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Abstract: Leptospirosis is a zoonosis with global public health impact, particularly in poor socio-
economic settings in tropical regions. Transmitted through urine-contaminated water or soil from
rodents, dogs, and livestock, leptospirosis causes over a million clinical cases annually. Risk factors
include outdoor activities, livestock production, and substandard housing that foster high densities of
animal reservoirs. This One Health study in southern Chile examined Leptospira serological evidence
of exposure in people from urban slums, semi-rural settings, and farm settings, using the Extreme
Gradient Boosting algorithm to identify key influencing factors. In urban slums, age, shrub terrain,
distance to Leptospira-positive households, and neighborhood housing density were contributing
factors. Human exposure in semi-rural communities was linked to environmental factors (trees,
shrubs, and lower vegetation terrain) and animal variables (Leptospira-positive dogs and rodents and
proximity to Leptospira-positive households). On farms, dog counts, animal Leptospira prevalence, and
proximity to Leptospira-contaminated water samples were significant drivers. The study underscores
that disease dynamics vary across landscapes, with distinct drivers in each community setting. This
case study demonstrates how the integration of machine learning with comprehensive cross-sectional
epidemiological and geospatial data provides valuable insights into leptospirosis eco-epidemiology.
These insights are crucial for informing targeted public health strategies and generating hypotheses
for future research.

Keywords: leptospirosis; communities; environmental drivers; animal reservoirs; One Health;
extreme gradient boosting; eco-epidemiology

1. Introduction

Leptospirosis, a zoonotic disease of global distribution caused by the pathogenic
bacterial species Leptospira, poses a significant health risk to both humans and animals [1].
In humans, leptospirosis can cause asymptomatic infection, flu-like illness, or sometimes
jaundice, kidney failure, meningitis, or even death [2]. Globally, it has been estimated that
leptospirosis causes around a million clinical cases and 58,000 deaths each year, but, due
to poor diagnosis and reporting, the actual burden is unknown [3]. The transmission of
Leptospira is a multifaceted process that includes a diverse range of hosts and reservoirs and
operates through both direct and indirect pathways. Humans may acquire infections either
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through direct contact with infected animals, both wildlife and domestic animals, or indi-
rectly through exposure to contaminated environments (soil, water) [4]. It is considered an
occupational hazard related to activities such as agriculture, sewage management, and ani-
mal husbandry [5], as well as an infection associated with routine domestic or recreational
activities that put individuals in contact with a Leptospira-contaminated environment. Ro-
dents (rats, mice) serve as primary synanthropic reservoirs, although other wildlife species
such as raccoons, skunks, opossums, foxes, and deer can also become infected [6]. Dogs
transmit the pathogen to humans through either direct contact, urine-infected materials,
or the environment [7]. Domesticated farm animals like cattle and sheep can also act as
carriers of Leptospira, and people can become infected by direct contact with blood, aborted
fetuses, vaginal discharge, or calving products from infected animals, as well as indirectly
through the urine-contaminated farm environment [8]. Human-to-human infection is also
possible via breast milk or sexual contact but is very rare [9,10]. More importantly, people
can become infected when exposed to water or soil that is contaminated with Leptospira [11].
Communities with low socio-economic conditions are vulnerable to exposure given the
inadequate sanitation and lack of safe drinking water [12]. Tropical climate areas where
there is frequent flooding caused by high rainfall and natural disasters often result in a
high risk of Leptospira infection [13,14]. Moreover, humidity and warm temperatures in
tropical areas cause the pathogen to persist longer in the environment, specifically in soil,
which in turn increases the likelihood of exposure [15]. Biofilms play a significant role
in the persistence of Leptospira in the environment. Biofilms provide a protective niche
that enhances the survival of Leptospira in aquatic and soil environments, making it more
resilient to environmental stressors and increasing the risk of transmission [13,15]. The
multifaceted nature of leptospirosis is driven by a variety of factors, encompassing ecologi-
cal, animal, and anthropogenic elements. Geographical differences further contribute to the
dynamic nature of the transmission, indicating that the intricate web of factors influencing
the disease may differ significantly from one community to another. Understanding the
interactions among these elements is crucial for developing targeted and effective strategies
to mitigate the impact of leptospirosis in different regions. However, the existing literature
is scarce about how leptospirosis can be present in different community settings and the
unique relationships between the various transmission drivers.

The growing body of research on leptospirosis prevalence highlights the lack of a
comprehensive investigation framework. While numerous studies have explored the
prevalence of leptospirosis within different populations, a noticeable limitation arises from
the absence of simultaneous consideration of human, animal, and environmental factors.
The One Health approach advocates for an integrated and interdisciplinary perspective
that acknowledges the interconnectedness of human, animal, and environmental health.
Utilizing the principles of One Health in leptospirosis research facilitates a more holistic un-
derstanding of disease dynamics and transmission pathways. By scrutinizing the complex
interactions among humans, animals, and their shared environment through the adoption
of a One Health framework, researchers can gain insight into the intricate epidemiology of
leptospirosis and devise more efficacious prevention and control measures.

