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Abstract: The Tajogaite Volcano erupted on the western slope of the Cumbre Vieja mountain range
on La Palma Island in the Canary Islands, Spain, in 2021. As one of the multiple consequences of this
eruption, a layer of tephra was deposited, to a variable extent, over a large part of the island. Tephra
deposits affect all aspects of vegetation recovery, the water cycle, and the long-term availability of
volcanic nutrients. Protozoa, including free-living amoeba (FLA), are known to be among the first
microorganisms capable of colonizing harsh environments. In the present study, the presence of
FLA has been evaluated in the Tajogaite Volcano deposits. Samples of the tephra were collected and
incubated at 26 ◦C on 2% non-nutrient agar plates with a layer of heat-killed E. coli. Morphological
features, as well as the DF3 region sequence of the 18S rDNA, confirmed the presence of a T4
genotype strain of Acanthamoeba. Thermotolerance and osmotolerance assays were used to evaluate
the strain’s pathogenic potential. This strain was considered thermotolerant but poorly osmotolerant.
To the best of our knowledge, this is the first report of Acanthamoeba being isolated from a recently
erupted volcano.

Keywords: Acanthamoeba; tajogaite; La Palma; tephra; pathogenic potential

1. Introduction

The Canary Islands archipelago is located on a passive continental margin which ex-
tends parallel to the NW African continental platform. This archipelago is made up of eight
islands: La Palma, El Hierro, La Gomera, Tenerife, Gran Canaria, Lanzarote, Fuerteventura,
and La Graciosa [1]. The age of the islands, which are volcanic in nature, ranges from
roughly 21 million years (Myr) to 0.8 Myr [2]. The Canaries are also characterized by a
broad variety of topological and climatological variability, which has resulted in vegetation
zones that range from semi-desert succulent scrub (0–700 m) to pine forests (1200–2000 m)
and montane scrub (1900–2500 m) [3]. Due to the influence of the NNE trade winds and
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the subtropical North Atlantic’s relatively cool waters, the Canary Islands experience a
temperate climate [4].

La Palma Island, with 708 km2 of surface area and around 85,000 inhabitants, is the
most north-westerly of the Canary Islands, and it is characterized by a mountain range
which divides the island from north to south [5]. It has a warm climate that is sunny for
most of the year, with rainfall occurring in the fall and winter, according to Miller et al.
(2020) [6]. The height and dry northwest winds, along with the humid northeast trade
winds, create an inversion layer that gives rise to a laurel forest with rich floral diversity [6]
(Figure 1). On 19 September 2021, on the small island of La Palma, an explosion began an
85-day eruption, pouring 215 million m3 of lava onto the SW slope of the Cumbre Vieja
Natural Reserve [5]. At the time of its eruption, the Tajogaite volcano had an altitude of
about 1100 m, and it is currently 1120 m [7]. The eruption started with an early explosive
phase that sent ash clouds to over 5000 m elevation, followed by rapidly advancing lava
flows alongside violent strombolian activity [8]. This eruption, which affected densely
populated areas of the island and lasted 85 days, caused more than 800 million euros of
damage and necessitated the evacuation of more than 7000 people [9].
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different equidistant soil spots were taken. The sampling point was the closest site to the 
volcanic cone the public was able to access (Figure 2). Samples were kept at 4 °C until 
further processing in the laboratory.  

Figure 1. The island of La Palma and the geographical localization of the Tajogaite volcano. The
sampling was collected from the El Paso municipality (28◦37′38.2′′ N, 17◦52′24.1′′ W) and geolocated
via the Google Maps GPS tool.

