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Abstract: The study was conducted to identify cluster patterns of enteric microorganisms with
potential etiological relevance for infectious gastroenteritis in stool samples of individuals from
Ghana, which is a known high-endemicity setting for infectious gastroenteritis. These patterns were
compared to previous observations with specimens from Colombian indigenous people in order
to assess potentially stable clustering for temporally and spatially distinct populations from high-
endemicity regions. By doing so, the study aimed to identify stable clusters as markers of microbial
interaction with potential importance for etiological relevance assignment in cases of multiple enteric
pathogen detections. Stool samples from 1569 Ghanaian individuals (875 from HIV patients, 30 from
HIV-negative control adult patients, and 644 from children < 2 years of age) were assessed for enteric
microorganisms by applying real-time PCR. As a result, nucleic acids of bacterial microorganisms
were most frequently detected, followed by protozoa, microsporidia, and helminths. Interestingly, the
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cluster assessment confirmed interaction patterns known from the previous analysis with Colombian
indigenous people, demonstrating a high likelihood of Blastocystis hominis for clustering with other
microorganisms and a prominent, potentially mediating role of Dientamoeba fragilis for microbial
interactions within the clusters. In conclusion, the assessment confirmed conserved clustering of
enteric microorganisms with potential etiological relevance for human infectious gastroenteritis
over geographically distinct high-endemicity settings. Furthermore, the composition of abundant
microorganisms is more important than regional factors for the determination of the interplay of
enteric microorganisms in the human gut. Thereby, some microbial pathogens and commensals seem
more susceptible to a changing microbial composition in the human gut than others.

Keywords: cluster analysis; etiological relevance; gastrointestinal infections; high-prevalence setting;
pathogen; commensal

1. Introduction

When gastrointestinal pathogens are detected in stool samples of patients with infec-
tious gastroenteritis living in regions where such pathogens as well as associated infectious
gastroenteritis are frequent, it can be difficult to say whether the detected pathogen is really
the cause of the observed clinical symptoms. This is particularly true if more pathogens
than just a single one are detected in the same stool sample. The problem that most enteric
pathogens in regions with high prevalence for infectious gastroenteritis can both cause en-
teric disease or just persist as harmless colonizers is called “facultative pathogenicity” [1–5].
Previously, other researchers have tried to link the quantity of pathogens in stool samples
with their likelihood of causing infectious gastroenteritis in such patients. In the case of
diagnostic real-time PCR, so-called cycle threshold (Ct) values are an indirect option for
target quantification because low Ct values indicate high quantities of the PCR target and
vice versa. However, such attempts at linking pathogen quantity in stool samples with
the likelihood of this pathogen causing clinical disease were only partly successful [2,3,6].
Consequently, generally accepted cut-offs for a Ct-value-based assignment of etiological
relevance of enteric pathogens do not exist.

Obviously, more factors influence the likelihood of an association between clinically
observed infectious gastroenteritis and the detection of an enteric pathogen in a human
stool sample. One of these factors is “semi-immunity”, which means immunological adap-
tation of the human gut to rapid cycles of repeated pathogen exposure under poor hygiene
conditions. This has been observed repeatedly in resource-limited tropical regions [7–9].
Although it is not yet completely understood how enteric semi-immunity works on a
cellular or molecular level, some well-defined hypotheses regarding host–pathogen coex-
istence have been proposed, particularly for enteric helminth infections, as summarized
elsewhere [10]. Furthermore, the semi-immunity concept is already in preventive medical
use. Oral typhoid fever vaccination is the most commonly known example of induced
short-term immunity on enteric mucous membranes [11].

Next to immunological adaptations, the enteric microbiome’s composition is believed
to play a role in the degree of susceptibility towards the virulence of enteric pathogens.
For both laboratory animals and human individuals, favorable microbiome compositions
have been demonstrated to mitigate colonization resistance towards enteric pathogens,
thus making gastroenteric infections less likely [12–14]. In addition, there is an increasing
body of evidence suggesting likely interaction between enteric pathogens and commensals,
which affects the clinical outcome [5,15].

In order to contribute to deciphering such microbial interactions in the gut of individ-
uals from high-endemicity settings for infectious gastroenteritis, our study group recently
conducted a cluster analysis assessing gastroenteric pathogens in stool samples of a Colom-
bian indigenous population [16]. Within this population, a cluster consisting of Blastocystis
hominis, Campylobacter spp., and Giardia duodenalis was shown to interact with Dientamoeba
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fragilis and Ascaris lumbricoides in a microbial-density-dependent way [16]. During the
interpretation of this finding [16], however, it remained uncertain whether this observation
just represented a regional peculiarity or a general pattern of microbial interaction in the
human gut.

As such, it seemed promising to repeat the analysis with populations from other tropi-
cal high-endemicity settings for gastroenteric infections. Ghana, in the West African region,
is an example of a country where enteric pathogens can be detected both in association
with diarrheal disease and in asymptomatic individuals [4,17]. Especially high detection
rates of gastroenteric pathogens can be expected in Ghanaian children [18–20], and in older
studies, when diagnostic approaches with poor diagnostic accuracy, like Widal testing,
were still in use [21], even underestimations of the true prevalence were likely. In such
populations, co-occurrence of various microbial agents in stool samples as well as rapid
pathogen acquisition cycles have been reported previously [22,23]. Furthermore, the com-
mon co-occurrence of genetic resistance determinants in Ghanaian stool samples [24,25]
bears the risk of resistance transmission to bacterial enteric pathogens via mobile genetic
elements. For Campylobacter spp. detections in Ghana, resistance was pronounced in cases
of HIV-positive patients [26]. Enteric protozoan parasite infections of the gut have been
reported to be particularly frequent in Ghanaian patients with diabetes [27]. Ghanaian
farm environments provide reservoirs for several enteric pathogens like, e.g., salmonel-
lae [28] and Cryptosporidium spp. [29]. Fecal contamination of regional environments is
common [30], and food-borne or water-borne transmissions of infectious gastroenteritis
are frequent events, particularly for poor Ghanaians [31–33]. Consequently, evidence of
long-term efficiency of water filtration has recently been confirmed for Ghana [34], and, in
line with the abovementioned information, colonized food vendors play a relevant role for
such food-borne transmission events in Ghana [35].

