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Abstract: Enterobacterales resistant to extended-spectrum cephalosporins (ESC) are a marker of the
antimicrobial resistance (AMR) burden. They are infecting humans, but the intestinal microbiota can
also be transiently colonized without developing symptoms. Healthy carriage can promote silent
dissemination of resistant bacteria, and data on this colonization are often lacking. Between 2021 and
2023, a sampling of healthy Tunisian people was carried out. Fecal samples (n = 256) were plated on
selective agar, and all collected isolates were characterized by phenotypic (antibiograms) and genomic
(whole-genome sequencing) methods. A total of 26 (26/256, 10.2%) isolates were collected, including
24 Escherichia coli and 2 Klebsiella pneumoniae. In total, 17 isolates (15 E. coli and 2 K. pneumoniae)
presented an ESBL phenotype conferred by the blaCTX-M-15 gene, and 9 E. coli isolates presented an
AmpC phenotype conferred by the blaDHA-1 gene. K. pneumoniae belonged to ST1564 and ST313, while E.
coli belonged to diverse STs including the pandemic ST131 clone. Clonally related ST349 E. coli isolates
carrying the blaDHA-1 gene were found in nine individuals. In parallel, four blaCTX-M-15 -positive E. coli
isolates carried this ESC-resistance gene on an epidemic plasmid IncF/F-:A-:B53 previously identified
in Tunisian pigeons and fish. These findings highlight the spread of genetically diverse ESC-resistant
Enterobacterales as well as an epidemic plasmid in Tunisia, emphasizing the need for antimicrobial
stewardship to limit the transmission of these resistances in the Tunisian population.

Keywords: ST349; plasmid; F-:A-:B53; Tunisia; ESBL

1. Introduction

The human gut is inhabited by a large bacterial population organized in a complex
community, the microbiota, which ensures crucial functions for human health, including
stimulation of the immune system and protection against pathogens among many oth-
ers [1]. This bacterial community living in the intestine is under the pressure of numerous
constraints, among which are the people’s culinary habits and lifestyle. In addition, the
intestinal microbiota may also be under pressure from a number of exogenous molecules
such as antibiotics. The use of antibiotics generally reduces the overall diversity of the
gut microbiota, while increasing both the proportion of enteropathogens and the pool
of resistance genes; however, these adverse consequences usually disappear in about
1–1.5 months [2,3]. Interestingly, it was shown that the greater the consumption of antibi-
otics in a given country, the greater the abundance of resistance genes in the microbiota of
its inhabitants, even in individuals who do not consume antibiotics [4].
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Antimicrobial resistance (AMR) is a major global health issue; thus, lowering the global
AMR burden is of utmost importance. Resistance to extended-spectrum cephalosprins
(ESC), mostly mediated by extended-spectrum beta-lactamases (ESBLs) or plasmidic AmpC
(such as CMY-2 and DHA-1), is one of the main markers of this AMR burden since ESC-
resistant Enterobacterales have disseminated in all domains of the One Health concept.
Intestinal colonization of healthy people by ESC-resistant bacteria complicates the un-
derstanding of the dissemination pathways since it promotes the silent spread of these
resistance determinants. In countries where the AMR burden is low, it has been shown that,
after acquisition through hospitalization or travels, carriage of ESC-resistant Escherichia coli
persist from 3.4 up to 59 months [5,6]. On the contrary, when the proportion of multi-drug-
resistant bacteria (MDR) is high in the population, as in Lebanon (60.7%), an important
dynamic of loss/acquisition ensures the continuous contamination of a substantial portion
of healthy people [7]. A recent systematic review on the trend of ESBL-producing E. coli
in the community showed that the worldwide intestinal carriage was 16.5% and has been
multiplied by 8 over the last 20 years, with considerable disparities between regions (from
6% in Europe to 27.5% in South-West Asia) [8]. This review also pointed out the paucity of
data in many regions of the world, notably in Africa.

In Tunisia, two previous studies assessed the proportion of ESBL-producing E. coli in
the human community. A first study showed that the proportion of ESBL-producing E. coli
in healthy adult volunteers was 7.3% in 2009–2010 [9], while a second one performed in
2012–2013 showed that 6.6% of the children attending elementary school were ESBL carriers [10].
Both studies reported the predominance of the blaCTX-M-1 gene in the community, while the
blaCTX-M-15 gene was more widespread in clinical isolates [11,12]. In Tunisian livestock and
derived food products, the most frequently reported blaESBL gene was blaCTX-M-1 [13–15], even
though the blaCTX-M-15 gene has also been identified, notably in veal calves and seafood [16,17].

