Oral Prevalence of Selenomonas noxia Differs among Orthodontic Patients Compared to Non-Orthodontic Controls: A Retrospective Biorepository Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol Review
2.2. Original Sampling Protocol
2.3. DNA Isolation
2.4. Screening Protocol
Human DNA-Positive control | |
Beta actin forward primer, | 5′-GTGGGGTCCTGTGGTGTG-3′ |
Beta actin reverse primer, | 5′-GAAGGGGACAGGCAGTGA-3′ |
Bacterial DNA-Positive control | |
16S rRNA forward primer, | 5′-ACGCGTCGACAGAGTTTGATCCTGGCT-3′ |
16S rRNA reverse primer, | 5′-GGGACTACCAGGGTATCTAAT-3′ |
SN primers | |
SN forward primer, | 5′-TCTGGGCTACACACGTACTACAATG-3′ |
SN reverse primer, | 5′-GCCTGCAATCCGAACTGAGA-3′ |
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Contaldo, M.; Lucchese, A.; Lajolo, C.; Rupe, C.; Di Stasio, D.; Romano, A.; Petruzzi, M.; Serpico, R. The Oral Microbiota Changes in Orthodontic Patients and Effects on Oral Health: An Overview. J. Clin. Med. 2021, 10, 780. [Google Scholar] [CrossRef] [PubMed]
- Freitas AO, A.D.; Marquezan, M.; Nojima, M.D.C.G.; Alviano, D.S.; Maia, L.C. The influence of orthodontic fixed appliances on the oral microbiota: A systematic review. Dent. Press J. Orthod. 2014, 19, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Maizeray, R.; Wagner, D.; Lefebvre, F.; Lévy-Bénichou, H.; Bolender, Y. Is there any difference between conventional, passive and active self-ligating brackets? A systematic review and network meta-analysis. Int. Orthod. 2021, 19, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Skilbeck, M.G.; Mei, L.; Mohammed, H.; Cannon, R.D.; Farella, M. The effect of ligation methods on biofilm formation in patients undergoing multi-bracketed fixed orthodontic therapy—A systematic review. Orthod. Craniofacial Res. 2022, 25, 14–30. [Google Scholar] [CrossRef] [PubMed]
- Llera-Romero, A.S.; Adobes-Martín, M.; Iranzo-Cortés, J.E.; Montiel-Company, J.M.; Garcovich, D. Periodontal health status, oral microbiome, white-spot lesions and oral health related to quality of life-clear aligners versus fixed appliances: A systematic review, meta-analysis and meta-regression. Korean J. Orthod. 2023, 53, 374–392. [Google Scholar] [CrossRef] [PubMed]
- Raghavan, S.; Abu Alhaija, E.S.; Duggal, M.S.; Narasimhan, S.; Al-Maweri, S.A. White spot lesions, plaque accumulation and salivary caries-associated bacteria in clear aligners compared to fixed orthodontic treatment. A systematic review and meta- analysis. BMC Oral Health 2023, 23, 599. [Google Scholar] [CrossRef] [PubMed]
- An, J.-S.; Lim, B.-S.; Ahn, S.-J. Managing oral biofilms to avoid enamel demineralization during fixed orthodontic treatment. Korean J. Orthod. 2023, 53, 345–357. [Google Scholar] [CrossRef] [PubMed]
- Pithon, M.M.; Sant’Anna LI, D.A.; Baião FC, S.; dos Santos, R.L.; da Silva Coqueiro, R.; Maia, L.C. Assessment of the effectiveness of mouthwashes in reducing cariogenic biofilm in orthodontic patients: A systematic review. J. Dent. 2015, 43, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, R.B.; Polo, A.B.; Rocha, V.N.; Vitral, R.W.F.; Apolônio, A.C.M.; da Silva Campos, M.J. Influence of orthodontic brackets design and surface properties on the cariogenic Streptococcus mutans adhesion. Saudi Dent. J. 2022, 34, 321–327. [Google Scholar] [CrossRef]
