D brain organoids, derived from PSCs using a method pioneered by
Lancaster et al. [177], to model early brain development made it a clear choice for many
labs in the race to uncover the cellular tropism and developmental impact of ZIKV infection
on the human brain [8,178]. The initial publication reporting that ZIKV efficiently infects
neural progenitor cells and induces cell death in monolayers [81] was quickly followed by
a wave of brain organoid studies from many groups [164,179–181]. Since then, many ZIKV
isolates and organoids of various stages of maturation have been used in combination. For
a detailed technical summary of the major ZIKV/brain organoid studies, the readers are
referred to an excellent recent review [182]. The infection studies with brain organoids
confirmed the preferential targeting of SOX2+ neural progenitors [142,164,179,181,183],
which are enriched in the ventricular zone (VZ) and subventricular zone (SVZ) in brain
organoids. Consistent with this finding, the detection of the ZIKV antigen in VZ and
SVZ is often stronger over other parts of the brain in infected fetal or embryonic mouse
brain tissue [77,163,184,185], and the depletion of neural progenitors has been observed
in experimentally infected non-human primate model [186–188]. Other congruent ZIKV
phenotypes from brain organoid studies include increased cell death, thinner cortical layers,
and overall reduced organoid size [29,142,164,179,181,183,189–191]. In addition to the cell
cycle arrest of NPCs, mechanisms such as the disruption of radial glial scaffolding, the
upregulation of TLR3 expression, or the induction of autophagy can all contribute to the
overall reduction in brain organoid growth [164,192,193].

Brain organoids have also been used to evaluate potential anti-ZIKV compounds
for therapeutic development [183,190,194–196]. The complexity and the relatively low
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throughput of the system make them better suited for confirmation instead of primary
screening steps of compound identification studies.

5.3. Mouse Models

Several mouse models have been developed and have provided valuable insights into
the mechanisms underlying ZIKV-induced neurologic disorders and prenatal complications.
These models can be grouped into four categories: interferon knockout (KO) models,
models utilizing monoclonal antibodies against the IFN receptors, mice expressing human
STAT2, and neonatal animals which are presumably less immune-competent.

Generally, immune-competent mice are resistant to ZIKV infection. Thus, immune-
compromised mice have been utilized. Particularly, mice lacking the ability to complete
the interferon signaling cascade through Ifnar1 KOs (A129 mice and Ifnar1−/− C57BL/6
mice) or mice deficient in the interferon regulatory factors Irf3, Irf5, and Irf7 (Irf3−/−

Irf5−/− Irf7−/− triple knockout [TKO]) [197,198]. These mice developed severe disease
upon infection with MR766, H/PF/2013, and Dakar strains [197]. A129 (lacking type
1 interferon response) and AG129 (lacking both type 1 and type 2 interferon response)
developed both encephalitis and CNS injury upon infection with H/PF/2013, MP1751, and
FSS13025 [198–200].

Additionally, a transient approach utilizing monoclonal antibodies against IFN recep-
tors can be used to enable ZIKV infection in mice. Anti-IFNAR1 monoclonal antibodies that
block receptor-binding by IFN are commonly used [201]. This approach does not require
maintaining specific immune-compromised mouse colonies and is, thus, less time-intensive
or cost-prohibitive.

ZIKV NS5—which degrades human STAT2—cannot degrade murine Stat2 [165], po-
tentially explaining why immunocompetent mice are resistant to ZIKV infection and disease
induction. Based on this knowledge, Gorman et al. developed a mouse model expressing
human STAT2 instead of murine Stat2, resulting in productive ZIKV infection in these
mice [202].

Lastly, neonatal mice, presumably less immune-competent, are permissive to ZIKV
infection. In mice, crucial brain development stages that align with those in the third
trimester of humans take place during the neonatal period, making this model relevant.
CNS pathology and partial lethality were observed after the injection of 7- to 8-day old
WT C57BL/6 mice with either ZIKV Dakar 41519 or ZIKV H/PF/2013 subcutaneously or
intraperitoneally [34,197].