The goal of the present study was to update knowledge on the carriage rate of ESC-
resistant Enterobacterales in the Tunisian community and to observe whether the proportion
of healthy carriers increased over a ten-year period, as observed at a larger scale by Bezabih
et al. in their large metadata analysis [8]. Such studies are particularly relevant in resource-
limited countries such as Tunisia where beta-lactam antibiotics are widely used, both in the
community and in hospitals. Due to the misuse of antimicrobials in hospitals and the lack of
awareness in the community, there is an increase in resistance in the pathogens responsible
for nosocomial infections, leading to the use of last-line drugs such as carbapenems and
polymyxins. It is, therefore, of considerable interest to identify the potential sources of
dissemination of ESC-resistant Enterobacterales, in order to identify the levers of action for
lowering the overall burden of AMR.

2. Materials and Methods
2.1. Ethics

The study was approved by the ethics committee of the Faculty of Medicine of SOUSSE,
Sousse University, in accordance with the Helsinki Declaration and informed consent was
obtained from all participants

2.2. Study Design, Bacterial Isolation and Identification

Fecal samples from 256 healthy people recruited from four governorates (Tunis, Sousse,
Monastir, and Mahdia) were collected between May 2021 and August 2023 (Figure 1). The
calculation of the sampling size was based on the assumption that about 7% of the tested
volunteers would be ESC-carriers (mean value of the two previous Tunisian studies on
ESC-carriage in healthy people). In order to get a precision of 5% with a 99% confi-
dence level, the minimal sampling size was >240 individuals. The inclusion criteria were
(i) age over 18, (ii) subjects with a varied diet, (iii) absence of gastrointestinal disorders, and
(iv) no antibiotic therapy for at least one month prior to sampling. All participants com-
pleted a questionnaire collecting data about their age, sex, weight, and geographical origin.
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Figure 1. Map of Tunisia with the four cities where healthy volunteers were sampled.

Fecal samples (200 mg) were diluted in 5 mL of nutrient broth (Biokar, Tunlab, Tunis,
Tunisia) and resistant Enterobacterales were isolated by spreading 100 µL of the dilution
on two MacConkey agar plates (Accumix, Tunlab, Tunis, Tunisia), one supplemented with
cefotaxime (3 mg/L) and the second one with imipenem (3 mg/L). Selective plates were
incubated at 37 ◦C for 24 h. One presumptive ESC-resistant Enterobacterales colony was
arbitrarily selected from each selective plate. Identification of isolates was performed using
API20E galleries (bioMérieux, Marcy-l’Étoile, France).

2.3. Antibiotic Susceptibility Testing

Antibiograms were performed according to the disc diffusion method on Mueller–Hinton
agar, following the guidelines set by the Antibiogram Committee of the French Society for Mi-
crobiology (CA-SFM) (https://www.sfm-microbiologie.org/). The E. coli ATCC 25922 strain
was used as a quality control strain. A total of 16 β-lactam (amoxicillin (20 µg), piperacillin
(30 µg), ticarcillin (75 µg), amoxicillin + clavulanic acid (20/10 µg), piperacillin + tazobactam
(30–6 µg), ticarcillin + clavulanic acid (75–10 µg), cefalotin (30 µg), cefuroxime (30 µg), cefo-
taxime (30 µg), ceftiofur (30 µg), ceftazidime (30 µg), cefoxitin, cefepime (30 µg), cefquinome
(30 µg), aztreonam (30 µg), and ertapenem (10 µg)) and 14 non-β-lactam (tetracycline (30 µg),
kanamycin (30 µg), tobramycin (10 µg), gentamicin (10 µg), amikacin (30 µg), apramycin
(30 µg), netilmicin (10 µg), streptomycin (10 µg), florfenicol (30 µg), chloramphenicol (30 µg),
sulfonamides (300 µg), trimethoprim (5 µg), nalidixic acid (30 µg), and ciprofloxacin (5 µg)) an-
tibiotics (Mast Diagnostics, Amiens, France) were tested. A double disk synergy test (between
amoxicillin + clavulanic acid, ceftiofur, cefquinome and ceftazidime) was used to confirm the
presence of ESBLs.