Based on such previous experiences, Ghana was chosen as a suitable candidate region
for cross-checking the experience from Colombia [16] in another tropical high-endemicity
setting. To do so, cluster analyses were performed both with the set of microbial param-
eters chosen for the Colombian assessment [16] alone as well as in comparison with the
Colombian results published elsewhere [16] and also with a broadened dataset available
for the Ghanaian samples only. Furthermore, the dataset on Ghanaian individuals was
sub-divided into subsets comprising children under 2 years of age and HIV-positive in-
dividuals. The rationale of these analytical steps is as follows. If microbial interactions
are stable, comparable clustering should appear despite regionally different populations
and despite interindividual differences, including factors like medical conditions and envi-
ronmental factors. In summary, the study aimed at identifying stable clusters as markers
of microbial interaction with potential importance for etiological relevance assignment in
cases of multiple enteric pathogen detections, and the inclusion of different subpopulations,
including children and HIV-positive individuals, was performed to further challenge the
stability of potentially observed clustering.

2. Materials and Methods
2.1. Study Type

The study was conducted as a modelling approach using diagnostic real-time PCR
data obtained from cross-sectional assessments of stool samples acquired from Ghanaian
populations. It included a comparison of the Ghanaian results with historic data from a
population of Colombian indigenous individuals [16].

2.2. Study Populations and Inclusion and Exclusion Criteria

The study population included a total of n = 1569 stool samples collected from Ghana-
ian individuals. The included subgroups comprised samples from n = 875 non-age-stratified
Ghanaian HIV (human immunodeficiency virus) patients and n = 30 Ghanaian control
individuals without known HIV infection [36] as well as from n = 664 Ghanaian children <
2 years of age.
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The female:male ratio was 3:1. In the adult population (HIV-positive individuals
and controls), the mean age (±standard deviation (SD)) was 39.6 (±9.9). Included Ghana-
ian HIV patients showed a median CD4+ T-cell count/µL (interquartile range (IRQ)) of
392.5 (189, 610) and a median CD4+/CD8+ T-cell ratio (IRQ) of 0.4 (0.2, 0.7). The median
viral load in log10 copies/mL (IRQ) was 4.0 (1.6–5.2).

If sample material was insufficient for all real-time PCR assessments, this was not an
exclusion criterion, and at least the available parameters were assessed. Samples showing
inhibition of molecular diagnosis in the inhibition control PCR as detailed below were
considered non-interpretable in cases lacking a positive PCR signal and positive in cases
with an abundance of a PCR signal for a specific parameter. The following pathogens
contained in the former study on Colombian indigenous individuals [16], from which
data were used for comparison purposes, were not included in mathematical assessments:
Aeromonas spp., Trichuris trichiura, and Hymenolepis nana. Aeromonas spp. was not tested with
the Ghanaian samples, Trichuris trichiura was tested but it never occurred, and Hymenolepis
nana was detected only once. To have comparable proportions, microorganisms had to
appear with a prevalence of at least 1:100 (1%), constituting approximately a minimum
of 6 in children and 10 in adults [16,37]. Applying this exclusion criterion, the following
microorganisms were excluded from further analyses in the entire sample: Hymenolepis nana,
Necator americanus, Ascaris lumbricoides, and Taenia solium. However, because Taenia solium
was not differentiated from Taenia saginata in the Colombian assessment [16], detections of
any of the two Taenia species were fused for the comparison of the Colombian dataset [16]
with the Ghanaian PCR results.

2.3. Real-Time PCR Diagnostics

Stool samples were stored at −80 ◦C after sampling until nucleic acid extraction was
conducted. Nucleic acids were extracted using the QIAamp stool DNA mini kit (Qiagen,
Hilden, Germany). Real-time PCR was conducted by applying previously published proto-
cols, as summarized in the following. Regarding the assessed bacterial microorganisms, the
protocol by Wiemer et al. [38] was used for the detection of Salmonella spp. (ttrC sequence),
Shigella spp./enteroinvasive Escherichia coli (EIEC, ipaH sequence), Campylobacter jejuni
(gyrA sequence), and Yersinia spp. (ail sequence). The protocol by Hahn et al. [39] was used
for enteropathogenic Escherichia coli (EPEC, EAF plasmid and eae sequences), enterotox-
igenic Escherichia coli (ETEC, eltB and estB sequences), and enteroaggregative Escherichia
coli (EAEC, aatA sequence). The protocol by Fenollar et al. [40] was used for Tropheryma
whipllei (Dig 15 sequence). For the diagnosis of EPEC and ETEC, a positive reaction with at
least one of the target sequences was demanded to consider the sample as positive for the
respective Escherichia coli pathovar. For protozoan parasites, the real-time PCR protocols
by Verweij et al., Köller et al., ten Hove et al., and Stensvold et al. [41–46] were applied
for the diagnosis of Entamoeba histolytica (SSU rRNA sequence), Giardia duodenalis (SSU
rRNA sequence), Cyclospora cayetanensis (SSU rRNA sequence), Cryptosporidium parvum
(138-bp fragment inside of the C. parvum-specific 452-bp fragment), Cystoisospora belli (ITS-2
sequence), Dientamoeba fragilis (5.8S rRNA sequence), and Blastocystis hominis (SSU rRNA
sequence). For helminths, the real-time PCR protocols by Köller et al., Basuni et al., Praet
et al., Obeng et al., and Kaisar et al. [42,47–50] were performed to diagnose Ascaris lum-
bricoides (ITS-1 sequence), Ancylostoma ssp. (ITS-2 sequence), Necator americanus (ITS-2
sequence), Strongyloides stercoralis (SSU rRNA sequence), Taenis solium (ITS-1 sequence),
Taenia saginata (ITS-1 sequence), Schistosoma spp. (ITS-2 sequence), Trichuris trichiura (SSU
rRNA sequence), Enterobius vermuicularis (ITS-1 sequence), and Hymenolepis nana (ITS-1
sequence). Finally, the real-time PCR protocol by Tanida et al. [51] was used for the diag-
nosis of microsporidia (SSU rRNA sequence of Enterocytozoon bieneusi, Encephalcytozoon
cuniculi, Encephalcytozoon hellem, and Encephalcytozoon intestinalis). Sample inhibition was
controlled using a real-time PCR targeting a sequence fragment of Phocid Herpes Virus
(PhHV), as previously described by Niesters [52]. Therefore, from a total of 1569 assessed
Ghanaian samples, 1496 (95.8%) did not show relevant sample inhibition in the PhHV-
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sequence-based inhibition control PCR. The applied oligonucleotides for the real-time PCR
reactions are presented to interested readers in Appendix A Table A1. All assays were
run on either RotoGene Q (Qiagen, Hilden, Germany) or MIC (Bio Molecular Systems,
Upper Coomera, Australia) cyclers with plasmid-based positive controls and PCR-grade
water-based negative controls in each run. Detection limits for the various assays ranged
between 102 and 104 DNA copies per µL samples.