5.4. Non-Human Primate Models

Multiple non-human primates (NHPs), namely, rhesus macaques, African green mon-
keys, Syrian gold hamsters, and guinea pigs, have been used to study ZIKV infection.

Rhesus macaques developed fever and viremia after subcutaneous inoculation with
GZ01. The presence of the virus was detected in urine, saliva, lacrimal fluid, cerebral
spinal fluid, semen, and vaginal swabs. This suggests that the virus has the ability to
rapidly establish a systemic infection. [203–205]. The infection of rhesus macaques with
ZIKV strains H/FP/2013 or PRVABC59 at early gestation resulted in fetal demise in 26%
of infections [206]. Most importantly, rhesus macaques have been employed to assess the
immunogenicity and effectiveness of active ZIKV immunization. This includes evaluating
inactivated virus, DNA plasmid-based, and vector-based vaccines, as well as examining
the protective efficacy of passive immunization against a ZIKV challenge [207,208]. The
pitfalls of the rhesus macaque models include the high cost and limited number of animals.
Moreover, the longer gestation period of rhesus macaques, as opposed to that of mice,
prolongs experimental durations.

African green monkeys (AGMs) are also susceptible to ZIKV infection. Surveys of wild
baboons and AGMs from South Africa, the Gambia, Tanzania, and Zambia revealed that up
to 16% of the tested animals had been exposed to ZIKV [209]. In the lab, the subcutaneous,
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intravaginal, or intrarectal inoculation of AGM with ZIKV strain ArD 41525 produced
viremia and viral shedding and induced virus-specific antibodies [210].

Syrian gold hamsters have been used to study ZIKV infection. Wild-type hamsters
developed a mild disease and detectable viremia upon intraperitoneal but not subcutaneous
inoculation with Senegalese (ArD 41525) and Philippines (CPC-0840) ZIKV strains [211]. To
test if immunocompromised hamsters are more susceptible to ZIKV infection, STAT2-KO
Syrian gold hamsters were used in another study, which showed that the subcutaneous
injection of Malaysian ZIKV (P 6–740) resulted in the infection of various organs. Viral
RNA and proteins were detected in the uterus, placenta, brain, spinal cord, and testicles,
and infection resulted in mortalities [212].

Guinea pigs, which have previously been established as animal models for studying
congenital infections and sexually transmitted diseases [213,214], are another type of NHP
model for ZIKV infection. Importantly, immunocompetent guinea pigs can be infected by
ZIKV and present disease. The placental structures are similar between humans and guinea
pigs and their pups are born with mature CNS systems comparable to humans at birth.
These unique characteristics of guinea pigs represent the advantages of this model [215].

Overall, the utilization of stem cells, co-cultures, and 3D organoids, as well as murine
and non-human primate in vivo models have collectively contributed to the rapid and
significant advancement in our understanding of ZIKV pathogenicity.

6. Conclusions

The severe clinical presentations of ZIKV infection, especially in infants, fueled the
extensive research on this human pathogen. There is extensive interaction between the
virus and the host resulting in numerous diverse molecular pathways identified in the
ZIKV-dependent neuropathogenesis. Investigations have revealed potential connections
between ZIKV infection and cell cycle arrest, DNA damage, mitotic catastrophes, mito-
chondrial fragmentation, ER stress, and the unfolded protein response. From these studies,
p53 has emerged as a pivotal player in ZIKV-induced neuronal apoptosis. Lastly, the
immune response to the virus has been shown to induce substantial inflammation which
may be connected to increased neuroinflammation and further contribute to neuronal
death. Nevertheless, how applicable the various mechanisms identified in the experimental
models are to the clinical setting of ZIKV infection and disease remains unclear. And
the lack of effective treatment or prevention options for ZIKV call for more research and
continued investigation into antivirals and vaccines. Finally, the continuous monitoring
of the neurodevelopment of infants exposed to ZIKV is crucial, as prenatal exposure can
result in brain abnormalities not as prominent as microcephaly at birth, underscoring the
importance of ongoing vigilance in addressing potential long-term consequences.
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