- Krasniqi, S.; Sejdini, M.; Stubljar, D.; Jukic, T.; Ihan, A.; Aliu, K.; Aliu, X. Antimicrobial Effect of Orthodontic Materials on Cariogenic Bacteria Streptococcus mutans and Lactobacillus acidophilus. Med. Sci. Monit. Basic Res. 2020, 26, e920510-1–e920510-9. [Google Scholar] [CrossRef]
- Al-Melh, M.A.; Bhardwaj, R.G.; Pauline, E.M.; Karched, M. Real-time polymerase chain reaction quantification of the salivary levels of cariogenic bacteria in patients with orthodontic fixed appliances. Clin. Exp. Dent. Res. 2020, 6, 328–335. [Google Scholar] [CrossRef]
- Veenman, F.; van Dijk, A.; Arredondo, A.; Medina-Gomez, C.; Wolvius, E.; Rivadeneira, F.; Àlvarez, G.; Blanc, V.; Kragt, L.; Veenman, F.; et al. Oral microbiota of adolescents with dental caries: A systematic review. Arch. Oral Biol. 2024, 161, 105933. [Google Scholar] [CrossRef]
- Tanner, A.C.R.; Sonis, A.L.; Lif Holgerson, P.; Starr, J.R.; Núñez, Y.; Kressirer, C.A.; Paster, B.J.; Johansson, I. White-spot lesions and gingivitis microbiotas in orthodontic patients. J. Dent. Res. 2012, 91, 853–858. [Google Scholar] [CrossRef]
- Kameda, M.; Abiko, Y.; Washio, J.; Tanner, A.C.R.; Kressirer, C.A.; Mizoguchi, I.; Takahashi, N. Sugar Metabolism of Scardovia wiggsiae, a Novel Caries-Associated Bacterium. Front. Microbiol. 2020, 11, 479. [Google Scholar] [CrossRef]
- Arnold, S.; Koletsi, D.; Patcas, R.; Eliades, T. The effect of bracket ligation on the periodontal status of adolescents undergoing orthodontic treatment. A systematic review and meta-analysis. J. Dent. 2016, 54, 13–24. [Google Scholar] [CrossRef]
- Parmar, N.P.; Thompson, G.L.; Atack, N.E.; Ireland, A.J.; Sherriff, M.; Haworth, J.A. Microbial colonisation associated with conventional and self-ligating brackets: A systematic review. J. Orthod. 2022, 49, 151–162. [Google Scholar] [CrossRef]
- Li, Y.; Xiang, Y.; Ren, H.; Zhang, C.; Hu, Z.; Leng, W.; Xia, L. Association between periodontitis and dental caries: A systematic review and meta-analysis. Clin. Oral Investig. 2024, 28, 306. [Google Scholar] [CrossRef]
- Guo, R.; Lin, Y.; Zheng, Y.; Li, W. The microbial changes in subgingival plaques of orthodontic patients: A systematic review and meta-analysis of clinical trials. BMC Oral Health 2017, 17, 90. [Google Scholar] [CrossRef]
- Papageorgiou, S.N.; Xavier, G.M.; Cobourne, M.T.; Eliades, T. Effect of orthodontic treatment on the subgingival microbiota: A systematic review and meta-analysis. Orthod. Craniofacial Res. 2018, 21, 175–185. [Google Scholar] [CrossRef]
- Costa, M.R.; da Silva, V.C.; Miqui, M.N.; Colombo, A.P.V.; Cirelli, J.A. Effects of ultrasonic, electric, and manual toothbrushes on subgingival plaque composition in orthodontically banded molars. Am. J. Orthod. Dentofac. Orthop. 2010, 137, 229–235. [Google Scholar] [CrossRef]