2.4. Statistical Assessment

Statistical analyses were carried out using the R 3.6.1 packages dplyr 2.3.0, fpc2.2-10,
mclust 6.0.0, vegan2.6-4, dendextend 1.17.1, and ggplot2 3.4.2. Searching for clusters in
the real-time PCR data was conducted using agglomerative hierarchical clustering with
z-standardization [53]. Hierarchical clustering maximizes intra-class similarity and inter-
class dissimilarity, which means pathogens within a cluster are algorithmically aligned to
be similar and distinct from pathogens of other clusters. Cycle threshold (Ct) values of
real-time PCR, which provide a semi-quantification approach, were clustered using the
complete-linkage method to find an optimal solution in Euclidean space [54]. The Average
Jaccard Index using 10.000 bootstrap resamples [55] was used to evaluate the stability of
clusters, with values < 0.6 considered unstable, values ranging from 0.6 to 0.85 considered
stable, and values greater 0.85 considered highly stabile [56]. The analysis included three
major steps:

1. Native cluster analysis for all microorganisms eligible for the Ghanaian population.
2. Cluster analysis for microorganisms already included in the Colombian study [16]

but with Ghanaian data to inspect interactions within a comparable composition
of pathogens.

3. Direct comparison employing both the Ghanaian data and the original data from the
Colombian study [16] using a tanglegram.

The tanglegram was detangled using the step2side algorithm, which facilitates visual
comparison of two hierarchical dendrograms [57]. A cophenetic correlation matrix [58]
was computed to compare statistical similarity between dendrograms [59]. Values close to
zero were considered to represent no similarity, while values greater five were considered
to represent moderate to high similarity between distance matrices.

2.5. Ethics

Ethical clearance for the assessments delivering the study data was obtained from
the Committee on Human Research of the Kwame Nkrumah University of Science and
Technology in Kumasi, Ghana, CHRPE/AP/12/11 and CHRPE/KNUST/KATH/01_06_08,
and from the ethics committee of the Medical Council in Hamburg, Germany, under
the reference numbers PV3771 and PV3020. The work was conducted in line with the
Declaration of Helsinki and all of its amendments. Informed consent was provided by the
study participants, or, in the case of minors, by their parents or next of kin.

3. Results
3.1. Summary of the Diagnostic Results

DNA of bacterial microorganisms was most frequently detected, followed by protozoa,
microsporidia, and helminths. As shown in detail in Table 1, detections in declining order
of frequency comprised enteropathogenic Escherichia coli (EPEC), enteroaggregative E. coli
(EAEC), enterotoxigenic E. coli (ETEC), Shigella spp./enteroinvasive E. coli (EIEC), Tro-
pheryma whipplei, Salmonella spp., Campylobacter jejuni, and Yersinia spp. among the assessed
bacteria, Blastocystis hominis, Giardia duodenalis, Cyclospora cayetanensis, Cryptosporidium
parvum (same frequency of the latter two microorganisms), Entamoeba histolytica, and Cys-
toisospora belli among the assessed protozoa, and, finally, Schistosoma spp., Strongyloides
stercoralis, Taenia saginata, Necator americanus, Taenia solium (same frequency of the latter two
microorganisms), Ascaris lumbricoides, and Hymenolepis nana among the assessed helminths.
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Table 1. Diagnostic results obtained for the Ghana study population and its different subpopulations.

Parameter

Total Ghanaian
Population
(1569 Individuals), n (%),
Mean Ct Value (±SD)

HIV-Positive
Subpopulation
(875 Individuals), n (%),
Mean Ct Value (±SD)

Control Individuals for the
HIV-Positive Subpopulation
(30 Individuals), n (%), Mean
Ct Value (±SD)

Subpopulation of Ghanaian
Children < 2 Years of Age
(664 Individuals), n (%),
Mean Ct Value (±SD)

Salmonella spp. (ttrC sequence) 119 (7.6%), 29.8 (±3.0) 96 (10.7%), 29.6 (±3.1) 3 (10%), 28.0 (±2.0) 23 (3.5%), 31.0 (±2.1)
Shigella spp./enteroinvasive Escherichia
coli (EIEC, ipaH sequence) 261 (16.7%), 27.6 (±5.8), 196 (21.8%), 26.7 (±6.0) 2 (6.7%), 31.5 (±0.7) 65 (9.8%), 30.3 (±4.2)

Campylobacter jejuni (gyrA sequence) 49 (3.1%), 29.6 (±6.2) 19 (2.1%), 28.1 (±6.4) 2 (6.7%), 32.5 (±6.4) 30 (4.5%), 30.6 (±5.9)

