Are Colpodella Species Pathogenic? Nutrient Uptake and Approaches to Diagnose Infections
Abstract
:1. Introduction
2. Detection of Colpodella Species in Humans and Animals
3. Patterns of Nutrient Uptake in Colpodella Species
4. Are Colpodella Species True Pathogens?
5. Myzocytosis, Endocytosis, and Role of the Food Vacuole in Nutrient Uptake
6. Understanding the Mechanism of Transmission and Survival within Humans and Animals
Author Contributions
Funding
Conflicts of Interest
References
- Bargieri, D.; Lagal, V.; Andenmatten, N.; Tardieux, I.; Meissner, M.; Ménard, R. Host cell invasion by apicomplexan parasites: The junction conundrum. PLoS Pathog. 2014, 10, e1004273. [Google Scholar] [CrossRef] [PubMed]
- Gubbels, M.-J.; Duraisingh, M.T. Evolution of apicomplexan secretory organelles. Int. J. Parasitol. 2012, 42, 1071–1081. [Google Scholar] [CrossRef] [PubMed]
- Valigurová, A.; Florent, I. Nutrient Acquisition and Attachment Strategies in Basal Lineages: A Tough Nut to Crack in the Evolutionary Puzzle of Apicomplexa. Microorganisms 2021, 9, 1430. [Google Scholar] [CrossRef] [PubMed]
- Desai, S.A. Why do malaria parasites increase host erythrocyte permeability? Trends Parasitol. 2014, 30, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Olmo, J.L.; Esteban, G.F.; Finlay, B.J. New records of the ectoparasitic flagellate Colpodella gonderi on non-Colpoda ciliates. J. Int. Microbiol. 2011, 14, 207–211. [Google Scholar]
- Cavalier-Smith, T.; Chao, E.E. Protalveolate phylogeny and systematics and the origins of Sporozoa and dinoflagellates (phylum Myzozoa nom. Nov.). Eur. J. Protistol. 2004, 40, 185–212. [Google Scholar] [CrossRef]
- Simdyanov, T.G.; Paskerova, G.G.; Valigurová, A.; Diakin, A.; Kováčiková, M.; Schrével, J.; Guillou, L.; Dobrovolskij, A.A.; Aleoshin, V.V. First Ultrastructural and Molecular Phylogenetic Evidence from the Blastogregarines, an Early Branching Lineage of Plesiomorphic Apicomplexa. Protist 2018, 169, 697–726. [Google Scholar] [CrossRef]
- Mylnikov, A.P.; Mylnikova, Z.M. Feeding spectra and pseudoconoid structure in predatory alveolate flagellates. Inland Water Biol. 2008, 1, 210–216. [Google Scholar] [CrossRef]
- Mylnikov, A.P. Ultrastructure and phylogeny of colpodellids (Colpodellida, Alveolata). Biol Bull. 2009, 36, 582–590. [Google Scholar] [CrossRef]
- Yuan, C.L.; Keeling, P.J.; Krause, P.J.; Horak, A.; Bent, S.; Rollend, L.; Hua, X.G. Colpodella spp.—Like Parasite Infection in Woman, China. Emerg. Infect. Dis. 2012, 18, 125–127. [Google Scholar] [CrossRef]
- Jiang, J.-F.; Jiang, R.-R.; Chang, Q.-C.; Zheng, Y.-C.; Jiang, B.-G.; Sun, Y.; Jia, N.; Wei, R.; Bo, H.-B.; Huo, Q.-B.; et al. Potential novel tick-borne Colpodella species parasite infection in patient with neurological symptoms. PLoS Neglected Trop. Dis. 2018, 12, e0006546. [Google Scholar] [CrossRef] [PubMed]
- Chiu, H.C.; Sun, X.; Bao, Y.; Fu, W.; Lin, K.; Chen, T.; Zheng, C.; Li, S.; Chen, W.; Huang, C. Molecular identification of Colpodella sp. of South China tiger Panthera tigris amoyensis (Hilzheimer) in the Meihua Mountains, Fujian, China. Folia Parasitol. 2022, 69, 019. [Google Scholar] [CrossRef] [PubMed]