Minimum inhibitory concentrations (MICs) to colistin were performed by broth mi-
crodilution according to the EUCAST recommendations [18]. In brief, serial two-fold
dilutions of colistin were prepared in 96-well microtiter plates, and a standardized bacterial
suspension was added to each well. After incubation, the MIC was recorded as the lowest
concentration of colistin (Mast Diagnostics, Amiens, France) preventing visible growth of
the bacteria.

2.4. Molecular Typing of the Isolates

The detection of the major E. coli phylogenetic groups (A, B1, B2, or D) was performed
as described by Doumith et al. [19].

https://www.sfm-microbiologie.org/
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2.5. Short-Read Whole-Genome Sequencing and Genomic Analyses

DNA was extracted using the NucleoSpin Microbial DNA extraction kit (Macherey-
Nagel, Hoerdt, France) according to the manufacturer’s instructions. Library preparation
(Nextera XT technology) and sequencing (NovaSeq-6000 instrument) were outsourced
(Eurofins, Konstanz, Germany). After sequencing, the reads were quality trimmed (Trim-
momatic v0.39) and de novo assembled using Shovill v1.0.4 and the quality of assemblies
was assessed using QUAST v5.0.2. Quality control statistics of all sequenced isolates
are provided as Supplemental Table S1. Identification was determined using Kraken
(https://github.com/DerrickWood/kraken). Online tools from the Cetner for Genomic
Epidemiology (CGE; http://www.genomicepidemiology.org/) were used to identify STs
according to the Achtman’s scheme (MLSTFinder v2.0.4), as well as the resistance and
viruence genes (ResFinder v4.1, VirulenceFinder 2.0.3) and the replicon content and the
plasmid subtypes (PlasmidFinder 2.0.1 and pMLST 2.0). SeroTypeFinder 2.0 was used to
determine serotypes.

2.6. Phylogenetic Analysis

The cgMLST phylogeny was determined through the pyMLST pipeline (https://
github.com/bvalot/pyMLST) using the scheme available on the www.cgmlst.org/ncs,
which comprised 2513 alleles for E. coli (for the matrix distance, see Table S2). The cut-off
for highly related strains was <10 allelic differences. The resulting tree was visualized
using iTol v6 (http://itol.embl.de/itol.cgi) and high-quality images were obtained using
InkScape v1.0.

2.7. Long-Read Sequencing

The MinION long-read sequencing libraries were prepared following Oxford Nanopore
MinION Technologies (Oxford, UK) protocols, using the native barcoding expansion kit
(EXP-NBD104) and the ligation sequencing kit (SQK-LSK109). Sequencing was carried out
on a MinION device equipped with a SpotON Mk 1 R9 version flow cell (FLO-MIN106D).
Reads from both Illumina and Nanopore were assembled with Unicycler. The resulting
contigs were annotated using Bakta (web version 1.7.0/DB: 5.0.0).

2.8. Data Availability

The project was deposited in GenBank under the BioProject accession number PR-
JNA1129310.

3. Results
3.1. Characterization of Healthy Volunteers and Carriage Rate of ESC-Resistant Enterobacterales

In the study, 256 healthy adults were included, i.e., they presented no infectious
disease and had no specific condition that might severely affect their gut microbiota; 99
were selected from the general population and 157 were patients with neurological and
neuropsychiatric disorders. Females represented 55% of the study population, and the
average age of volunteers was 53 years old (ranging from 18 to 80 years old, with 10%
<29 years, 29% from 30 to 49 years, 36% from 50 to 65 years, and 25% from 65 to 80 years.
Volunteers originated from the Tunis (n = 66), Sousse (n = 154), Monastir (n = 25), and
Mahdia (n = 11) governorates.

Twenty-six of the fecal samples tested (26/256, 10.2%) presented growth on plates
containing cefotaxime, while none of them grew on imipenem-containing plates. Of the
26 positive people, 85% were women.

Isolates were identified as E. coli (n = 24, 92.3%) and Klebsiella pneumoniae (n = 2, 7.7%).
E. coli isolates belonged to phylogroup D (n = 11), A (n = 8), B1 (n = 3), and B2 (n = 2).