Yersinia spp. (ail sequence) 20 (1.3%), 34.5 (±2.7) 1 (0.1%)
36.0 0 (0%) 19 (2.9%)

34.4 (±2.7)
Escherichia coli (EPEC, based on EAF
plasmid and/or eae sequence) 1012 (64.5%), 28.1 (±4.7) 605 (67.1%), 27.8 (±4.83) 28 (93.3%), 28.8 (±4.2) 407 (61.6%), 28.8 (±4.4)

enterotoxigenic Escherichia coli (ETEC,
based on ST and/or LT sequences) 578 (37.9%), 30.4 (±4.7) 327 (36.3%), 30.4 (±4.2) 10 (33.3%), 29.8 (±5.9) 251 (38.0%), 30.3 (±5.2)

enteroaggregative Escherichia coli
(EAEC, aatA sequence) 1009 (64.6%), 28.9 (±5.3) 636 (70.6%), 28.2 (±5.2) 17 (56.7%), 29.8 (±2.5) 373 (56.4%), 29.9 (±5.5)

Tropheryma whipplei (Dig 15 sequence) 140 (9%), 34.9 (±2.1) 83 (9.2%), 35.3 (±2.2) 3 (10%), 37.7 (±0.6) 57 (8.6%), 34.3 (±1.8)
Entamoeba histolytica (SSU rRNA
sequence) 66 (4.2%), 36.8 (±5.6) 54 (6.0%), 37.1 (±6.3) 1 (3.3%), 38.0, (-) 12 (1.8%), 35.5 (±7.2)

Giardia duodenalis (SSU rRNA sequence) 190 (12.2%), 30.8 (±4.5) 95 (10.5%), 30.4 (±4.2) 4 (13.3%), 29.5 (±5.7) 95 (14.4%), 32.4 (±3.5)
Cyclospora cayetanensis (SSU rRNA
sequence) 71 (4.5%), 34.7 (±4.3) 63 (7.0%), 34.4 (±4.4) 1 (3.3%), 39.0, (-) 8 (1.2%), 36.9 (±2.0)

Cryptosporidium parvum (138-bp
fragment inside of the C.
parvum-specific 452-bp fragment)

71 (4.5%), 31.6 (±4.2) 56 (6.2%), 31.0 (±4.3) 0 (0%), n.a. 15 (2.3%), 33.8 (±2.5)

Cystoisospora belli (ITS-2 sequence) 34 (2.2%), 30.9 (±4.3) 33 (3.8%), 30.8 (±4.3) 0 (0%), n.a. 1 (0.2%), 35.0 (-)
Dientamoeba fragilis (5.8S rRNA
sequence) 13 (0.8%), 32.7 (±5.7) 2 (0.2%), 39.0 (±4.2) 1 (3.3%), 36.0 (-) 11 (1.7%), 31.5 (±5.3)

Blastocystis hominis (SSU rRNA
sequence) 356 (22.7%), 32.8 (±6.2) 106 (11.8%), 36.1 (±2.6) 3 (10%), 37 (±2.0) 250 (37.7%), 31.4 (±6.7)

Ascaris lumbricoides (ITS-1 sequence) 3 (0.2%), 25.7 (±3.5) 1 (0.1%), 22.0 (-) 0 (0%), n.a. 2 (0.3%), 27.5 (±2.1)
Necator americanus (ITS-2 sequence) 6 (0.4%), 36.2 (±2.9) 2 (0.7%), 36.2 (±2.9) 3 (10.0%), 37.3 (±2.1) 0 (0%), n.a.
Strongyloides stercoralis (SSU rRNA
sequence) 18 (1.2%), 28.8 (±3.7) 17 (1.9%), 28.7 (±3.8) 0 (0%), n.a. 1 (0.2%), 31.0 (-)

Taenis solium (ITS-1 sequence) 6 (0.4%), 36.0 (±5.3) 5 (0.6%), 38.0 (±2.3) 0 (0%), n.a. 1 (0.2%), 26.0 (-)
Taenia saginata (ITS-1 sequence) 14 (0.9%), 36.5 (±3.0) 14 (1.6%), 36.5 (±3.0) 0 (0%), n.a. 0 (%), n.a.
Schistosoma spp. (ITS-2 sequence) 33 (2.1%), 28.3 (±6.2) 29 (2.8%), 25.0 (±5.6) 0 (0%), n.a. 8 (1.2%), 30.1 (±6.8)
Hymenolepis nana (ITS-1 sequence) 1 (0.1%), 35.0 (-) 0 (0%), n.a. 0 (0%), n.a. 1 (0.2%), 35.0 (-)
microsporidia (SSU rRNA sequence of
Enterocytozoon bieneusi, Encephalcytozoon
cuniculi, Encephalcytozoon hellem, and
Encephalcytozoon intestinalis)

128 (8.2%), 28.2 (±5.9) 67 (7.4%), 25.5 (±5.4) 0 (0%), n.a. 61 (9.2%), 31.1 (±5.1)

ITS = internal transcribed spacer, rRNA = ribosomal ribonucleic acid, SSU = small subunit, Ct = cycle threshold,
n = number, SD = standard deviation. n.a. = not applicable. (-) = lacking value.

Minor differences in the distribution of assessed microorganisms were seen over the
different subpopulations of the study, as shown in Table 1; however, these differences
mostly affected microorganisms generally detected in low numbers only. Of note, Necator
americanus and Taenia saginata did not occur in the subpopulation of Ghanaian children. For
the older subpopulations, Hymenolepis nana was not detected, and, in the children, only a
single detection was recorded.

Trichuris spp. was included in PCR screening but excluded from the calculations
described below due to lack of detection. Similarly, Ancylostoma spp. was not detected.

3.2. Cluster Calculations

Based on the predefined inclusion criteria (please also see paragraph 2.2 above for
details), n = 19 microorganisms could be subjected to cluster analysis for the entire Ghanaian
population, n = 17 for the Ghanaian HIV-positive subpopulation, and n = 14 for the
Ghanaian children. Details are provided in Table 2.