Environments related to volcanic activity are diverse, from deep ocean basaltic habitats
to acidic hot springs, and are widely distributed on Earth. Therefore, it is of geomicrobiolog-
ical importance to understand the diversity and characteristics of the microbial life that they
harbour [10]. Free-living amoebae (FLA) are a group of unicellular organisms that have
a great ability to grow in different environments in nature, such as water, soil, and dust.
Although they can be found freely in the environment, they can cause infections in animals
and humans [11]. For this reason, they are considered amphizoic [12]. Among the great
variety of existing free-living amoebae, Acanthamoeba spp., Naegleria fowleri, Balamuthia
mandrillaris, Sappinia pedata/diploidea, Vahlkampfia spp., and Vermamoeba vermiformis are
known to infect humans [13–15]. These infections include an amoebic encephalitis known
as primary amoebic meningoencephalitis (PAM), which is caused by Naegleria fowleri;
granulomatous amoebic encephalitis (GAE), caused by the genus Acanthamoeba together
with Balamuthia mandrillaris; and amoebic encephalitis, caused by Sappinia pedata. Other
infections are keratitis caused mainly by the genera Acanthamoeba and Vahlkampfia and,
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less frequently, Vermamoeba vermiformis [13,14,16]. On the other hand, current molecular
techniques, especially the sequencing of 18S rRNA genes, are being used to understand
the species complex and the phylogeny of Acanthamoeba. Based on sequence differences,
23 genotypes (T1–T23) of Acanthamoeba have been established. Each genotype exhibits
5% or more sequence divergence between different genotypes [17–20]. In addition, FLA
have been reported as vehicles for other microorganisms, including bacteria, fungi, and
viruses [21,22]. These various characteristics of FLA mean that they are of great importance
to human and environmental health [23].

These opportunistic parasites have been reported in the Macaronesian islands, in-
cluding the Canary Islands. They are present in many of these volcanic islands, such as
El Hierro, Gran Canaria, and Tenerife, among others. They have been found in waters
of different sources and soils [24,25]. In contrast, FLA have never been described from
recent volcanic ashes in these islands. Due to the exclusion zone set up around the volcano
established by the authorities, we were not able to obtain lava samples. However, abundant
tephra deposits were sampled in the municipality of El Paso. Tephra is considered to be a
volcanic material, as scoria, dust, etc., are ejected during an eruption. In order to elucidate
the capacity of FLA to colonize a newly formed volcanic soil, the aim of this study was to
incubate a tephra sample from the Tajogaite volcano in a specific FLA agar medium. We
also characterized the physicochemical nature of the tephra.

2. Materials and Methods
2.1. Location and Sampling

Sampling was conducted on the volcanic island of La Palma (Canary Islands, Spain)
(Figure 1). The tephra sample was collected in the municipality of El Paso (28◦37′38.2′′ N,
17◦52′24.1′′ W) during the month of June 2022, 6 months after the end of the eruption.
In order to obtain homogenous samples from the sampling site, approximately 1 g from
4 different equidistant soil spots were taken. The sampling point was the closest site to
the volcanic cone the public was able to access (Figure 2). Samples were kept at 4 ◦C until
further processing in the laboratory.
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Figure 2. General view of the sampling site where the lava flow solidified after cooling is observed
(A). The samples were collected (four white arrows) directly from the last accessible lava flow site (B).

2.2. Tephra Sample Characterization

The particle size distribution was evaluated by sieving 100 g of the previously dried
tephra for 5 min using an analytical sieve shaker operating at an amplitude of 2.0 mm
through a standard series of 10 sieves with mesh sizes of 8, 4, 2, 1, 0.5, 0.25, 0.125, 0.063,
and 0.032 mm. The textural group and sample statistics (median, mean, sorting) were
calculated using GRADISTAT version 9.1 software. The pH and electrical conductivity
(EC) were determined in a 1:5 aqueous extract (10 g of tephra in 50 mL of distilled water).
Oxidizable organic carbon was measured via potassium dichromate oxidation and subse-
quent spectrophotometric measurement; total nitrogen content (N) was measured via dry
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combustion and the measurement of the resulting gases with a thermoconductivity cell
from the LECO CN828 equipment. The total contents of Si, Ca, Mg, Na, K, S, P, Fe, Mn, Cu,
Zn, Ni, Cr, Cd, Mo, Co, Pb, and B were determined after acid digestion of the sample via
inductively coupled plasma (ICP).