The application of machine learning in epidemiological studies has grown signifi-
cantly, offering robust tools for analyzing large and complex datasets [16,17]. However,
its use within the One Health framework remains limited [18,19]. Given the diversity of
pathogens and hosts in One Health diseases, the complexities of their transmission cycles,
and the multiple drivers of emergence, no single data source or technique is sufficient for
detecting and understanding those emerging infectious diseases. Traditional statistical
models often fail to capture the complex relationships among multiple streams of diverse
information [18]. Thus, it is crucial to promote and highlight the use of advanced computa-
tional frameworks such as machine learning and artificial intelligence to harmonize and
analyze large, dynamic, and heterogeneous data streams in One Health research [20,21].

Here, we employed an existing dataset to showcase how machine learning algorithms
can be implemented within a One Health framework. The data presented herein constitute
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an ideal representation of such a framework by integrating leptospirosis data from rodents,
dogs, and the environment (all previously published), along with new livestock and human
seroprevalence data from an eco-epidemiological study conducted in Chile [11,22,23]. The
Los Rios region in south-central Chile, a predominantly agricultural and farming area
juxtaposed with scattered urban settlements, has been the location of several leptospirosis
studies [24]. A previous survey targeting individuals with occupational hazards revealed
a seroprevalence of around 22%, underscoring the need to elucidate disease dynamics
and effective control measures [25]. Additionally, a survey conducted on dogs in the area
reported a leptospirosis seroprevalence of 25%, with variations across different community
types, highlighting the interconnectedness of human-influenced environments and animal
health [26]. Rodents in the region were shown to have kidney carriage of around 20%,
further emphasizing the multifaceted nature of leptospirosis transmission pathways in the
Chilean site [27].

Using a One Health framework, the objective of this study was to identify the intri-
cate relationships between human Leptospira exposure and different drivers, including
household characteristics, animal reservoirs, environmental conditions, and water sources,
in three distinct community settings in the Los Rios region of Chile: urban slums, semi-
rural communities, and farm communities. We hypothesized that the drivers of human
Leptospira exposure would be different in those three communities, given the different envi-
ronmental settings and compositions of animal reservoirs. Specifically, we expected that
rodent-related variables and household conditions would drive human Leptospira exposure
in urban slum communities, while exposure in semi-rural areas would be impacted by
environmental conditions and household variables. In farm communities, we expected that
livestock and wildlife-related variables would play an important role in driving human
Leptospira exposure.

2. Materials and Methods
2.1. Study Area

The study design and data come from a study on the eco-epidemiology of leptospirosis
conducted in the Los Rios region in south-central Chile (latitude: 39◦15′ S–40◦33′ S, longi-
tude: 73◦43′ W–71◦35′ W) [11,22]. The climate of the region is characterized as temperate
rainforest, with an annual cumulative rainfall of 2588 mm and a range of 1200 mm in the
central valley up to 5000 mm in the Andes Mountains. The average temperature has less
variation throughout the year, with 17 ◦C in summer and 8 ◦C in winter [22,27]. Communi-
ties were selected to represent three community types: (i) urban slums: informal settlements
in the outskirts of a major city characterized by substandard housing; (ii) semi-rural: rural
community settlements away from major cities where households are clustered together;
and (iii) farm: dispersed households, typically small family farms, located in a specific rural
locality. Communities were chosen from areas that have the highest number of settlements
in the region, specifically the central valley and the vicinity of the region’s capital (see
Figure 1). Most of the communities were located within an elevation of 0–100 m above sea
level, except for two households in farm communities, which were at 100–200 m above sea
level [3,27]. Individual households within each community were selected randomly and
enrolled based on their willingness to participate in all components of the study, which
included rodent trapping, sampling of domestic animals, sampling of surface water sources
in the peri-domestic environment, and sampling of household members. Written informed
consent was obtained from each household member who provided a blood specimen for
serologic analysis and from the head of household who authorized rodent trapping and
the collection of blood samples from their domestic animals.
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Figure 1. Study area and distribution of leptospirosis seropositive (purple) and seronegative (blue)
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2.2. Data Collection

This research is a case study utilizing the One Health framework to investigate the
drivers of human Leptospira exposure in diverse community settings. The data collection
for the eco-epidemiology study was conducted between August 2010 and March 2012 and
involved 422 households from 12 communities, 4 of each community type. A questionnaire
survey was carried out to obtain information on socio-demographic characteristics, housing
conditions, the presence of animals, and to characterize each sample.