To potentially falsify the generalizability of cluster results found for a Colombian
indigenous population in a previous assessment [16], in a first step, the following eight
microorganisms were subjected to cluster analysis for the entire Ghanaian population:
Giardia duodenalis, Blastocystis hominis, Campylobacter jejuni, Dientamoeba fragilis, Strongyloides
stercoralis, Cryptosporidium parvum, Shigella spp./enteroinvasive Escherichia coli, and Taenia
spp. (Taenia saginata and Taenia solium, compare with the methods section for details).
Stratified for the subpopulation of Ghanaian HIV patients, seven microorganisms could be
included, namely Giardia duodenalis, Blastocystis hominis, Campylobacter jejuni, Strongyloides
stercoralis, Cryptosporidium parvum, Shigella spp./enteroinvasive Escherichia coli, and Taenia
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spp. For children, six microorganisms, i.e., Giardia duodenalis, Blastocystis hominis, Campy-
lobacter jejuni, Dientamoeba fragilis, Cryptosporidium parvum, and Shigella spp./enteroinvasive
Escherichia coli, could be included in this comparison. The Average Jaccard Index (J) ranged
from 0.64 to 0.95, yielding stable to very stable results for the three sub-analyses. For the
subpopulation of HIV patients, the Average Jaccard Index fell below the cut-off value of
0.60 (J = 0.54) for one cluster. Most stable results were determined for the Ghanaian cluster
solution based on the composition found in indigenous Colombian individuals (J = 0.95,
Figure 1).

Table 2. Microorganisms subjected to cluster analysis for the entire Ghanian population and the
assessed subpopulations of HIV-positive individuals and children < 2 years of age based on the
definitions from the methods section.

Total Ghanaian Population Subpopulation of
HIV-Positive Individuals

Subpopulation of Children
< 2 Years of Age

Number of included
microbial parameters n = 19 n = 17 n = 14

Details regarding included
microbial parameters

Dientamoeba fragilis, Yersinia
spp., Strongyloides stercoralis,
Campylobacter jejuni,
Schistosoma spp., Cystoisospora
belli, Entamoeba histolytica,
Cryptosporidium parvum,
Cyclospora cayetanensis,
microsporidia, Tropheryma
whipplei, Giardia duodenalis,
Salmonella spp., Blastocystis
hominis, Shigella
spp./enteroinvasive
Escherichia coli,
enterotoxigenic Escherichia coli,
enteropathogenic Escherichia
coli, and enteroaggregative
Escherichia coli

Taenia saginata, Strongyloides
stercoralis, Campylobacter jejuni,
Schistosoma spp., Cystoisospora
belli, Entamoeba histolytica,
Cyclospora cayetanensis,
Cryptosporidium parvum,
microsporidia, Tropheryma
whipplei, Salmonella spp.,
Giardia duodenalis, Blastocystis
hominis, Shigella
spp./enteroinvasive
Escherichia coli,
enterotoxigenic Escherichia coli,
enteropathogenic Escherichia
coli, enteroaggregative
Escherichia coli

Dientamoeba fragilis, Entamoeba
histolytica, Cryptosporidium
parvum, Yersinia spp.,
Salmonella spp., Campylobacter
jejuni, Tropheryma whipplei,
microsporidia, Shigella
spp./enteroinvasive
Escherichia coli, Giardia
duodenalis, Blastocystis hominis,
enterotoxigenic Escherichia coli,
enteroaggregative Escherichia
coli, enteropathogenic
Escherichia coli

n = numbers.

Within this assessment, the top node merges at 58.1, indicating that in 41.9% of cases,
cluster 1 and cluster 2 interact in a similar pattern. Shigella spp./enteroinvasive Escherichia
coli and Cryptosporidium parvum, Campylobacter jejuni, and Giardia duodenalis as well as
Dientamoeba fragilis and Blastocystis hominis show similar behavior in approximatively 45%
of cases within their cluster in the abundance of co-modulating others.

For the Ghanaian assessment comprising 19 microorganisms for the total population,
a four-cluster solution described the observed data best (Figure 2). As indicated by the Av-
erage Jaccard Index, Cyclospora cayetanensis and Cystoisospora belli show similar interaction,
accounting for a predictable pattern in 58.8% of cases.

Similarly, four clusters described the subpopulations stratified by HIV positivity
(Figure 3) and being children < 2 years of age best (Figure 4). In the HIV-positive subpopu-
lation, the interaction pattern between Blastocystis hominis and Tropheryma whipplei is similar
in 74.2% of cases, while this value is 53% for the entire Ghanian population. Therefore,
the low values for the nodes of Cystoisospora belli and Cyclospora cayetanensis as well as
Tropheryma whipllei and Blastocystis hominis indicate that within this clustering, both tend to
preferentially occur in these dual associations. In children, Giardia duodenalis aligns close to
micosporidia (66.8%), which is similar in the adult sample but not as pronounced (47.4%).
In the HIV-positive subpopulation, this association disappears.
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Focusing on matching or mismatching results compared to the previous Colombian
analysis [16], computing the cluster analysis for microbial parameters also assessed in
the sample of indigenous Colombians [16] for the here-presented Ghanaian population
indicated that a two-cluster solution describes the observed data best (Figure 1).

Therefore, Blastocystis hominis tends to form close binary associations, and this ten-
dency stays stable even when the composition of microorganism varies. In particular,
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Blastocystis hominis and Dientamoeba fragilis align together when assessing all adults (45.7%)
as well as all children from the Ghanaian population (64.9%, cf. Figure 5).
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In HIV patients, however, the latter observation could not be made, because Dienta-
moeba fragilis was recorded only twice in this subpopulation and, consequently, did not
meet the inclusion criteria for the cluster analysis (Figure 6).