3.2. Resistance Phenotypes and Genotypes

Among the 26 collected isolates, 16 (15 E. coli and one K. pneumoniae) presented an
ESBL phenotype, while 9 E. coli isolates displayed a pAmpC phenotype (cefoxitin and

https://github.com/DerrickWood/kraken
http://www.genomicepidemiology.org/
https://github.com/bvalot/pyMLST
https://github.com/bvalot/pyMLST
www.cgmlst.org/ncs
http://itol.embl.de/itol.cgi
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amoxicillin + clavulanic acid resistance in the absence of a blaESBL gene) and the last K.
pneumoniae presented both an ESBL and a pAmpC phenotype (Table S3). No isolate was
resistant to carbapenems (Table 1). The ESBL phenotype was systematically due to the
presence of the blaCTX-M-15 gene (no other blaCTX-M gene was identified), while the pAmpC
phenotype was only due to the blaDHA-1 gene (Table S3, Figure 2).

Table 1. Antimicrobial susceptibility phenotypes of all E. coli isolates characterized in this study.

E. coli (n = 24)

No. of Strains % of Resistance

Kanamycin 2 8.3
Tobramycin 1 4.2
Gentamicin 1 4.2
Apramycin 0 0.0
Streptomycin 14 58.3
Amikacin 0 0.0
Netilmicin 0 0.0
Tetracycline 18 75.0
Chloramphenicol 2 8.3
Florfenicol 2 8.3
Colistin 0 0.0
Nalidixic acid 2 8.3
Ciprofloxacin 1 4.2
Trimethoprim 18 75.0
Sulfonamides 18 75.0
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E. coli isolates presented additional resistances to non-beta-lactam antibiotics; the most
frequently identified ones were to tetracyclines (75.0%), sulfonamides-trimethoprim (75.0%),
and streptomycin (58.3%) (Table 1). Both K. pneumoniae were resistant to aminoglycosides
(streptomycin, gentamicin), tetracyclines, and sulfonamides-trimethoprim, while the ESBL-
producing isolate (#63224) presented additional resistances to kanamycin and tobramycin.

Aminoglycoside resistance was mostly due to the combination of the aph(6)-Id (also
named strB) and aph(3′′)-Ib genes, respectively, conferring resistance to streptomycin and
kanamycin (Figure 2). Resistance to sulfonamides was due to both sul1 and sul2 genes,
while resistance to trimethoprim was due to dfrA7 and dfrA17. Tetracycline resistance was
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conferred mainly by the tet(A) gene, and quinolone resistance was due to both the qnrS1
and qnrB4 genes. Finally, two isolates presented the floR gene, conferring resistance to
chloramphenicol-florfenicol.

3.3. Characterization of ESC-Resistant Enterobacterales

The two Klebsiella pneumoniae isolates belonged to the non-pandemic ST1564
and ST313.

A total of 11 different sequence types (STs) were identified over the 24 collected E. coli
isolates. The most frequently identified ST was ST349 (n = 9/24; 37.5%), followed by ST10
(n = 5; 20.8%) and ST7036 (n = 2; 8.3%) (Figure 2). All other STs were singletons, among
which the uropathogenic ST58 and ST131, as well as the zoonotic ST155 were observed.

The allelic distance between isolates from the same ST was further analyzed. Identical
clones (<10 allelic differences) were observed for the 2 ST7036 isolates (3 allelic differ-
ences), which were collected from 2 people from different families but working in the
same restaurant in Monastir. Among the five ST10 isolates, three different serogroups were
observed, and the two isolates sharing the same serotype (O19:H19) were also genetically
identical (three allelic differences). In this case, no epidemiological link could be found
between the two people that even lived in two geographically distant governorates (Tunis
and Monastir). For ST349 isolates, 3 serotypes were identified; 2 isolates each presented
a unique serotype and were not genetically linked (33–55 allelic differences), while the
7 remaining isolates presented the same O86:H2 serotype and were highly similar
(1–4 allelic differences). Among these seven isolates, two were collected from mem-
bers of the same family in Sousse, two came from people working in the same labora-
tory but with no other personal contacts, while the remaining five individuals had no
epidemiological links.

The high proportion of ST349 isolates coming from epidemiologically independent
people prompted us to have a closer look at this sequence type. ST349 isolates are not
widespread since only 96 genomes were retrieved from the RefSeq database (Figure 3),
which were compared to the Tunisian genomes. Nevertheless, this sequence type was found
over all continents, associated with a wide range of genes conferring resistance to extended-
spectrum cephalosporins or carbapenems (Figure 3). Among the RefSeq genomes analyzed,
five genomes were clustered with the Tunisian ones, and all were blaDHA-1 carriers.