- McDaniel, J.; McDaniel, S.; Samiano, B.J.; Marrujo, M.; Kingsley, K.; Howard, K.M. Microbial Screening Reveals Oral Site-Specific Locations of the Periodontal Pathogen Selenomonas noxia. Curr. Issues Mol. Biol. 2021, 43, 353–364. [Google Scholar] [CrossRef]
- Tanner, A.C. Anaerobic culture to detect periodontal and caries pathogens. J. Oral Biosci. 2015, 57, 18–26. [Google Scholar] [CrossRef]
- Teles, F.; Teles, R.; Sachdeo, A.; Uzel, N.; Song, X.; Torresyap, G.; Singh, M.; Papas, A.; Haffajee, A.; Socransky, S. Comparison of Microbial Changes in Early Redeveloping Biofilms on Natural Teeth and Dentures. J. Periodontol. 2012, 83, 1139–1148. [Google Scholar] [CrossRef]
- Bieri, R.A.; Adriaens, L.; Spörri, S.; Lang, N.P.; Persson, G.R. Gingival fluid cytokine expression and subgingival bacterial counts during pregnancy and postpartum: A case series. Clin. Oral Investig. 2013, 17, 19–28. [Google Scholar] [CrossRef]
- Khocht, A.; Yaskell, T.; Janal, M.; Turner, B.F.; Rams, T.E.; Haffajee, A.D.; Socransky, S.S. Subgingival microbiota in adult Down syndrome periodontitis. J. Periodontal Res. 2012, 47, 500–507. [Google Scholar] [CrossRef]
- Albandar, J.M.; Khattab, R.; Monem, F.; Barbuto, S.M.; Paster, B.J. The Subgingival Microbiota of Papillon-Lefèvre Syndrome. J. Periodontol. 2012, 83, 902–908. [Google Scholar] [CrossRef]
- López, R.; Dahlén, G.; Retamales, C.; Baelum, V. Clustering of subgingival microbial species in adolescents with’ periodontitis. Eur. J. Oral Sci. 2011, 119, 141–150. [Google Scholar] [CrossRef]
- Colombo, A.P.V.; Boches, S.K.; Cotton, S.L.; Goodson, J.M.; Kent, R.; Haffajee, A.D.; Socransky, S.S.; Hasturk, H.; Van Dyke, T.E.; Dewhirst, F.; et al. Comparisons of Subgingival Microbial Profiles of Refractory Periodontitis, Severe Periodontitis, and Periodontal Health Using the Human Oral Microbe Identification Microarray. J. Periodontol. 2009, 80, 1421–1432. [Google Scholar] [CrossRef]
- Dahlén, G.; Leonhardt, Å. A new checkerboard panel for testing bacterial markers in periodontal disease. Oral Microbiol. Immunol. 2006, 21, 6–11. [Google Scholar] [CrossRef]
- Torresyap, G.; Haffajee, A.D.; Uzel, N.G.; Socransky, S.S. Relationship between periodontal pocket sulfide levels and subgingival species. J. Clin. Periodontol. 2003, 30, 1003–1010. [Google Scholar] [CrossRef]
- Dibart, S.; Chapple, I.L.; Skobe, Z.; Shusterman, S.; Nedleman, H.L. Microbiological Findings in Prepubertal Periodontitis. A Case Report. J. Periodontol. 1998, 69, 1172–1175. [Google Scholar] [CrossRef]
- Goodson, J.; Groppo, D.; Halem, S.; Carpino, E. Is Obesity an Oral Bacterial Disease? J. Dent. Res. 2009, 88, 519–523. [Google Scholar] [CrossRef]
- Cruz, P.; Mehretu, A.M.; Buttner, M.P.; Trice, T.; Howard, K.M. Development of a polymerase chain reaction assay for the rapid detection of the oral pathogenic bacterium, Selenomonas noxia. BMC Oral Health 2015, 15, 95. [Google Scholar] [CrossRef]