When occurring together in the stool samples, Blastocystis hominis and Dientamoeba
fragilis correlated as highly positive (r = 0.78, p < 0.05). In contrast, when Dientamoeba
fragilis was absent, real-time PCR cycle threshold (Ct) values for Blastocystis hominis were
significantly lower (18.6 (±18.1), indicating higher microbial loads) compared to the co-
abundance of Dientamoeba fragilis (32.8 (±6.2)), p < 0.05), a pattern already seen for in-
digenous Colombians [16]. As indicated in Figure 6, Cryptosporidium parvum and Shigella
spp./enteroinvasive Escherichia coli form a stable association across stratifications for the
microbial composition, as previously investigated in indigenous Colombians [16], while
the configuration changes slightly in Ghanaian children (Figure 5).

Considering these descriptive similarities for the now-assessed Ghanaian and the
previously assessed Colombian population [16], a tanglegram for direct inferential com-
parison was computed (Figure 7). Therefore, data from the former study on indigenous
Colombians [16] were directly compared to the entire Ghanaian population. A cophenetic
correlation of 0.52 demonstrated moderate to high inter-cluster stability, thus indicating
similarity between both populations.

In this direct comparison of the geographically distinct populations, there are never-
theless a few peculiarities. In particular, and as visualized in Figure 7, Dientamoeba fragilis
switches from a direct association with cluster 1 of the Ghanaian population in the direction
of cluster 3 of the previously assessed indigenous Colombian population [16]. Of note,
there are some branches in the tanglegram deserving particular notice. Dientamoeba fragilis
appears in both populations at a prominent position prior to contact of cluster 1 microor-
ganisms with cluster 3 microorganisms in the tanglegram in Figure 7, a mechanism that
had already been described as a “gatekeeper” function for the Colombian population [16].



Pathogens 2024, 13, 583 11 of 18

Furthermore, in both populations, Taenia spp. has contact with Dientamoeba fragilis before
Strongyloides stercoralis and Cryptosporidium parvum fuse in the tanglegram. The proximity
of Shigella spp./enteroinvasive Escherichia coli and Cryptosporidium parvum, in contrast, is
different upon comparing the Ghanaian and the Colombian populations.
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4. Discussion

This study was conducted to assess enteric microbial clustering in Ghanaian individu-
als and to compare these findings to previously published results from a geographically
distinct population of Colombian indigenous individuals [16] and thus from another high-
endemicity setting for gastrointestinal pathogens. The study led to a number of findings.

Focusing on previous experience with the molecular assessment of stool samples
from Ghanaian patients with and without infectious gastroenteritis [4], the quantitative
dominance of bacteria followed by protozoa as observed in the present investigation is
not surprising. Also, the recorded low prevalence of enteric helminths in the Ghanaian
stool samples compared to the previously assessed population of Colombian indigenous
individuals [16] is well in line with another comparable Ghanaian publication [60].

Remarkable matching was observed regarding the cluster compositions of enteric
microorganisms, as calculated for the presently described Ghanaian and the previously
assessed Colombian populations [16], in spite of temporal and spatial distinctions. This
particularly applies to the Blastocystis–Campylobacter–Giardia cluster and the prominent
role of Dientamoeba fragilis in the cluster composition and likely also to the cluster inter-
action, as observed for the Colombian indigenous people before [16]. This stability is
more interesting, considering the surprisingly low prevalence of Dientamoeba fragilis in
the Ghanaian HIV patients, although HIV infections are generally considered to facilitate
enteric colonization with Dientamoeba fragilis [61]. It may be speculated that commonly ap-
plied anti-helminthic treatment with benzimidazoles [60], which most likely also accounts
for the low prevalence of helminths in the Ghanaian population, might have led to low
Dientamoeba fragilis prevalence as well. Furthermore, it is interesting that the clustering
remains stable considering the low prevalence of Campylobacter jejuni in the Ghanaian stool
samples, both compared to the situation in Colombia [16] and previous Ghanaian investi-
gations [4,26,62]. In contrast, minor differences between the Ghanaian and the Colombian
populations, like, e.g., those observed for Shigella spp./enteroinvasive Escherichia coli and
Cryptosporidium parvum, might be well-explained by the differential effects of varying
prevalence and varying microbial compositions. Recently, of note, associations of the
composition of the enteric microbiome both with the persistence of hookworms in spite
of albendazole treatment [63] and with varying virulence of enteroaggregative Escherichia
coli [64] have been proposed by Ghanaian researchers. In any case, it is interesting that the
co-phrenic correlation coefficient is just close to 0.5 in spite of the pronounced similarity of
the Ghanaian and the Colombian matrices in the tanglegram. This indicates that factors
not assessed in the here-presented holistic approach are likely to be of relevance. This is
particularly interesting considering the mentioned minor differences in the stratified cluster
analyses with the Ghanaian subpopulations.

The methodical issues for the present analysis deserve critical consideration as well.
The present approach utilized hierarchical clustering in order to verify or falsify findings
of the prior cluster analysis with the Colombian specimens [16]. Considering the current
opinion on statistical findings related to cluster analysis, fuzzy clustering might be an
alternative appropriate approach. This is particularly the case because of the naturally
varying subject-to-variables ratio in in the current study [37] and may be considered as a
potential limitation of the assessment.

Furthermore, based on the knowledge gained from the previous cluster analysis of
indigenous Colombians [16], the interaction between Blastocystis hominis and Dientamoeba
fragilis was put into focus in the present assessment of reproducibility. This approach
was justified by the most likely reasonable attempt of beginning to focus on the analysis
of those microorganisms that align in face of different co-occurring microorganisms and
subpopulations. However, thorough (non-)linear analysis of interactions indicated by our
results between these two and all other possible combinations is required to achieve a more
comprehensive pattern analysis in future study approaches. For example, the analysis has
shown that Cystoisospora belli and Cyclospora cayetanensis as well as Tropheryma whipplei and
Blastocystis hominis align together. Unfortunately, it was beyond the scope of this assessment
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to scrutinize their interplay more closely. Another potentially interesting association arising
from close inspection of dendrograms is the close alignment of microsporidia and Giardia
duodenalis in Ghanaian children, while this association at least partially loosens in HIV-
positive adult individuals. In the latter subpopulation, microsporidia detections are more
likely to be of etiological relevance [51], a factor potentially negatively interfering with
otherwise facilitating effects of microsporidia on the abundance of Giardia duodenalis and
vice versa.