Leptospirosis status in people and domestic animals: Data available included the
Leptospira exposure status of 907 people. Household members 13 years old and older,
apparently healthy, who consented to participate provided a one-time serum sample to
measure Leptospira-specific antibodies. Dogs and livestock present at the residence were
also sampled to obtain serum for Leptospira antibody testing.

The microscopic agglutination test (MAT) with a panel of 20 serovars, representing
17 serogroups, was run on serum samples at Austral University, Chile (L. interrogans
serovars Australis, Bratislava, Autumnalis, Bataviae, Canicola, Djasiman, Grippotyphosa,
Icterohaemorrhagiae, Mankarso, Pomona, Pyrogenes, and Wolffi, L. borgpetersenii serovars
Ballum, Javanica, and Tarassovi, L. kirschneri serovar Cynopteri, L. santarosai serovars Borin-
cana, Alexi, and Georgia, and L. weilii serovar Celledoni) as described previously [26]. Titers
of 1:100 or higher were considered positive to classify each individual (people and animals)
as seropositive or seronegative for Leptospira. We calculated the cumulative number of
seropositive animals for cattle (bov_com_pos), sheep (ovi_com_pos), dogs (dog_com_pos), and
all animals (animal_pos_com) in each community.

Leptospirosis status in rodents: Trapped rodents were euthanized, and kidneys
were tested for the presence of Leptospira DNA using Polymerase Chain Reaction (PCR)
as previously described [22]. Test results were used to create a variable representing the
number of households within 100 m with positive rodents weighted inversely by the
distance from the house (distance_pos_rod).

Leptospira contamination in the peridomestic environment: Surface water samples
were collected from various sources and locations in the household environment and tested
for the presence of pathogenic Leptospira DNA using PCR as previously described [22].
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Results were then used to calculate variables that represent the proportion of positive
puddle samples in the community (puddle_pos), the proportion of positive samples con-
sidering all water source types (puddles, rivers, wells, ponds, etc.) in the community
(water_prev_com), and the number of households within 100 m with positive water samples
weighted inversely by distance from the house (distance_pos_water).

Participant characteristics: A questionnaire was used to collect individual socio-
demographic characteristics (age, sex) and behaviors that could expose people to Leptospira,
such as gardening (garden), swimming (swim), cleaning animal barns (clean_barn), cleaning
sewers (clean_drain), water drainage (clean_water_drain), slaughtering animals (slaughter),
milking (milking), and/or cleaning after animal birth (clean_birth).

Household animal characteristics: Rodent presence was obtained based on trapping
efforts as the number of rodents trapped at the household (rodent_count) and the total for
each community (rodent_count_comm), as previously described [22]. A questionnaire was
used to collect data on the reported presence of rodents (e.g., observing rodents, seeing
rodent droppings, seeing or smelling rodent urine, whether gnawed boxes, food, or wood
were found, holes in the walls were found, or hearing rodent noises) [22], as well as
domestic animal-related variables such as the total number of cattle, sheep, and dogs in the
household.

Spatial and environmental variables: Geospatial variables from multiple sources were
used to describe the environmental settings of each community. Details on how variables
were generated have been described previously [22,27]. Variables used for this analysis
included the number of houses within a 100-m radius (house) and the number of buildings
within a 100-m radius (buildings). Land cover was defined as the dominated terrain within
the surrounding radius and categorized as tree canopy (tree), lower vegetation (lowveg),
shrub (shrub), or barren space (field). Bioclimatic variables used in this study to represent the
climatic conditions of the study area (bio1, bio2, bio12, bio15) were collected from WorldClim
(worldclim.org, accessed on 23 October 2023) [28].

All human participants provided written consent to participate in this study, includ-
ing the disclosure of their domestic and livestock information. The study protocol was
approved by the University of Minnesota’s Institutional Review Board (No. 0903 M62042),
the Institutional Animal Care and Use Committee (No. 0904A63201), and the Austral
University’s Human and Animal Ethics Committee (No. 01/09). More details about
data collection can be found in [11,22,26,27]. See Table 1 for further information on data
descriptions and sources.

Table 1. Description and source of the variables included in the study.

Type Variable Name Description Source

Socio-demographic
and household
characteristics

sex Sex of the person

Questionnaire

age Age of the person (in years)

clean_barn Person cleans barns

clean_drain Person cleans drains in the field

slaughter Person butchers meat

milking Person milks cows

clean_birth Person cleans cow birth products

clean_water_drain Person cleans water drains

clean_field Person cleans fields

swim Person swims

season Sampling season

house Number of houses within 100-m radius Derived from worldview-2
satellite imagerybuildings Number buildings within 100-m radius
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Table 1. Cont.