- Wheatley, M.A.; Shamoun, J.; Maggi, R.; Breitschwerdt, E.B.; Sommer, S.L.; Cullen, J.M.; Stowe, D.M. Eosinophilic pericardial effusion and pericarditis in a cat. J. Feline Med. Surg. Open Rep. 2023, 9, 20551169231213498. [Google Scholar] [CrossRef] [PubMed]
- Huggins, L.G.; Colella, V.; Koehler, A.V.; Schunack, B.; Traub, R.J. A multipronged next-generation sequencing metabarcoding approach unearths hyperdiverse and abundant dog pathogen communities in Cambodia. Transbound. Emerg. Dis. 2022, 69, 1933–1950. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Meng, J.; Yu, F.; Zhou, C.; Yang, B.; Chen, X.; Yang, G.; Sun, Y.; Cao, W.; Jiang, J.; et al. Molecular epidemiological investigation of piroplasms carried by pet cats and dogs in an animal hospital in Guiyang, China. Front. Microbiol. 2023, 14, 1266583. [Google Scholar] [CrossRef] [PubMed]
- Phetkarl, T.; Fungwithaya, P.; Udompornprasith, S.; Amendt, J.; Sontigun, N. Preliminary study on prevalence of hemoprotozoan parasites harbored by Stomoxys (Diptera: Muscidae) and tabanid flies (Diptera: Tabanidae) in horse farms in Nakhon Si Thammarat province, Southern Thailand. Vet. World 2023, 16, 2128–2134. [Google Scholar] [CrossRef] [PubMed]
- Neculicioiu, V.S.; Colosi, I.A.; Toc, D.A.; Lesan, A.; Costache, C. When a ciliate meets a flagellate: A rare case of Colpoda spp. and Colpodella spp. isolated from the urine of a human patient. Case report and brief review of the literature. Biology 2021, 10, 476. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Hu, Y.; Qiu, H.; Wang, J.; Jiang, J. Colpodella sp. (Phylum Apicomplexa) Identified in Horses Shed Light on Its Potential Transmission and Zoonotic Pathogenicity. Front. Microbiol. 2022, 13, 857752. [Google Scholar] [CrossRef] [PubMed]
- Matsimbe, A.M.; Magaia, V.; Sanchez, G.S.; Neves, L.; Noormahomed, E.; Antunes, S.; Domingos, A. Molecular detection of pathogens in ticks infesting cattle in Nampula province, Mozambique. Exp. Appl. Acarol. 2017, 73, 91–102. [Google Scholar] [CrossRef]
- Solarz, W.; Najberek, K.; Wilk-Wozniak, E.; Biedrzycka, A. Raccoons foster the spread of freshwater and terrestrial microorganisms-mammals as source of microbial eDNA. Divers. Distrib. 2020, 26, 453–459. [Google Scholar] [CrossRef]
- Hussein, S.; Li, X.; Bukharr, S.M.; Zhou, M.; Amhad, S.; Javid, A.; Guan, C.; Hussain, A.; Ali, W.; Khalid, N.; et al. Cross-genera amplification and identification of Colpodella sp. with Cryptosporidium primers in fecal samples of zoo felids from northeast China. Braz. J. Biol. 2021, 83, e247181. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Wang, J.; Lu, N.; Qi, X.; Yang, C.; Liu, B.; Lu, Y.; Gu, Y.; Tan, W.; Zhu, C.; et al. Potential novel Colpodella spp. (phylum Apicomplexa) and high prevalence of Colpodella spp. in goat-attached Haemaphysalis longicornis ticks in Shandong province, China. Ticks Tick-Borne Dis. 2024, 15, 102328. [Google Scholar] [CrossRef] [PubMed]
- Squarre, D.; Nakamura, Y.; Hayashida, K.; Kawai, N.; Chambaro, H.; Namangala, B.; Sugimoto, C.; Yamagishi, J. Investigation of the piroplasm diversity circulating in wildlife and cattle of the greater Kafue ecosystem, Zambia. Parasites Vectors 2020, 13, 599. [Google Scholar] [CrossRef]