When critically reflecting on the chosen methodology, it also needs to be addressed
that the comparison using a tanglegram bears optimization problems that may be caused
by the step2 algorithm used [65]. Exploratory variation of algorithms implemented in the R-
package dendextend, however, verified the solution proposed to a great extent. As such, we
feel justified to assume the validity of the approach. Another undeniable limitation of the
assessment comprises the limited sample count considering the complexity of the assessed
interactions and the rarity of some of the measured parameters. Due to logistic reasons
and funding restraints, however, a broadening of the assessment was unfeasible. Broader
assessments, however, need to be considered if underlying patterns of likely symbiosis
between pathogens in the presence or absence of others shall be addressed in more detail
in future confirmatory studies.

5. Conclusions

Despite the abovementioned limitations, the study indicates conserved clustering of
enteric microorganisms with potential etiological relevance for human infectious gastroen-
teritis in high-endemicity settings. Furthermore, the analysis suggests that it is more the
composition of abundant microorganisms rather than other regional factors that deter-
mines the interplay of enteric microorganisms in the assessed individuals’ gut. Therefore,
some microbial pathogens and commensals seem more susceptible to a changing microbial
composition in the human gut than others. Future assessment should aim at further ad-
dressing stable components within this complex interplay in order to better understand
geographically varying susceptibility towards infectious gastroenteritis.
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Appendix A

Table A1. List of oligonucleotide sequences used for the real-time PCR assessments and their
sources. Triplet structure of bases was just included to increase readability but does not indicate
specific codons.

PCR Targets Forward Primer
Sequences

Reverse Primer
Sequences Probe Sequences Sources

Salmonella spp. (ttrC) ATT-GTT-GAT-TCA-
GGT-ACA-AAC

AAT-TAG-CCA-TGT-
TGT-AAT-CTC

CAA-GTT-CAA-CGC-
GCA-ATT-TA Wiemer et al., 2011 [38]

Shigella spp./enteroinvasive
Escherichia coli (ipaH)

CAG-AAG-AGC-AGA-
AGT-ATG-AG

CAG-TAC-CTC-GTC-
AGT-CAG

ACA-GGT-GAT-GCG-
TGA-GAC-TG Wiemer et al., 2011 [38]

Campylobacter jejuni (gyrA) CTA-TAA-CAA-CTG-
CAC-CTA-CTA-AT

AAG-TGT-AAG-CAC-
ACA-AGG-TA

CTT-AAT-AGC-CGT-
CAC-CCC-AC Wiemer et al., 2011 [38]

Yersinia spp. (ail) GCA-TTA-ACG-AAT-
ATG-TTA-GC

ATC-GAG-TTT-GGA-
GTA-TTC-AT

CCG-CTT-CCA-AAT-
TTT-GTC-AT Wiemer et al., 2011 [38]

enteropathogenic Escherichia coli
(eae; EAF plasmid sequence)

CAT-TGA-TCA-GGA-
TTT-TTC-TGG-TGA-
TA;
CAG-GGT-AAA-AGA-
AAG-ATG-ATA-A

CTC-ATG-CGG-AAA-
TAG-CCG-TTA;
GCA-TGG-AAC-ATC-
GAT-CAG-TGA

ATA-GTC-TCG-CCA-
GTA-TTC-GCC-ACC-
AAT-ACC;
TGG-AGT-GAT-CGA-
ACG-GGA-TCC-A

Hahn et al., 2017 [39]

enterotoxigenic Escherichia coli
(eltB, estB)

GCG-TTA-CTA-TCC-
TCT-CTA-TG;
TCC-CTC-AGG-ATG-
CTA-AAC

TGA-TAT-TCC-GAA-
CAT-AGT-TCT-GTA;
CAA-CAA-AGC-AAC-
AGG-TAC-ATA-CGT

TAG-ACT-GGG-GAG-
CTC-CGT-GTG-C;
ATA-GCA-CCC-GGT-
ACA-AGC-AGG

Hahn et al., 2017 [39]

enteroaggregative Escherichia coli
(aatA)

CAA-TGT-ATA-GAA-
ATC-CGC-TGT-T

CTG-TCA-GAT-AAA-
ATC-TCG-AGA-GAA

CAT-GTT-CCT-GAG-
AGT-GCA-ATC-CCA-G Hahn et al., 2017 [39]

Tropheryma whipplei (Dig 15)
TGT-TTT-GTA-CTG-
CTT-GTA-ACA-GGA-
TCT

TCC-TGC-TCT-ATC-
CCT-CCT-ATC-ATC

AGA-GAT-ACA-TTT-
GTG-TTA-GTT-GTT-
ACA

Fenollar et al., 2008 [40]

Entamoeba histolytica (SSU rRNA) ATT-GTC-GTG-GCA-
TCC-TAA-CTC-A

GCG-GAC-GGC-TCA-
TTA-TAA-CA

TCA-TTG-AAT-GAA-
TTG-GCC-ATT-T Verweij et al., 2004 [41]

Giardia duodenalis (SSU rRNA) GAC-GGC-TCA-GGA-
CAA-CGG-TT

TTG-CCA-GCG-GTG-
TCC-G

CCC-GCG-GCG-GTC-
CCT-GCT-AG Verweij et al., 2004 [41]

Cyclospora cayetanensis (SSU rRNA) TAG-TAA-CCG-AAC-
GGA-TCG-CAT-T

AAT-GCC-ACG-GTA-
GGC-CAA-TA

CCG-GCG-ATA-GAT-
CAT-TCA-AGT-TTC-
TGA-CC

Köller et al., 2020 [42],
modified from Verweij
et al., 2003 [43]