- Williams, A.; Porter, J.; Kingsley, K.; Howard, K.M. Higher Prevalence of the Periodontal Pathogen Selenomonas noxia among Pediatric and Adult Patients May Be Associated with Overweight and Obesity. Pathogens 2024, 13, 338. [Google Scholar] [CrossRef]
- Hendricks, K.; Hatch, T.; Kingsley, K.; Howard, K.M. Screening for Selenomonas noxia in a Pediatric and Adolescent Patient Population Reveals Differential Oral Prevalence across Age Groups. Int. J. Environ. Res. Public Health 2024, 21, 391. [Google Scholar] [CrossRef]
- Laiola, M.; De Filippis, F.; Vitaglione, P.; Ercolini, D. A Mediterranean Diet Intervention Reduces the Levels of Salivary Periodontopathogenic Bacteria in Overweight and Obese Subjects. Appl. Environ. Microbiol. 2020, 86, e00777-20. [Google Scholar] [CrossRef]
- de Andrade, P.A.M.; Giovani, P.A.; Araujo, D.S.; de Souza, A.J.; Pedroni-Pereira, A.; Kantovitz, K.R.; Andreote, F.D.; Castelo, P.M.; Nociti-Jr, F.H. Shifts in the bacterial community of saliva give insights on the relationship between obesity and oral microbiota in adolescents. Arch. Microbiol. 2020, 202, 1085–1095. [Google Scholar] [CrossRef]
- Araujo, D.S.; Klein, M.I.; Scudine KG, D.O.; de Sales Leite, L.; Parisotto, T.M.; Ferreira, C.M.; Fonseca, F.L.A.; Perez, M.M.; Castelo, P.M. Salivary Microbiological and Gingival Health Status Evaluation of Adolescents With Overweight and Obesity: A Cluster Analysis. Front. Pediatr. 2020, 8, 429. [Google Scholar] [CrossRef]
- Anhoury, P.; Nathanson, D.; Hughes, C.V.; Socransky, S.; Feres, M.; Chou, L.L. Microbial profile on metallic and ceramic bracket materials. Angle Orthod. 2002, 72, 338–343. [Google Scholar] [CrossRef]
- Sodhi, P.; Jiang, Y.; Lin, S.; Downey, J.; Sorenson, C.; Shayegh, M.; Sullivan, V.; Kingsley, K.; Howard, K.M. Administration of Clinical COVID-19 Mouthwashing Protocol and Potential Modulation of Pediatric Oral Bacterial Prevalence of Selenomonas noxia: A Pilot Study. Pediatr. Rep. 2023, 15, 414–425. [Google Scholar] [CrossRef]
- Merchant, A.T.; Vidanapathirana, N.; Yi, F.; Celuch, O.; Zhong, Z.; Jin, Q.; Zhang, J. Association between groups of immunoglobulin G antibodies against periodontal microorganisms and diabetes-related mortality. J. Periodontol. 2022, 93, 1083–1092. [Google Scholar] [CrossRef]
- Faveri, M.; Mayer, M.P.A.; Feres, M.; De Figueiredo, L.C.; Dewhirst, F.E.; Paster, B.J. Microbiological diversity of generalized aggressive periodontitis by 16S rRNA clonal analysis. Oral Microbiol. Immunol. 2008, 23, 112–118. [Google Scholar] [CrossRef]
- Silva-Boghossian, C.M.; Duarte, P.T.; da Silva, D.G.; Lourenço, T.G.B.; Colombo, A.P.V. Colonization dynamics of subgingival microbiota in recently installed dental implants compared to healthy teeth in the same individual: A 6-month prospective observational study. J. Appl. Oral Sci. 2023, 31, e20230134. [Google Scholar] [CrossRef]
- Boyapati, R.; Cherukuri, S.A.; Bodduru, R.; Kiranmaye, A. Influence of female sex hormones in different stages of women on periodontium. J. Mid-Life Health 2021, 12, 263–266. [Google Scholar] [CrossRef]