3.4. Characterization of the Genetic Determinants Carrying ESBL/AmpC Genes

Combined analysis of the short-read and long-read sequences revealed that all blaDHA-1
genes identified in the ST349 E. coli were carried on the chromosome. On the contrary, the
blaDHA-1 gene identified in the ST313 K. pneumoniae isolate was carried on an IncR plasmid
that co-carried the sul1 and qnrB4 genes.

In E. coli isolates, the blaCTX-M-15 gene was found on the chromosome in three isolates
belonging to ST1193, ST58, and ST155, while the localization of two blaCTX-M-15 genes could
not be determined (#63144 and #63365). The remaining blaCTX-M-15 genes were identified
primarily on IncF plasmids (n = 9), but also on one IncY plasmid and on one IncI1 plasmid
(IncI1/pST36-CC3, co-harboring the blaTEM-1B, tet(A), aph(6)-Id, aph(3′′)-Ib, floR, and qnrS1
genes). This IncI1/pST36 plasmid was large (123,260 pb) and shared 100% identity with
other IncI1/pST36 sequences published on the NCBI databases, but with a low coverage
(75% with one E. coli plasmid collected from a diseased person in Madrid (Genebank
OW848982.1) or 72% with one Salmonella enterica plasmid collected from chicken meat in
Canada (CP016520.1)).
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Figure 3. cgMLST-based phylogeny of E. coli ST349 isolates. A filled box indicates the detection of
that gene.

Among the blaCTX−M-15 genes carried by IncF plasmids, four were harboured by an
IncF/F-: A-: B53 plasmid in E. coli isolates belonging to ST10 (n = 2) and ST7036 (n = 2). The
four isolates carried additional genes (sul2, dfrA14, tet(A), aph(6)-Id, aph(3′′)-Ib, and qnrS1),
that were also present on two IncF/F-: A-: B53 plasmids carried by E. coli collected from
Tunisian pigeons [20]. Two other E. coli isolates also displayed an IncF plasmid with an F-:A-
backbone, but belonging to the F-:A-:B15 formula. Of note, B15 and B53 alleles differed by
eight mutations. The IncF/F-:A-:B15 plasmid from isolate #63246 was 112,180 bp and co-
harbored the qnrS1 and mph(A) genes. The seventh isolate presenting an IncF plasmid, #63227,
carried an IncF/F2:A-:B- of 83,490 bp, which only co-harbored the qnrS1 gene. The F2:A-:B-
plasmids sharing the closest homology according to the NCBI database were plasmids from
Shigella sonnei isolated from human stool in Switzerland (CP045525 and CP049186). Finally,
the last IncF-carrying plasmid, found in isolate #63248, could not be typed since it presented
two IncFII replicons, namely F2 and F51, in addition to the B10 replicon.

In the two K. pneumoniae isolates, the blaCTX-M-15 gene was found on an IncF/F-:A-:B47
in ST1564 and on an IncFK/F34:A-:B- in ST313. This large (340,060 bp) plasmid additionally
harbored the sul2, dfrA12, tetA, aph(6)-Id, aph(3′′)-Ib, aadA2, qnrS1, and mph(A) resistance genes.

4. Discussion

The proportion of ESC-resistant Enterobacterales from healthy volunteers originating
from four different geographical regions of Tunisia was 10.2% (26/256). If we only take into
account ESC-resistant E. coli, for the sake of comparability, an increase in healthy carriage
was observed over ten years in Tunisia, from 7.3% in 2009–2010 in adults and 6.6% in
2012–2013 in children, to 9.4% (24/256) in 2021–2023 [9,10]. Our results are coherent with
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the meta-analysis published by Bezabih et al. [8], which showed an overall proportion of 6%
in Europe and 21.4% in Africa. The geographical position of Tunisia on the African continent
but with tight links with Europe might explain the intermediate situation observed in our
study. Potential explanations for this proportion of healthy carriers are (i) the irrational use
of antibiotics in the community, as Tunisia is the second largest consumer of antimicrobials
for human use at the world scale [21], (ii) self-prescription or over-the-counter sale of
antibiotics, and (iii) lack of optimal knowledge about the rational use of drugs, even among
healthcare professionals.