- Soliman, A.M.; Mahmoud, H.Y.A.H.; Hifumi, T.; Tanaka, T. Discovery of Colpodella spp. in ticks (Hyalomma domedarii) infecting camels in southern Egypt. Ticks Tick-Borne Dis. 2024, 5, 102352. [Google Scholar] [CrossRef] [PubMed]
- Jimale, K.A.; Bezerra-Santos, M.A.; Mendoza-Roldan, J.A.; Latrofe, M.S.; Baneth, G.; Otranto, D. Molecular detection of Colpodella sp. and other tick-borne pathogens in ticks of ruminants, Italy. Acta Trop. 2024, 257, 107306. [Google Scholar] [CrossRef] [PubMed]
- Schrével, J.; Valigurová, A.; Prensier, G.; Chambouvet, A.; Florent, I.; Guillou, L. Ultrastructure of Selenidium pendula, the Type Species of Archigregarines, and Phylogenetic Relations to Other Marine Apicomplexa. Protist 2016, 167, 339–368. [Google Scholar] [CrossRef] [PubMed]
- Sam-Yellowe, T.Y.; Fujioka, H.; Peterson, J.W. Ultrastructure of Myzocytosis and Cyst Formation, and the Role of Actin in Tubular Tether Formation in Colpodella sp. (ATCC 50594). Pathogens 2022, 11, 455. [Google Scholar] [CrossRef] [PubMed]
- Sam-Yellowe, T.Y.; Asraf, M.M.; Peterson, J.W.; Fujioka, H. Fluorescent Nanoparticle Uptake by Myzocytosis and Endocytosis in Colpodella sp. ATCC 50594. Microorganisms 2023, 11, 1945. [Google Scholar] [CrossRef] [PubMed]
- Piro, F.; Focaia, R.; Dou, Z.; Masci, S.; Smith, D.; Di Cristina, M. An Uninvited Seat at the Dinner Table: How Apicomplexan Parasites Scavenge Nutrients from the Host. Microorganisms 2021, 9, 2592. [Google Scholar] [CrossRef]
- Marciano-Cabral, F.M.; Fulford, D.E. Cytopathology of pathogenic and nonpathogenic Naegleria species for cultured rat neuroblastoma cells. Appl. Environ. Microbiol. 1986, 51, 5. [Google Scholar] [CrossRef]
- Sohn, H.J.; Kim, J.-H.; Shin, M.H.; Song, K.J.; Shin, H.J. The Nf-actin gene is an important factor for food-cup formation and cytotoxicity of pathogenic Naegleria fowleri. Parasitol. Res. 2010, 106, 917–924. [Google Scholar] [CrossRef] [PubMed]
- Sohn, H.J.; Song, K.J.; Kang, H.; Ham, A.J.; Lee, J.H.; Chwae, Y.J.; Kim, K.; Park, S.; Kim, J.H.; Shin, H.J. Cellular characterization of actin gene concerned with contact-dependent mechanisms in Naegleria fowleri. Parasite Immunol. 2019, 41, e12631. [Google Scholar] [CrossRef] [PubMed]
- Chomba, M.; Mucheleng’anga, L.; Fwoloshi, S.; Ngulube, J.; Mutengo, M.M. A case report: Primary amebic meningoencephalitis in a young Zambian adult. BMC Infect. Dis. 2017, 17, 532. [Google Scholar] [CrossRef] [PubMed]
- Moran, S.; Mooney, R.; Henriquez, F.L. Diagnostic considerations for Non-Acanthamoeba amoebic keratitis and clinical outcomes. Pathogens 2022, 11, 219. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Robles, A.; Castanon, G.; Cristobal-Ramos, A.R.; Lazaroo-Haller, A.; Omana-Molina, M.; Bonilla, P.; Martinez-Palomo, A. Acanthamoeba castellanii: Structural basis of the cytopathic mechanisms. Exp. Parasitol. 2006, 114, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Rendon-Maldonado, J.G.; Espinosa-Cantellano, M.; Gonzalez-Robles, A.; Martinez-Palomo, A. Trichomonas vaginalis: In vitro phagocytosis of Lactobacilli, vaginal epithelial cells, leukocytes and erythrocytes. Exp. Parasitol. 