Type Variable Name Description Source

Environmental

elev Altitude of sampled household

Derived from worldview-2
satellite imagery

FlowAcc
Difference in altitude compared with
surroundings (higher numbers mean

greater slope downward)

tree Square meters of tree-dominated
terrain within 100-m radius

lowveg
Square meters of lower-vegetation
terrain within 100-m radius (e.g.,
bushes and other short plants)

shrub Square meters of shrub-dominated
terrain within 100-m radius

wetland Square meters of wetland terrain
within 100-m radius

field Square meters of field terrain within
250-m radius

bio1 Annual mean temperature

worldclim.org, accessed on 23
October 2023

bio2 Mean Diurnal Range (mean of monthly
(max temp–min temp))

bio12 Annual Precipitation

bio15 Precipitation Seasonality (Coefficient of
Variation)

puddle_pos_com Proportion of Leptospira-positive
puddles in the community

Laboratory testing
water_prev_com

Proportion of Leptospira-positive water
samples in the community (all water

source types)

distance_pos_water

Number of households within 100 m
with Leptospira-positive water samples

weighted inversely by distance
from house

Derived from worldview-2
satellite imagery

Animal

rodent_count Number of rodents trapped in the
household Questionnaire

rod_pos Presence of Leptospira positive rodents
in the household Derived

rodent_count_com Number of rodents trapped in
the community Questionnaire

RodHHPrev Leptospira prevalence in rodents at
household level Derived

rodent_prev_com Leptospira prevalence in rodents in
the community Derived

distance_pos_rod

Number of households within 100 m
with Leptospira-positive rodents
weighted inversely by distance

from house

Derived from worldview-2
satellite imagery

spdiv Number of different domestic animal
species in the household Derived

bov_count Number of bovines in the household Questionnaire
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Table 1. Cont.

Type Variable Name Description Source

Animal

bov_pos Presence of seropositive bovines in
the household

Derived

BovHHPrev Leptospira seroprevalence in bovines at
household level

bov_com_pos Number of seropositive bovines in
the community

bov_com_prev Leptospira seroprevalence in bovines at
community level

ovi_count Number of ovines in
the household Questionnaire

ovi_pos Presence of seropositive ovines in
the household

Derived

OviHHPrev Leptospira seroprevalence in ovines at
household level

ovi_pos_com Number of seropositive ovines in
the community

OviComPrev Leptospira seroprevalence in ovines at
community level

dog_count Number of dogs in
the household Questionnaire

dog_pos Presence of seropositive dogs in
the household

Derived

DogHHPrev Leptospira seroprevalence in dogs at
household level

dog_com_pos Number of seropositive dogs in
the community

DogComPrev Leptospira seroprevalence in dogs at
community level

Anim_pos Presence of seropositive animals in
the household

AnimalHHPrev Leptospira seroprevalence in farm
animals at household level

animal_pos_com Number of overall seropositive farm
animals in the community

AnimCommPrev Leptospira seroprevalence in farm
animals at community level

2.3. Extreme Gradient Boosting Model

XGBoost is a high-performing gradient classification and regression boosting machine
learning algorithm that is widely used in epidemiology and disease ecology for tasks
such as predicting disease outbreaks, identifying risk factors, and modeling pathogen
transmission dynamics, demonstrating its effectiveness in handling complex biological
and environmental data [29–31]. XGBoost is an ensemble machine learning algorithm
that combines multiple weak learners, typically decision trees, to form a strong predictive
model [29,32]. The algorithm works by sequentially adding trees to minimize the errors of
the existing ensemble through gradient boosting. In each iteration, a new tree is trained
to correct the residuals (errors) of the previous trees, which helps in capturing complex
patterns in the data [29]. XGBoost employs regularization techniques such as L1 (Lasso)
and L2 (Ridge) to prevent overfitting, ensuring the model remains generalizable [31,32].
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The algorithm also uses advanced optimization methods like parallel tree construction
and efficient handling of missing data to enhance computational efficiency [30,31]. These
features make XGBoost particularly effective for handling large datasets with complex
relationships between features [31]. This method is well suited for our analysis because it
identifies complex and non-linear relationships among the drivers and Leptospira exposure
and adjusts the collinearity between the drivers [33].

We run separate XGBoost models for the three different community types. For each
model fitting, we randomly split the observations into training and testing sets under
the ratio of 80% and 20%. The training dataset was used to run the models and identify
the drivers, while the testing dataset was used to estimate the accuracy of the model.
Additionally, we utilized cross-validation to ensure that our model was not overfitting
and to validate the model’s performance across different subsets of data. This involved
partitioning the training data into multiple folds and training multiple models to evaluate
their consistency.