2.3. Free-Living Amoeba Isolation

The tephra sample was processed in this way: the 4 g of tephra were homogenized in a
sterile glass, and then 1 g was resuspended in 15 mL of Page’s amoeba solution (PAS). After
vortexing it, the supernatant was filtered by a vacuum filtration system using a 0.45 µm pore
size filter (Pall, Madrid, Spain). The filter was then cultured inverted onto a non-nutrient
agar (NNA) plate and incubated at 26 ◦C with a layer of heat-killed E. coli. The plate was
visualized daily to check the presence of FLA. When the presence of trophozoites and cysts
of FLA was observed, following the morphological characteristics of Page’s keys [26,27], we
selected the growth spot and cloned it via dilution in a fresh NNA plate until a monoxenic
culture was obtained (Figure 3). The isolated amoeba was then transferred and grown in
PYG ATCC712 liquid culture medium and supplemented with 10 mg/mL of gentamicin
and grown axenically thereafter.
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Figure 3. Workflow scheme for the sample processing. A total of 4 equal g of tephra were collected,
homogenized, and mixed with 15 mL of PAS. The supernatant was filtered through a nitrocellulose
membrane (Ø 0.45 µm) by a vacuum pump. The filter was then seeded and inverted onto an NNA
plate and monitored daily for the FLA search.

2.4. Tolerance Assays

Assays for thermal and osmotic toleration were carried out as previously described [28],
with some modifications. For the osmotolerance assays, a 103 cells/mL suspension from
the axenic culture was seeded as a 100 µL spot in the centre of an NNA plate and a layer of
heat-killed E. coli containing mannitol 0.1 M, 1.0 M, and 1.5 M. Then, they were monitored
daily for the presence of trophozoites and cysts for one week. With respect to thermo-
tolerance assays, we repeat the process described above; but in this case, the plates were
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incubated at 26 ◦C, 37 ◦C, and 42 ◦C and monitored daily up to one week. To be able to
compare and quantify our findings, we have established a “+” scale based on the growth of
trophozoites/cysts on the plate.

2.5. DNA Extraction

For DNA extraction, the following steps were followed: 4 mL of Page’s amoebae
solution (PAS) was added to the plate with the monoxenic amoebae culture. The plate
was scraped, this suspension was centrifuged, and the concentrated amoeba culture was
introduced directly into the Maxwell® 16 tissue DNA purification kit sample cartridge
(Promega, Madrid, Spain) following the manufacturer’s instructions, as has been previously
described [29]. Amoebic genomic DNA yield and purity were determined using the DS-11
Spectro-photometer (DeNovix®, Wilmington, NC, USA).

2.6. PCR and Molecular Characterizations

PCR amplification of the 18S rRNA gene from the extracted DNA was carried out using
specific primers for Acanthamoeba genus: JDP-1f 5′-GGCCCAGATCGTTTACCGTGAA-3′

and JDP-2r 5′-TCTCACAAGCTGCTAGGGAGTCA-3′ [30] (Tm = 50 ◦C). PCR reactions
were performed in a 50 µL mixture containing 40 ng of DNA yield, and the PCRs were
performed in 35 cycles with denaturation (95 ◦C, 30 s), annealing (60 ◦C, 30 s), and primer
extension (72 ◦C, 30 s). After the last cycles, the primer extension was maintained for 7 min
at 72 ◦C. The expected amplicon length varies at 500 bp for JDP. Amplification products
from all PCRs were analyzed via electrophoresis through a 2% agarose gel, and positive
PCR products were sequenced using Macrogen Spain service (Madrid, Spain).

2.7. Phylogenetic Analysis

In order to establish a genetic relationship with reference strains, a sequence alignment
was performed using the ClustalW software 2.0. The MEGA 11 program and the maximum
likelihood method were used to infer the evolutionary history [31,32]. The species identifi-
cation has been based on sequence homology analysis compared with the available DNA
sequences in the GenBank database.

3. Results
3.1. Tephra Samples Characterization

The values of the physicochemical variables analyzed in the tephra sample are given
in Table 1.

Table 1. Physicochemical characteristics of the tephra sample.

Parameter

Gravel% 36.2 Fe2O3% 6.18 Cd ppm 356
Sand% 63.5 MnO% 0.12 Co ppm 209

Very coarse silt% 0.3 MgO% 2.85 Ni ppm 479
EC1:5 µS cm−1 114.7 CaO% 5.55 Cu ppm 213

pH1:5 6.9 Na2O% 3.22 Zn ppm 78
OC% 0.032 K2O% 1.43 Cr ppm 659
N% 0.005 P2O5% 0.00 Mo ppm 85

SiO2% 26.31 S ppm 1267 B ppm 0
Al2O3% 9.45 Pb ppm 1917

The recently erupted material from the Tajogaite volcano on La Palma Island exhibits
distinct physical properties, particularly in terms of its porosity and ability to retain water.
The high percentages of sand (63.5%) and gravel (36.2%) suggest a generally coarse texture
(textural group = sandy gravel; median or D50 = 1231 µm; geometric mean = 1186 µm;
sorting = poorly sorted), which, in turn, indicates a relatively high porosity. This porosity,
while beneficial for drainage, likely limits water retention due to the minimal presence
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of fine particles, as indicated by the very low percentage of silt (0.3%). The electrical
conductivity of 0.1 dS m−1 and pH of 6.9 indicate moderate conditions, neither strongly
acidic nor alkaline, yet the moisture retention capability might be compromised, challenging
the colonization and survival of organisms, including the free-living amoebae.