1998, 89, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Sam-Yellowe, T.Y.; Addepalli, K.; Yadavalli, R.; Peterson, J.W. New trichrome stains identify cysts of Colpodella sp. (Apicomplexa) and Bodo caudatus. J. Int. Microbiol. 2019, 23, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Getty, T.A.; Peterson, J.W.; Fujioka, H.; Walsh, A.M.; Sam-Yellowe, T.Y. Colpodella sp. (ATCC 50594) Life Cycle: Myzocytosis and Possible Links to the Origin of Intracellular Parasitism. Trop. Med. Infect. Dis. 2021, 6, 127. [Google Scholar] [CrossRef] [PubMed]
- Jonscher, E.; Flemming, S.; Schmitt, M.; Sabitzki, R.; Reichard, N.; Birnbaum, J.; Bergmann, B.; Höhn, K.; Spielmann, T. PfVPS45 Is Required for Host Cell Cytosol Uptake by Malaria Blood Stage Parasites. Cell Host Microbe 2019, 25, 166–173. [Google Scholar] [CrossRef]
- Elsworth, B.; Keroack, C.D.; Duraisingh, M.T. Elucidating Host Cell Uptake by Malaria Parasites. Trends Parasitol. 2019, 35, 333–335. [Google Scholar] [CrossRef]
- Edgar, R.C.S.; Counihan, N.A.; McGowan, S.; de Koning-Ward, T.F. Methods Used to Investigate the Plasmodium falciparum Digestive Vacuole. Front. Cell. Infect. Microbiol. 2022, 11, 829823. [Google Scholar] [CrossRef] [PubMed]
- Spielmann, T.; Gras, S.; Sabitzki, R.; Meissner, M. Endocytosis in Plasmodium and Toxoplasma Parasites. Trends Parasitol. 2020, 36, 520–532. [Google Scholar] [CrossRef] [PubMed]
- Koreny, L.; Mercado-Saavedra, B.N.; Klinger, C.M.; Barylyuk, K.; Butterworth, S.; Hirst, J.; Rivera-Cuevas, Y.; Zaccai, N.R.; Holzer, V.J.C.; Klingl, A.; et al. Stable endocytic structures navigate the complex pellicle of apicomplexan parasites. Nat. Commun. 2023, 14, 2167. [Google Scholar] [CrossRef] [PubMed]
- Brugerolle, G. Colpodella vorax: Ultrastructure, predation, life-cycle, mitosis, and phylogenetic relationships. Eur. J. Protistol. 2002, 38, 113–125. [Google Scholar] [CrossRef]
- Chang, Q.; Chen, Z.; von Fricken, M.E.; Liu, Q. Editorial: New infectious agents in arthropod vectors. Front. Microbiol. 2022, 13, 1105082. [Google Scholar] [CrossRef]
Research Study Reference | Year of Publication | Location | Host Species | Tick/Flies Species | Staining for Light Microscopy | Identification Method | DNA Sequence Homology with Colpodella sp. | |
---|---|---|---|---|---|---|---|---|
1 | [10] | 2012 | Kunming City, Yunnan Province, China | Human | N/A | Giemsa Stain | Polymerase Chain Reaction | Colpodella tetrahymenae (89% similarity) |
2 | [11] | 2018 | Heilongjiang Province, China | Human | Ixodes persulcatus | NP | Polymerase Chain Reaction | Colpodella sp. (89–90% similarity) |
3 | [12] | 2022 | Meihua Mountains, Fujian, China | Tiger | Unidentified Tick | NP | Polymerase Chain Reaction | Colpodella sp. (91.1% similarity to Colpodella sp. strain human erythrocyte parasite (HEP, MH208621) and 90.4% similar to the Colpodella sp. strain Heilongjiang (HLJ, KT364261). |
4 | [13] | 2023 | North Carolina, United States | Female spayed domestic shorthair cat. | N/A | Wright Giemsa Stain | Polymerase Chain Reaction and Staining | Colpodella sp. (90% similarity) |