The performance of XGBoost can be sensitive to its hyperparameters [34]. After
splitting, we tuned a variety of hyperparameters to optimize the performance of the model.
A matrix of hyperparameters was provided by using the expand.grid function to find the best
combination of the hyperparameters [35]. Specifically, the maximum tree depth, learning
rate, and gamma were adjusted here, given that these variables generally exhibit the most
significant impact on model performance [36]. Furthermore, we accounted for unbalanced
classes, which refers to an imbalance between the number of positive and negative cases, by
adjusting the model parameter ‘scale_pos_weight’ [37]. This is estimated as the total number
of negative cases divided by the total number of positive cases (see Table 2 for detailed
information about the parameterization). The final XGBoost classification model was fitted
using those tuned hyperparameters. Early stopping was also implemented to prevent
overfitting by halting training once the model’s performance on the validation set stopped
improving. To account for stochasticity in the random split of training and testing sets in
model development, we performed 2000 iterations of our data splits and performed the
final splitting processes for them. This allowed us to use an ensemble modeling approach
that incorporated information and uncertainties from multiple random split scenarios and
created confidence intervals for evaluating the model and determining the importance of
the drivers.

Table 2. Parameters that were used to tune the models.

Parameter Description Range Interval

scale_pos_weight Weight of positive class to address class imbalance Neg/pos Fixed

nrounds Number of boosting rounds or iterations during the training process. 100–600 50

learning_rate Learning rate for gradient boosting 0–1 0.01

max_depth Maximum depth of the decision tree 0–10 1

min_child_weight Minimum sum of instance weight (Hessian) needed in a child 0–10 1

gamma Minimum loss reduction required to make a further partition on a leaf node 0–5 0.1

subsample Fraction of training data to randomly sample during training 0–1 0.1

colsample_bytree Fraction of features to be randomly sampled for each tree 0–1 0.1

objective Learning task and objective function (binary classification in this case) Binary:logistic

Max_delta_step Introduce an ‘absolute’ regularization, capping the weight before applying
ETA correction. 1–10 0.1

We also generated the variable importance (‘gain score’ represents how much a vari-
able contributes to enhancing the model’s predictions) for every model iteration and took
the average to show the most important drivers of leptospirosis in three community types
and the partial dependency plots to show the relationship between potential drivers and
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Leptospira exposure. To evaluate the performance of the final model, we used the area under
the receiver operating characteristics curve (AUC) value, which assesses how well the
model can distinguish positive and negative cases [38]. The XGBoost model development
and the associated analyses were performed using the “XGBoost” package in R version
4.3.1 [39,40].

3. Results
3.1. Seroprevalence of Leptospirosis

Evidence of Leptospira exposure was evident in all community types, with an overall
seroprevalence in people of 6.0%. Seroprevalence was also 6.0% for each community type,
while ranging by community from 3.7% to 10.3%. Leptospira occurrence was high, with
20.4% of rodent kidney carriers; 5.6% in urban slums; 19.7% in semi-rural areas; and 25.7%
in farm communities. Overall, 13.5% of water samples were classified as PCR-positive.
Among dogs owned by household members, 26.8% were seropositive, with a marked
increase in urban dogs (45.1%) compared with rural dogs (22.3%). Sheep and cattle were
the main livestock in the area, with overall seroprevalences of 16.5% and 31.2%, respectively
(Figure 2).

Overall, our study revealed varying seroprevalence in people across different de-
mographic and behavioral categories. Males exhibited a higher seroprevalence (6.5%)
than females (5.6%), while individuals engaging in swimming activities showed a higher
seroprevalence (6.8%) compared with non-swimmers (4.0%). People living in households
harboring positive rodents and dogs had greater seroprevalences (7.1% and 7.8%, re-
spectively) than those without such animals (5.0% and 5.6%, respectively). Additionally,
gardening and barn cleaning activities were associated with increased seroprevalence (6.7%
and 6.8%, respectively) compared with individuals who did not perform these tasks (4.1%
and 5.4%, respectively, missing % for those). People who reported activities involving
slaughtering and milking animals displayed higher seroprevalence (7.3% and 8.3%, re-
spectively) than those who did not (5.7% and 5.8%, respectively) (Table A1). Notably, the
lowest seroprevalence was observed among participants involved in sewage drain cleaning
activities (2.3%).

3.2. Urban Slum Community

The final XGBoost model for urban slum communities that was used to predict the
seropositive and seronegative participants for the testing data performs well with an
average AUC value of 95.09% (range: 87.08–98.36%). The most important drivers in urban
slum communities were the square meters of shrub terrain in a 100-m radius (shrub),
followed by age, and the number of houses in a 100-m radius (houses) (Figure 3A).

The probability of Leptospira exposure, in general, increases as the areas of shrub
terrain within a 100-m radius increase (Figure 4). Males have a higher probability of getting
exposed to Leptospira than females.