3.2. FLA Presence Detection

In this study, the tephra sample was isolated and classified at the genotype level
after analysis of the DF3 region of the 18S rDNA gene of Acanthamoeba. The obtained
sequence has been deposited in the GenBank database under the following accession
number: PP957191. The current sequence presented a ≥96% of homology with previously
reported strains of Acanthamoeba genotype T4 recorded in the GenBank database. The
phylogenetic analysis was based on the 18S partial sequence from different Acanthamoeba
strains, which were aligned by ClustalW 2.0 software. The evolutionary history was inferred
by using the MEGA 11 program and the maximum likelihood method, and Balamuthia
mandrillaris isolate V039 was used as outgroup. From this phylogenetic analysis, we have
obtained a drawn-to-scale tree (after a 500-replicates bootstrap test), where the relationship
of the found strain with respect to the type sequences present in the GenBank database
(Figure 4) is observed. In both solid and liquid culture mediums, trophozoites and cysts
consistent with the genus Acanthamoeba were observed. The trophozoites isolated in this
work presented a typically morphology with numerous vacuoles, lobulated acanthopodia,
and a size of 15–30 µm [13,33] (Figure 5A,C).

According to the historical subgenus classification groups of Acanthamoeba by Pussard
and Pons [34], the cysts observed in this study were included in the Group II. This group is
characterized by medium cysts with wrinkled, irregular ectocysts and polygonal stellate
endocysts. The cyst showed a size ranged from 10 to 15 µm (Figure 5B,D).
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liquid culture medium: Trophozoites (A) and cyst (B) at 40×; Trophozoites (C) and cyst (D) with
higher magnification (60×). Images were obtained with ECHO Revolution.

3.3. Tolerance Characterization

Thermotolerance and osmotolerance studies were used to determine the strain’s
potential pathogenicity. The obtained results revealed that the isolated strain showed
excellent growth at room temperature (26 ◦C) and at 37 ◦C, but it was able to grow at a low
concentration (for example, 0.1 M) and even at a medium concentration (1 M of mannitol).
At 42 ◦C, we were only able to observe the cyst stage. However, at 1.5 M of mannitol, the
cells were not capable of producing cysts (Table 2).

Table 2. Behaviour of Acanthamoeba sp. T4 strain trophozoites and cysts incubated at different
temperatures and exposed to different concentrations of mannitol (+++: abundant growth on the
entire plate of Trophozoites (T)/cysts I; ++: moderate growth of T/C; +: mild growth of T/C;
−: negative growth).

Cell Stage
Temperature Growth Mannitol Growth

26 ◦C 37 ◦C 42 ◦C 0.1 M 1 M 1.5 M

Trophozoites +++ ++ − +++ ++ −
Cysts + ++ ++ + ++ −

4. Discussion

Acanthamoeba is an opportunistic protozoan that has been described in various envi-
ronments in nature, for example, in the nasal mucosa of healthy individuals [35], in water,
soil, dust, and even the air [36]. Globally, Acanthamoeba-related illnesses such GAE, AK,
and cutaneous infections are primarily caused by the T4 genotype. Due to its widespread
dispersion in environmental sources and the resilience of cysts to disinfectants, this geno-
type has grown in scientific significance [37]. The genotype T4 has been found in soil from
high-altitude mountains [38], but it has never been reported in volcanic tephra soil before.
The presence of Acanthamoeba spp. in the volcanic archipelago of the Canary Islands is
widely reported not only in water sources but also in a large variety of soils [24,25,39,40].
However, the previously analyzed soils have never belonged to a recent volcanic eruption
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such as the one evaluated in the present study. The identification of the T4 genotype was
carried out using molecular techniques based on the analysis of DNA sequences, especially
the 18S rRNA subunit gene (rns). It is a more specific and accurate tool compared to mor-
phological classification since the latter can be subjective and depends on the interpretation
of the observer, whereas genotyping is based on objective DNA sequence data.