- Shiau, H.J.; Reynolds, M.A. Sex Differences in Destructive Periodontal Disease: Exploring the Biologic Basis. J. Periodontol. 2010, 81, 1505–1517. [Google Scholar] [CrossRef]
- Ulloa, P.C.; van der Veen, M.H.; Brandt, B.W.; Buijs, M.J.; Krom, B.P. The effect of sex steroid hormones on the ecology of in vitro oral biofilms. Biofilm 2023, 6, 100139. [Google Scholar] [CrossRef]
- Hammouda, Z.K.; Wasfi, R.; Abdeltawab, N.F. Hormonal drugs: Influence on growth, biofilm formation, and adherence of selected gut microbiota. Front. Cell Infect. Microbiol. 2023, 13, 1147585. [Google Scholar] [CrossRef]
- Prado, M.M.; Figueiredo, N.; Pimenta, A.L.; Miranda, T.S.; Feres, M.; Figueiredo, L.C.; de Almeida, J.; Bueno-Silva, B. Recent Updates on Microbial Biofilms in Periodontitis: An Analysis of In Vitro Biofilm Models. Adv. Exp. Med. Biol. 2022, 1373, 159–174. [Google Scholar] [CrossRef]
- Ji, S.; Choi, Y. Microbial and Host Factors That Affect Bacterial Invasion of the Gingiva. J. Dent. Res. 2020, 99, 1013–1020. [Google Scholar] [CrossRef]
- Murakami, S.; Mealey, B.L.; Mariotti, A.; Chapple, I.L. Dental plaque–induced gingival conditions. J. Periodontol. 2018, 89, S17–S27. [Google Scholar] [CrossRef]
- Dosseva-Panova, V.T.; Popova, C.L.; Panov, V.E. Subgingival Microbial Profile and Production of Proinflammatory Cytokines In Chronic Periodontitis. Folia Medica 2014, 56, 152–160. [Google Scholar] [CrossRef]
- Luchian, I.; Surlari, Z.; Goriuc, A.; Ioanid, N.; Zetu, I.; Butnaru, O.; Scutariu, M.-M.; Tatarciuc, M.; Budala, D.-G. The Influence of Orthodontic Treatment on Periodontal Health between Challenge and Synergy: A Narrative Review. Dent. J. 2024, 12, 112. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alsulaimani, L.; Alqarni, H.; Khalifa, F.; Akel, M.S. The Orthodontics-Periodontics Challenges in Integrated Treatment: A Comprehensive Review. Cureus 2023, 15, e38994. [Google Scholar] [CrossRef]
- Jepsen, K.; Sculean, A.; Jepsen, S. Complications and treatment errors involving periodontal tissues related to orthodontic therapy. Periodontology 2000 2023, 92, 135–158. [Google Scholar] [CrossRef]
- Erbe, C.; Heger, S.; Kasaj, A.; Berres, M.; Wehrbein, H. Orthodontic treatment in periodontally compromised patients: A systematic review. Clin. Oral Investig. 2023, 27, 79–89. [Google Scholar] [CrossRef]
- Partouche, A.J.D.; Castro, F.; Baptista, A.S.; Costa, L.G.; Fernandes, J.C.H.; Fernandes, G.V.d.O. Effects of Multibracket Orthodontic Treatment versus Clear Aligners on Periodontal Health: An Integrative Review. Dent. J. 2022, 10, 177. [Google Scholar] [CrossRef]
- Shayegh, M.; Sorenson, C.; Downey, J.; Lin, S.; Jiang, Y.; Sodhi, P.; Sullivan, V.; Howard, K.M.; Kingsley, K. Assessment of SARS-CoV-2 (COVID-19) Clinical Mouthwash Protocol and Prevalence of the Oral Pathogen Scardovia wiggsiae: A Pilot Study of Antibacterial Effects. Methods Protoc. 2023, 6, 65. [Google Scholar] [CrossRef]