The probability of exposure is positively correlated with the number of houses in
a 100-m radius. Additionally, model results revealed that environmental drivers such
as areas of wetlands (wetland), tree terrain (tree), and low vegetation (lowveg) in a 100-m
radius can positively impact Leptospira exposure. The local ecology of Leptospira was
reflected in the relationship between the probability of human exposure and the number of
households within 100 m with positive water samples (distance_water_pos) and the number
of households within 100 m with positive rodents (distance_pos_rod) (Figure 4).

3.3. Semi-Rural Community

The AUC value from model performance for the model of semi-rural communities
was 88.27% (range: 82.63–90.04%). The most important drivers of Leptospira exposure in
semi-rural communities were age, slope of the terrain (FlowAcc), and tree and field areas
(Figure 3B). The probability of Leptospira exposure was higher among the youngest and
the oldest people, in particular those older than 60 years old (Figure 5). The probability
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of exposure increased when the slope of the terrain increased. There was a higher expo-
sure probability when there was high tree coverage, while this effect was opposite for
field area coverage.
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Figure 2. Leptospira positivity distribution in rodents (PCR kidney carriage positivity), domestic
animals (MAT seropositivity), water (PCR positivity), and people among MAT seropositivity (A) by
community type and (B) in each of the 12 communities, three within each community type. Darker
color in a bar represents the proportion of individuals with a MAT titer ≥ 1:400.
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Figure 3. Variable importance plot for the model results of the three community types: (A) urban
slums, (B) semi-rural, and (C) farm. Variables with more than a 2% importance frequency score
have been shown. The bars were color-coded for ease of interpretation of the overall trend in
the predicted relationship between each variable and human exposure probability across the three
different community types. Note that the relationship types depicted here were derived visually
from Figures 4–6 and were simplified to overall positive or negative, but actual relationships are
non-linear.

With a relatively low importance score, several animal-related drivers emerged in
the model (Figure 3B). Household seroprevalence of Leptospira in animals (AnimHHPrev),
trapped rodent count (rodent_count), and household seroprevalence of Leptospira in dogs
(DogHHPrev) were positively associated with exposure probability, while species diversity
(spdiv) was negatively associated. Exposure probability generally increased as the number
of households within 100 m with positive rodents (distance_pos_rod) increased (Figure 5).
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3.4. Farm Community

The XGBoost model showed high prediction of seropositive and seronegative individ-
uals with an AUC value of 91.74% (range: 84.56–95.13%). Slope of the terrain (FlowAcc),
low vegetation area (lowveg), and the number of households within 100 m with positive
water samples (distance_water_pos) were significantly affecting human Leptospira exposure
(Figure 3C). The probability of Leptospira exposure was positively correlated with terrain
slope and low vegetation and negatively correlated with the number of households within
100 m with positive water samples (Figure 6).

Other results showed that the exposure probability increased with the increasing
seroprevalence of Leptospira among animals in a household (AnimHHPrev), while species
diversity (spdiv), the number of dogs in the household (dog_count), and community-level
seroprevalence in animals (AnimCommPrev) were negatively associated with the probability
of Leptospira exposure. Age had a U-shape type of relationship, similar to the semi-rural
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community type, indicating a higher exposure probability for the younger and older
ages. For the number of households within 100 m with positive rodents (distance_pos_rod),
the relationship was variable, but it increased sharply when there were three or more
households within 100 m with positive rodents (Figure 6).
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4. Discussion

Leptospirosis, a zoonotic disease caused by the pathogenic spirochetes of the genus
Leptospira, poses significant public health challenges worldwide, especially in tropical
regions [41,42]. It is also present in temperate regions, and, using One Health principles,
our case study unveiled the intricate landscape of leptospirosis transmission across varied
community settings in Chile. We found distinct seroprevalences and risk factors associated
with demographic, behavioral, environmental, and animal-related variables in those com-
munities. Urban slum areas showed higher exposure probabilities linked to environmental
factors like shrub terrain and positive water samples, while semi-rural and farm communi-
ties exhibited different patterns influenced by age, household characteristics, and animal
prevalence. These findings shed light on the multifaceted nature of leptospirosis transmis-
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sion, informing targeted interventions for reducing human exposure and enhancing public
health efforts.