5 | [14] | 2022 | Cambodia | Dogs | N/A | NP | Next-generation sequencing (NGS)-based metabarcoding protocol | Colpodella sp. (95% similarity with Horse Infection #MW261750.1) |
6 | [15] | 2023 | Guiyang, China | Cats and Dogs | N/A | NP | Polymerase Chain Reaction | Colpodella sp. (84.71% similarity to Colpodella sp. ATCC 50594) |
7 | [16] | 2023 | Nakhon Si Thammarat province, Southern Thailand | Horse | Stomoxys indicus | NP | Polymerase Chain Reaction | Colpodella tetrahymenae (89.46% similarity) |
8 | [17] | 2021 | Cluj-Napoca, Romania | Human | N/A | Giemsa Stain | Morphological criteria though staining | N/A |
9 | [18] | 2022 | Ordos City, Inner Mongolia, located in northern China | Horses | N/A | NP | Polymerase Chain Reaction | Colpodella sp. (99.18% and 98.73% similarity with Colpodella sp. ATCC 50594) |
10 | [19] | 2017 | Nampula province, Mozambique | Cattle | Rhipicephalus microplus | NP | Polymerase Chain Reaction | Colpodella sp. (89% and 86% similarity) |
11 | [20] | 2020 | Warta Mouth National Park, Western Poland | Raccoon Dog (Nycterutes procyonoides) | N/A | NP | Polymerase Chain Reaction | Colpodella sp. (99.13% similarity) |
12 | [21] | 2021 | Harbin Zoo, China | Fecal Matter | N/A | NP | Polymerase Chain Reaction | Colpodella sp. (97% similarity with Cryptosporidium sp.) |
13 | [22] | 2024 | Shandong province, China | Goats and Dogs | Haemaphysali longicornis | NP | Polymerase Chain Reaction | Colpodella sp. in Dog Tick 38 (98.26% similarity with 2018 Human Infection. Colpodella sp. struthionis in Goat Tick 168 (93.66% similarity with Cryptosporidium struthionis) Colpodella sp. yiyuansis in Goat Tick 161 (92.98% similarity with Colpodella tetrahymenae |
14 | [23] | 2020 | The Greater Kafue Ecosystem, Zambia | Cattle | N/A | NP | Polymerase Chain Reaction | Colpodella sp. (79.6% similarity to human cases) Colpodella sp. (100% similarity to racoon dog case) |
15 | [24] | 2024 | Egypt | Camels | Hyalomma dromedarii | NP | Polymerase Chain Reaction | Colpodella sp. in H. dromedarii ticks 98.4% similarity with Colpodella angusta |
16 | [25] | 2024 | Italy | Cattle | Rhipicephalus bursa | NP | Polymerase chain reaction | 100% similarity to Colpodella sp. strain HLJ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salti, M.I.; Sam-Yellowe, T.Y. Are Colpodella Species Pathogenic? Nutrient Uptake and Approaches to Diagnose Infections. Pathogens 2024, 13, 600. https://doi.org/10.3390/pathogens13070600
Salti MI, Sam-Yellowe TY. Are Colpodella Species Pathogenic? Nutrient Uptake and Approaches to Diagnose Infections. Pathogens. 2024; 13(7):600. https://doi.org/10.3390/pathogens13070600
Chicago/Turabian StyleSalti, Mahdi I., and Tobili Y. Sam-Yellowe. 2024. "Are Colpodella Species Pathogenic? Nutrient Uptake and Approaches to Diagnose Infections" Pathogens 13, no. 7: 600. https://doi.org/10.3390/pathogens13070600
APA StyleSalti, M. I., & Sam-Yellowe, T. Y. (2024). Are Colpodella Species Pathogenic? Nutrient Uptake and Approaches to Diagnose Infections. Pathogens, 13(7), 600. https://doi.org/10.3390/pathogens13070600