It is known that tephra deposits affect different aspects of vegetation recovery [41,42],
completely resetting the seed bank depending on the depth of the tephra deposits [43].
Furthermore, the tephra layer will likely affect the water cycle, nutrient availability in
the affected environments, and leaching volcanic compounds in the long term [44,45].
Consequently, the harsh conditions and the lack of nutrients of the evaluated tephra sample
have been evidenced. Tephra is formed via the fragmentation of magma in the volcanic
vent by bursting bubbles. The bubbles are related to volatile exsolution as magma rises with
lower pressures in the vent. There are two main types of tephra deposits: those that form
visible layers and tephra (mainly shards); and those that are not visible, which are known
as cryptotephra [46]. Delaine and colleagues reported in 2016 [46] how the testate amoebae
can collect and sort tephra particles, which become part of their shells in environments
affected by the ash deposit after volcanic eruptions.

The chemical and physical composition of the tephra material form this study, coupled
with its recent volcanic origin, poses significant challenges for organism colonization. The
combination of a coarse texture with low water retention and limited nutrient availability
added to the presence of heavy metals creates an inhospitable environment for most life
forms. Even though it is a harsh environment, it can be colonized by bacteria (mainly
lithotrophic bacteria). Indeed, studies have shown early colonization of volcanic soils by
various bacteria in the first few months after an eruption [47,48]. In summary, volcanic
materials can harbor a great diversity of microorganisms within a few years of deposi-
tion [49]. This context may explain the presence of free-living amoebae in tephra since they
can feed on the possible bacteria present in this environment. For that reason, the potential
isolation of free-living amoebae in the material is particularly noteworthy, indicating the
remarkable adaptability and survival capability of these organisms under extreme condi-
tions. Moreover, this interaction between FLA and bacteria may indicate an increase in
virulence in infections [50]. This highlights the existence of horizontal gene transfer (HGT).
HGT has played an important role in the evolution of pathogenicity in Acanthamoeba [51].
To the best of our knowledge, this is the first survey of soil from volcanic material on the
island La Palma and the first report on identifying genotype T4 from a tephra sample in
the study area.

Several studies have reported the genotype T4 as the dominant genotype in soil
sources. Moreover, this genotype is one of the main causes of amoebic keratitis, brain
encephalitis, and skin infections [52,53]. Consequently, this FLA has been considered one of
the most adaptable of the FLA group because it is able to survive in extreme environments.
Celis and colleagues have isolated Acanthamoeba strains from an 80 ◦C volcanic mud spring
water source in the Philippines. Considering that Acanthamoeba spp. was not known to
be able to persist at temperatures greater than 65 ◦C damp heat until recently [54], these
results contribute further knowledge on these opportunistic pathogens.

In addition, only thermophilic FLA may be pathogenic for humans and animals, which
is correlated with their adaptation to become capable of surviving in 37 ◦C. Therefore, the
isolated strain is thermophilic because of its abundant growth at 26 ◦C and 37 ◦C, although
at 42 ◦C, only viable cysts remain. However, it is not only pathogenic strains that are
thermophilic [55,56], and for this reason, the thermal tolerance test is not sufficient to
determine the pathogenicity of the detected strain. More accurate information regarding
the organism’s capacity to infect humans and animals is needed. Several other methods
of finding out the pathogenicity of amoebae have been described, such as osmotolerance
assays. Osmotolerance indicates the ability of strains to adapt to tissues [57], and some
studies relate these physiological constraints to the virulence of environmental strains [58].
In fact, we have demonstrated the organism’s moderate ability to grow at concentrations
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of up to 1 M mannitol and its inability to grow at 1.5 M concentrations. The pathogenic
capacity of Acanthamoeba is multifactorial, and its ability to adapt to the protective osmo-
larity of the tears of the eye favors cytotoxicity, although there are other factors, such as
the ability of the amoebae to produce proteases, which favor adhesion to the cells of the
corneal epithelium [59].

Overall, in the current study, early findings on the existence of a potentially pathogenic
Acanthamoeba strain, isolated in a harsh environment (in this case, newly volcanic soil),
are presented.
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