Our research combined data from systematic efforts to detect leptospirosis in humans,
animals, and the peri-domestic environment, unveiling the presence of Leptospira across
the distinct community types in the study area of Chile and with varying seroprevalences
among humans and domestic animals, rodent kidney carriages, and environmental contam-
ination. The overall 6% seroprevalence in humans is similar to several studies in Colombia
and Mexico in similar socio-economic settings [43–45]. Previous studies found that features
of inadequate living conditions such as dirt floors, proximity to sewage, and absence of
proper sanitation, as well as behavioral factors such as walking barefoot, having uncovered
wounds, and gathering firewood, are contributors to exposure [15]; however, our modeling
did not reveal any individual behaviors as significant risk factors. This may be because
disease transmission is primarily determined by the living environment, where external fac-
tors can have a more significant impact on disease spread, overshadowing the influence of
individual behaviors. It could also be because MAT antibodies are evidence of an exposure
in the past that may not be reflected in the behaviors reported in the survey. Based on our
overall descriptive analysis, males exhibited a higher seroprevalence (6.5%) compared with
females (5.6%), suggesting potential gender-specific differences in exposure or susceptibil-
ity to infection, which have often been reported in the existing literature [46–48]. However,
when analyzing by community type, our XGBoost models revealed contrasting effects, in
which men had a higher exposure probability than women in urban slum communities,
but women had a higher exposure probability than men in semi-rural communities. This
finding may reflect differences in behavioral patterns, occupational activities, or exposure
to contaminated environments between genders [49]. Models consistently revealed age
as an important factor, but with different relationships. There was a negative association
with age in urban slum communities, with a higher probability at younger ages, but it
was U-shaped in semi-rural and rural communities. The different trends could reflect
different demographics and associated activities in the communities. For example, study
participants from urban slum communities tended to be younger [50], and the higher
probability among this group could reflect their greater representation. In semi-rural and
rural areas, a higher exposure probability among the youngest (<40 years) and the oldest
(>60 years) ages could reflect common recreational, occupational, and domestic activities
with exposure to a contaminated environment or infected farm animals, such as swimming,
gardening, or livestock management. The high exposure probability among older adults
may also reflect a longer period at risk of becoming exposed.

Several environmental variables, such as shrub terrain, wetlands, tree terrain, lower
vegetation, and field terrain, showed an impact on the likelihood of Leptospira exposure,
suggesting the importance of considering landscape heterogeneity when assessing expo-
sure risk across different types of communities. The identified positive correlation with
vegetation covers surrounding households, such as the presence of trees and lower vege-
tation (i.e., bushes) in all community types and shrubs in urban communities, highlights
the interconnectedness of wildlife habitats and leptospirosis risk [51]. Those land covers
can act as critical habitats for wildlife reservoirs, notably rodents, increasing the likelihood
of human–animal contact and subsequent disease transmission [52–54]. Additionally, the
shaded, humid conditions under vegetation cover can modify microclimatic conditions
by trapping and retaining moisture in the soil, creating damp conditions that are ideal
for the survival of Leptospira outside of its hosts. This extended survival in moist soil
increases the duration during which humans can encounter Leptospira, further facilitating
transmission [51,55,56]. Furthermore, the presence of wetlands was positively associated
with the likelihood of exposure in semi-rural and farm communities, which is consistent
with the notion that they can act as reservoirs for Leptospira [53,55], facilitating its survival
and dissemination through water-borne transmission [5,52]. The presence of open fields
can also be a contributing factor because it can lead to trash accumulation, attract dogs
and rodents, and provide standing water. This factor manifested differently as it was
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positively correlated with the probability of exposure in urban slums; however, the pattern
was different for semi-rural and farm communities, likely due to interactions with other
vegetation features and the built-in environment. It is widely recognized that downward
slopes enhance surface water flow, leading to the accumulation of stagnant water bodies
and moist soil ideal for Leptospira survival [48]. The flow accumulation variable used in
this analysis was found to be important in the three community types. Derived from slope
data, this variable aimed to capture land features that facilitate water movement downhill
during rainfall or flooding, which results in the resuspension of Leptospira present in the soil
and sediment, leading to areas with high environmental contamination and high exposure
risk [57].

Leptospirosis has been associated with urbanization, in which the conditions of high-
density, low-income housing are highly suitable for Leptospira contamination and transmis-
sion [58–61]. This effect of high-density housing was evident across all three community
types when measured by the number of houses in a 100-m radius. Additionally, the number
of households within a 100-m radius with water samples positive for pathogenic Leptospira
emerged as a factor positively associated with exposure risk for the urban slum community
type, further supporting the idea of exposure risk from a Leptospira-contaminated peri-
domestic environment in these vulnerable communities [62,63]. However, this relationship
differed in semi-rural and farm community types when exposure risk was the highest and
there were few houses with positive water samples in the immediate vicinity. This could
be an effect of water sources, which are often shared or communal, making contamina-
tion more widespread, or that rural households have greater exposure to environmental
factors such as open fields or livestock, making localized household contamination less rel-
evant [64]. Additionally, mobility patterns and water usage behaviors in rural communities
might lead to a mismatch between household proximity to contaminated water and actual
exposure risk [65].