Cryptosporidium parvum (138-bp
fragment inside of the C.
parvum-specific 452-bp fragment)

CGC-TTC-TCT-AGC-
CTT-TCA-TGA

CTT-CAC-GTG-TGT-
TTG-CCA-AT

CCA-ATC-ACA-GAA-
TCA-TCA-GAA-TCG-
ACT-GGT-ATC

Verweij et al., 2004 [41]

Cystoisospora belli (ITS-2) ATA-TTC-CCT-GCA-
GCA-TGT-CTG-TTT

CCA-CAC-GCG-TAT-
TCC-AGA-GA

CAA-GTT-CTG-CTC-
ACG-CGC-TTC-TGG ten Hove et al., 2008 [44]

Dientamoeba fragilis (5.8S rRNA) CAA-CGG-ATG-TCT-
TGG-CTC-TTT-A

TGC-ATT-CAA-AGA-
TCG-AAC-TTA-TCA-C

CAA-TTC-TAG-CCG-
CTT-AT Verweij et al., 2007 [45]

Blastocystis hominis (SSU rRNA) GGT-CCG-GTG-AAC-
ACT-TTG-GAT-TT

CCT-ACG-GAA-ACC-
TTG-TTA-CGA-CTT-
CA

TCG-TGT-AAA-TCT-
TAC-CAT-TTA-GAG-
GA

Stensvold et al.,
2012 [46]

Ascaris lumbricoides (ITS-1) GTA-ATA-GCA-GTC-
GGC-GGT-TTC-TT

GCC-CAA-CAT-GCC-
ACC-TAT-TC

TTG-GCG-GAC-AAT-
TGC-ATG-CGA-T Basuni et al., 2011 [47]

Ancylostoma spp. (ITS-2) GAA-TGA-CAG-CAA-
ACT-CGT-TGT-TG

ATA-CTA-GCC-ACT-
GCC-GAA-ACG-T

ATC-GTT-TAC-CGA-
CTT-TAG Basuni et al., 2011 [47]

Necator americanus (ITS-2) CTG-TTT-GTC-GAA-
CGG-TAC-TTG-C

ATA-ACA-GCG-TGC-
ACA-TGT-TGC

CTG-TAC-TAC-GCA-
TTG-TAT-AC Basuni et al., 2011 [47]

Strongyloides stercoralis (SSU rRNA)
GAA-TTC-CAA-GTA-
AAC-GTA-AGT-CAT-
TAG-C

TGC-CTC-TGG-ATA-
TTG-CTC-AGT-TC

ACA-CAC-CGG-CCG-
TCG-CTG-C Basuni et al., 2011 [47]
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Table A1. Cont.

PCR Targets Forward Primer
Sequences

Reverse Primer
Sequences Probe Sequences Sources

Taenia solium (ITS-1) ATG-GAT-CAA-TCT-
GGG-TGG-AGT-T

ATC-GCA-GGG-TAA-
GAA-AAG-AAG-GT

TGG-TAC-TGC-TGT-
GGC-GGC-GG Praet et al., 2013 [48]

Taenia saginata (ITS-1) GCG-TCG-TCT-TTG-
CGT-TAC-AC

TGA-CAC-AAC-CGC-
GCT-CTG

CCA-CAG-CAC-CAG-
CGA-CAG-CAG-CAA Praet et al., 2013 [48]

Schistosoma spp. (ITS-2)
GGT-CTA-GAT-GAC-
TTG-ATY-GAG-ATG-
CT

TCC-CGA-GCG-YGT-
ATA-ATG-TCA-TTA

TGG-GTT-GTG-CTC-
GAG-TCG-TGG-C Obeng et al., 2008 [49]

Trichuris trichiura (SSU rRNA) TTG-AAA-CGA-CTT-
GCT-CAT-CAA-CTT

CTG-ATT-CTC-CGT-
TAA-CCG-TTG-TC

CGA-TGG-TAC-GCT-
ACG-TGC-TTA-CCA-
TGG

Kaisar et al., 2017 [50]

Enterobius vermicularis (ITS-1) CGG-TGT-AAT-TTT-
GTT-GGT-GTC-TAT-G

TGG-CAG-CAT-TGC-
AAA-CTA-ATG

TGT-GCC-AGT-CAA-
CGC-CTA-AAC-CGT-C Köller et al., 2000 [42]

Hymenolepis nana (ITS-1)
CAT-TGT-GTA-CCA-
AAT-TGA-TGA-TGA-
GTA

CAA-CTG-ACA-GCA-
TGT-TTC-GAT-ATG

CGT-GTG-CGC-CTC-
TGG-CTT-ACC-G Köller et al., 2000 [42]

Microsporidia (SSU rRNA of
Enterocytozoon bieneusi,
Encephalcytozoon cuniculi,
Encephalcytozoon hellem and
Encephalcytozoon intestinalis)

CAC-CAG-GTT-GAT-
TCT-GCC-TGA;
TCC-GGA-GAG-GGA-
GCC-TGA-G

GCT-TGC-CCT-CCA-
ATT-GCT-TC;
GAC-TTG-CCC-TCC-
AAT-CAC-ATG;
CCG-ACT-TGC-CCT-
CCA-GTA-AA;
CTT-GGC-CTC-CAA-
TCA-ATC-TCG

TGG-CAG-CAG-GCG-
CGA-AAC-TTG-T Tanida et al., 2022 [51]

Internal control assay parameter
Phocid Herpes Virus
(PhHV) sequence

GGG-CGA-ATC-ACA-
GAT-TGA-ATC

GCG-GTT-CCA-AAC-
GTA-CCA-A

TTT-TTA-TGT-GTC-
CGC-CAC-CAT-CTG-
GAT-C

Niesters, 2001 [52]

ITS = internal transcribed spacer, rRNA = ribosomal ribonucleic acid, SSU = small subunit.
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