- Chandra, A.; Thosar, N.R.; Parakh, H. Clear Aligners in Pediatric Dentistry: A Scoping Review. Cureus 2024, 16, e58992. [Google Scholar] [CrossRef]
- Hashemi, S.S.; Tafti, K.T.; Khademi, S.S.; Ariana, N.; Ghasemi, S.; Dashti, M.; Ghanati, H.; Mansourian, M. Clear aligner therapy versus conventional brackets: Oral impacts over time. Dent. Res. J. 2024, 21, 6. [Google Scholar] [CrossRef]
- Di Spirito, F.; D’ambrosio, F.; Cannatà, D.; D’antò, V.; Giordano, F.; Martina, S. Impact of Clear Aligners versus Fixed Appliances on Periodontal Status of Patients Undergoing Orthodontic Treatment: A Systematic Review of Systematic Reviews. Healthcare 2023, 11, 1340. [Google Scholar] [CrossRef] [PubMed]
- Graves, A.; Grahl, T.; Keiserman, M.; Kingsley, K. Systematic Review and Meta Analysis of the Relative Effect on Plaque Index among Pediatric Patients Using Powered (Electric) versus Manual Toothbrushes. Dent. J. 2023, 11, 46. [Google Scholar] [CrossRef]
- Silva, F.H.; Montagner, A.F.; Silveira, M.C.; Muniz, F.W.M.G. Antiplaque and antigingivitis efficacy of new and worn manual toothbrushes: A systematic review and meta-analysis. Int. J. Dent. Hyg. 2023, 21, 95–105. [Google Scholar] [CrossRef]
- Rösing, C.K.; Garduño, E.; Bussadori, S.K.; Zerón, A.; Soares, P.V.; Saadia, M.; Villar, C.C. Powered Toothbrushes: An Opportunity for Biofilm and Gingival Inflammation Control. Int. J. Dent. 2022, 2022, 6874144. [Google Scholar] [CrossRef]
- Thomassen, T.M.J.A.; Van der Weijden, F.G.A.; Slot, D.E. The efficacy of powered toothbrushes: A systematic review and network meta-analysis. Int. J. Dent. Hyg. 2022, 20, 3–17. [Google Scholar] [CrossRef]
Demographic | Overall Study Sample (n = 208) | Overall Clinic Patient Population | Statistical Analysis |
---|---|---|---|
Sex | |||
Male | 50.0% (n = 104/208) | 48.1% | X2 = 0.040, d.f. = 1 p = 0.8414 |
Female | 50.0% (n = 104/208) | 51.9% | |
Race/Ethnicity | |||
White/Caucasian | 33.2% (n = 69/208) | 29.6% | X2 = 0.429, d.f. = 1 p = 0.5127 |
Non-White/minority | 66.8% (n = 139/208) | 70.4% | |
Hispanic or Latino | 38.9% (n = 81/208) | 50.9% | |
Black or African American | 16.8% (n = 35/208) | 12.2% | |
Asian or Pacific Islander | 6.7% (n = 14/208) | 7.5% | |
Age | |||
Average | 23.9 years | 25.7 years | Two-tailed t-test p = 0.0441 |
Range | 0 to 69 years | 0 to 89 years |
Demographic | Pediatric Study Sample (n = 89) | Pediatric Clinic Patient Population | Statistical Analysis |
---|---|---|---|
Sex | |||
Male | 49.4% (n = 44/89) | 47.2% | X2 = 0.161, d.f. = 1 p = 0.6886 |
Female | 50.6% (n = 45/89) | 52.8% | |
Race/Ethnicity | |||
White/Caucasian | 34.8% (n = 31/89) | 24.7% | X2 = 5.333, d.f. = 1 p = 0.0209 |
Non-White/minority | 65.2% (n = 58/89) | 75.3% | |
Hispanic or Latino | 31.5% (n = 28/89) | 52.4% | |
Black or African American | 16.9% (n = 15/89) | 12.2% | |
Asian or Pacific Islander | 11.2% (n = 10/89) | 3.8% | |
Age | |||
Average | 13.5 years | 9.04 years | Two-tailed t-test p = 0.0221 |
Range | 7 to 18 years | 0 to 17 years |
Demographic | Adult Study Sample (n = 119) | Adult Clinic Patient Population | Statistical Analysis |