Women represented 85% of the 26 healthy carriers presenting ESC-resistant Enter-
obacterales, which is similar to a Danish study where a higher proportion of resistance
genes was reported in women compared to men (p = 0.002) [22]. This difference could be
explained by the fact that antibiotics, and particularly cephalosporins and macrolides, are
significantly more often prescribed to women than men [23]. This might also be related to
the link between the gut microbiota and the endocrine system; indeed, sex hormones such
as progesterone may modulate the composition of the microbiota [24]. However, other stud-
ies conducted on Chinese (p = 0.463) and Spanish (p = 0.680) populations did not identify
more MDR bacteria in women than men [22]. Consequently, further studies are needed to
bring solid scientific evidence. Apart from the gender disequilibrium, an important propor-
tion (6/26, 23.1%) of healthy carriers was overweighted. This is in line with several studies
that demonstrated a link between obesity and increased presence of Gram-negative MDR
bacteria as well as an enhanced clinical resistome, i.e., a higher frequency and diversity of
resistance genes of clinical relevance in the gut microbiota [25,26].

Among the 26 ESC-resistant Enterobacterales, 24 were identified as E. coli and two
as K. pneumoniae. This was expected since K. pneumoniae are generally isolated in clinical
settings rather than in the community, contrary to E. coli which is ubiquitous and the most
abundant Gram-negative commensal of the vertebrate gut [27]. An ESBL phenotype was
observed for 15 E. coli and 2 K. pneumoniae, systematically conferred by the presence of the
blaCTX-M-15 gene. This reveals a complete change in the epidemiology of blaCTX-M genes in
healthy carriers in Tunisia since, among the strains isolated in 2009–2010, all but one (n = 10)
presented the blaCTX-M-1 gene, and the last one presented the blaTEM-52 gene [9]. Among the
eleven carriers described, one was a poultry farmer and a second a veterinarian in the fish
industry while all other people had no specific contacts with animals, thus excluding a bias
explaining the high proportion of blaCTX-M-1 genes. Nevertheless, source attribution of the
contamination based solely on the CTX-M variant would most likely be erroneous. Indeed,
while blaCTX-M-1 genes are still frequently found in broilers, chicken farms, and meat in
general, other genes (including blaCTX-M-15 but also blaCTX-M-55 or blaCTX-M-14 to only name
a few) have also been repeatedly identified in animals and food thereof. In strains collected
from children in 2012–2013, the blaCTX-M-1 gene was also dominant (found in 4/7 isolates),
while the blaCTX-M-15 gene was identified in two isolates [10]. The blaCTX-M genes have
disseminated worldwide, but certain variants are more frequent in specific regions. The
three main variants circulating nowadays are blaCTX-M-14, blaCTX-M-55, and blaCTX-M-15, with
blaCTX-M-15 being the most widespread on the African continent [28].

In our study, the blaCTX-M-15 gene was identified as carried by different genetic de-
terminants. First, three blaCTX-M-15 genes were found on the chromosome, a localization
that is increasingly identified, since it allows the stabilization of the gene in the absence
of selective pressure [29]. Second, one blaCTX-M-15 was carried by an IncI1/pST36 plasmid.
This plasmid sub-type is uncommon and has been associated to the blaTEM-52 gene [30,31],
but the whole family of IncI1 plasmids has long been associated with an animal source,
primarily to broilers [32–35]. IncI1 plasmids have a high capacity of dissemination and
have now been identified worldwide in animals, the environment, and in humans [36,37],
including in Tunisia [38]. Third, 10 blaCTX-M-15 genes were found on IncF plasmids, which
are known as major spreaders of the blaCTX-M genes [28]. Here, the same plasmid, IncF/F-
:A-:B53 was identified in four persons and two genetic backgrounds. This very same
formula has already been described twice in Tunisia, in pigeons and in fish [16,20], bringing
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evidence that this plasmid is emerging as a successful ESBL carrier. Apart from the ESBL
phenotype, nine E. coli and one K. pneumoniae isolates presented an AmpC phenotype due
to the blaDHA-1. This gene is usually found in K. pneumoniae, often carried by IncN plasmids;
this genetic context was found here in the only DHA-1-producing K. pneumoniae identified.
On the contrary, the blaDHA-1 gene was located on the chromosome in all E. coli isolates.

Of the 24 E. coli isolates, 3 STs were identified in 2 isolates or more: ST10, ST7036, and
ST349. ST10 is a ubiquitous and genetically diverse clone that has been reported in animals,
humans, and the environment associated with a large diversity of plasmids containing
various resistance genes. Two of the five ST10 were clonally related as determined by
cgMLST-based phylogeny, but no epidemiological link could be established. The two
ST7036 isolates (a very rarely reported ST) were also clonally related but, in this case, they
came from two persons who worked in the same restaurant but were otherwise unrelated.
Finally, nine isolates of this study belonged to ST349. This clone has been recurrently
described in China as a cause of infections in both humans and animals where it harbored
the blaNDM-1 and mcr-1 genes [39]. It was also found associated to the blaOXA-244 in the
Netherlands [40], and to blaCTX-M-14 in both chickens and humans in contact in Vietnam [41].
Among the RefSeq genomes analyzed, five genomes clustered with the Tunisian ones, and
all were blaDHA-1 carriers. In total, 3 human isolates from China and 1 sewage isolate from
Norway [42] were genetically very close (10–13 allelic differences) to the Tunisian isolates,
even though no epidemiological links could be found. Among the nine ST349 isolates from
this study, five came from unrelated people while two were collected from members of the
same family in Sousse and two others came from people working in the same laboratory.
This emphasizes the fact that sharing the same household, but also sharing the same
workplace, is a factor of human-to-human dissemination of bacteria, whether resistant or
not. This has already been observed between workers in Lebanon [7], where two persons
working together but with no other links presented the same ESBL-producing E. coli. Intra-
household spread has already been described [43,44]. A population-based modelling study
also proved that the major source of contamination, which accounts for about two-thirds
of the cases, is human-to-human contacts; the last third is largely imputable to food and
contacts with farm or domestic animals [45]. In all cases, transmission occurs mainly
through dirty hands and surfaces.

One of the main limitations of the study is that we do not have contemporary samples
from food, water, and clinical settings, so that the sources of the strains identified in the
community cannot be traced. One strain belonging to the typically human-associated ST131
clone was identified in a healthy volunteer in this study, so that human contamination can be
hypothesized. But the source of other more ubiquitous isolates such as ST10 or ST155 cannot
be inferred. In particular, it would be interesting to have further information on the ST349
clone, which was recurrently found in this study, in people that had no epidemiological
links and lived in different regions of Tunisia. This clone, which is widespread according to
the available data on the NCBI and that has the capacity to acquire ESBL- or carbapenemase
genes, should be monitored in the future. It would also be interesting to monitor the
presence of the IncF/F-:A-:B53 plasmid, which seems to become epidemic and has already
been found in fish, pigeons, and now humans in Tunisia. Another limitation of this study is
the number of volunteers screened. Given the relatively low proportion of healthy carriage
of ESC-resistant Enterobacterales in the Tunisian population, the number of isolates that
could be retrieved, characterized, and compared to existing data was rather limited. Our
results thus open the path to larger-scale studies.

To combat AMR in Tunisia, several steps can be taken based on the findings of this
study. First, there should be a concerted effort to improve antibiotic stewardship programs
to reduce the irrational use of antibiotics in the community. This would include strict
regulations on the sale and prescription of antibiotics, as well as educational campaigns to
raise awareness among healthcare professionals and the general public about the dangers
of antibiotic overuse and misuse. Second, surveillance systems need to be enhanced to
monitor the spread of AMR genes, in the three human, veterinary, and environmental
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domains. Finally, echoing one limitation of this study, AMR in humans, animals, and
food should be addressed using an integrated One Health approach with an ambitious
large-scale design.

5. Conclusions

Our results showed that 10.2% of the healthy volunteers screened in four different
locations in Tunisia were carriers of ESC-resistant Enterobacterales. Identical isolates were
found in people sharing the same workplace, but dominant clones and plasmids were
also identified in unrelated people. Silent dissemination of resistant bacteria within the
healthy population can be promoted by direct contacts or by wider and still unknown
pathways This study highlights the urgent need to more efficiently combat AMR in Tunisia,
notably outside healthcare settings and in a One Health approach. This includes limiting
the uncontrolled use of antibiotics and promoting preventive measures in all sectors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym16152131/s1: Table S1: Quality controls of all sequenced
isolates; Table S2: Distance matrix based on the cgMLST analysis of E. coli isolates from this study,
as well as ST349 genomes retrieved on the NCBI database; Table S3: Complete characteristics of all
isolates from this study.
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