---|---|---|---|
Sex | |||
Male | 50.4% (n = 60/119) | 49.1% | X2 = 0.040, d.f. = 1 p = 0.8414 |
Female | 49.6% (n = 59/119) | 50.9% | |
Race/Ethnicity | |||
White or Caucasian | 31.9% (n = 38/119) | 34.6% | X2 = 0.396, d.f. = 1 p = 0.5294 |
Non-White/minority | 68.1% (n = 81/119) | 65.4% | |
Hispanic | 44.5% (n = 53/119) | 49.4% | |
Black or African American | 16.8% (n = 20/119) | 12.2% | |
Asian or Pacific Islander | 3.4% (n = 4/119) | 3.8% | |
Age | |||
Average | 34.3 years | 42.3 years | Two-tailed t-test p = 0.0229 |
Range | 17 to 69 years | 18 to 89 years |
Demographic | SN-Positive (n = 32) | SN-Negative (n = 57) | Statistical Analysis |
---|---|---|---|
Sex | |||
Males | 53.1% (n = 17/32) | 47.4% (n = 27/57) | X2 = 1.445, d.f. = 1 p = 0.2293 |
Females | 46.9% (n = 15/32) | 52.6% (n = 30/57) | |
Race/Ethnicity | |||
White/Caucasian | 37.5% (n = 12/32) | 33.3% (n = 19/57) | X2 = 1.131, d.f. = 1 p = 0.2876 |
Non-White/minority | 62.5% (n = 20/32) | 66.7% (n = 38/57) | |
Orthodontic status | |||
Orthodontic brackets | 87.5% (n = 28/32) | 78.9% (n = 45/57) | X2 = 4.882, d.f. = 1 p = 0.0271 |
No orthodontic brackets | 12.5% (n = 4/32) | 21.1% (n = 12/57) |
Demographic | SN-Positive (n = 34) | SN-Negative (n = 85) | Statistical Analysis |
---|---|---|---|
Sex | |||
Males | 52.9% (n = 18/34) | 49.4% (n = 42/85) | X2 = 0.640, d.f. = 1 p = 0.4236 |
Females | 47.1% (n = 16/34) | 50.6% (n = 43/85) | |
Race/Ethnicity | |||
White/Caucasian | 26.5% (n = 9/34) | 34.1% (n = 29/85) | X2 = 2.852, d.f. = 1 p = 0.0913 |
Non-White/minority | 73.5% (n = 25/34) | 65.9% (n = 56/85) | |
Orthodontic status | |||
Orthodontic brackets | 58.8% (n = 20/34) | 28.2% (n = 24/85) | X2 = 47.669, d.f. = 1 p = 0.0001 |
No orthodontic brackets | 41.2% (n = 14/34) | 71.8% (n = 61/85) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hodges, K.; Famuliner, P.; Kingsley, K.; Howard, K.M. Oral Prevalence of Selenomonas noxia Differs among Orthodontic Patients Compared to Non-Orthodontic Controls: A Retrospective Biorepository Analysis. Pathogens 2024, 13, 670. https://doi.org/10.3390/pathogens13080670
Hodges K, Famuliner P, Kingsley K, Howard KM. Oral Prevalence of Selenomonas noxia Differs among Orthodontic Patients Compared to Non-Orthodontic Controls: A Retrospective Biorepository Analysis. Pathogens. 2024; 13(8):670. https://doi.org/10.3390/pathogens13080670
Chicago/Turabian StyleHodges, Kyle, Payton Famuliner, Karl Kingsley, and Katherine M. Howard. 2024. "Oral Prevalence of Selenomonas noxia Differs among Orthodontic Patients Compared to Non-Orthodontic Controls: A Retrospective Biorepository Analysis" Pathogens 13, no. 8: 670. https://doi.org/10.3390/pathogens13080670
APA StyleHodges, K., Famuliner, P., Kingsley, K., & Howard, K. M. (2024). Oral Prevalence of Selenomonas noxia Differs among Orthodontic Patients Compared to Non-Orthodontic Controls: A Retrospective Biorepository Analysis. Pathogens, 13(8), 670. https://doi.org/10.3390/pathogens13080670