Although animal-related variables were present across all communities, these variables
were more evident in semi-rural and farm communities. The variable measuring the
number of houses with Leptospira-positive rodents in the surrounding area was found
to impact exposure risk in all three types of communities. There was a clear positive
trend in urban slum communities, which is consistent with the findings regarding water
sample contamination. This is also consistent with the general knowledge that synanthropic
rodents are ubiquitous reservoirs of Leptospira [51]. Although there was a lower importance
level in the model results than other variables, dog household seroprevalence in semi-
rural communities was associated with increased exposure risk. Dogs are recognized
reservoir hosts for leptospirosis, capable of shedding the bacterium in their urine and
contaminating the environment [66]. The often limited access to veterinary care and
vaccination in low-resource settings leads to underdiagnosis and untreated cases [67,68].
A high seroprevalence of Leptospira in dogs within households could be correlated to an
increased likelihood of human exposure because of transmission from the dogs or a dog-
contaminated environment. Alternatively, both dogs and people could be subject to similar
sources of Leptospira. Although also of low importance in the modeling results, it is worth
noting that the seroprevalence of Leptospira in all farm animals within the household was
positively associated with exposure risk in semi-rural and farm communities. Households
in these communities had a variety of livestock, such as cattle, sheep, and pigs, which
can contribute to environmental contamination and pose a risk to household members
through occupational and/or domestic activities [69–71]. The variable could represent an
overall measurement of the underlying Leptospira exposure risk at the household level. The
inverse relationship observed between increasing species diversity and Leptospira exposure,
more importantly in rural communities, may reflect several ecological and epidemiological
factors. A low diversity of domestic animal species in the farm system investigated here
could indicate a higher abundance of more competent hosts that contribute to increased
transmission and a higher likelihood of human exposure [54]. This association could also
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be the result of farm management practices and other activities correlated with both the
likelihood of exposure to people and species diversity.

Our study has several limitations. Firstly, the cross-sectional nature of the study design
limits our ability to capture the temporal change in the relationship between identified
risk factors and Leptospira exposure in community participants. Leptospirosis status in the
community participants was measured using the presence of antibodies, which indicate
an exposure sometime in the past. Although the populations in the study communities
were stable regarding time of residence in the sampled locations, some of the factors
may not reflect the same conditions as the time of exposure. Additionally, the use of
self-reported data and reliance on the recall of the participants may have introduced
information bias into reported behaviors. Furthermore, the multi-strain and multi-host
transmission dynamics of Leptospira are complex, but our study focused solely on the
broad relationships between various eco-epidemiological drivers and human exposure.
We were not able to investigate the underlying mechanisms or pathways of transmission
or how drivers may interact with one another to influence exposure risk. However, the
benefit of using cross-sectional sampling, as shown in this case study, is that it allows
for a cost-efficient, comprehensive investigation and is particularly useful as an initial
approach in areas with limited knowledge of the leptospirosis situation. The findings can
then generate hypotheses for future research incorporating longitudinal study designs with
incidence cases and genomic approaches for strain identification in humans, animals, and
the environment to provide insights into the transmission dynamics of leptospirosis. Lastly,
all the data used for this case study were collected during the same time period, which
allows for inferences about the observed relationships at that time; however, the findings
may not reflect the current situation in the study area.

5. Conclusions

Across urban slums, semi-rural, and farm communities, the overall human sero-
prevalence by community type was similar; however, our study results show the intricate
interplay between environmental, socio-demographic, and animal-related factors in shap-
ing leptospirosis transmission dynamics across these different community types. In urban
slum areas, densely populated environments and altered landscapes contribute to disease
risk, with environmental and rodent-related factors driving the transmission. Similarly,
semi-rural communities exhibit complex interactions between environmental features and
animal-related variables influencing exposure probability. In contrast, farm communities
present unique challenges characterized by the coexistence of agricultural practices and
human habitation. Here, environmental factors interact with the presence of livestock to
shape disease dynamics. Emphasizing a One Health approach that recognizes the intercon-
nectedness of human, animal, and environmental health is paramount to addressing the
complex nature of leptospirosis transmission. The case study presented here is an example
of the integration of efforts across disciplines for data collection at the human–environment–
animal interface and novel methods such as machine learning for the analysis of complex
data. Adopting a holistic approach that considers the health of humans, animals, and
ecosystems is essential for achieving sustainable disease control and ensuring the health
and prosperity of communities worldwide.
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Appendix A

Table A1. Seroprevalence of Leptospirosis in different demographic and behavioral factors.

Variables Number of Participants MAT Positive Seroprevalence (%) 95% CI

Sex of the person
Male 387 25 6.46 4.22–9.39

Female 520 29 5.57 3.77–7.91
Person swim

Yes 629 43 6.84 4.99–9.09
No 278 11 3.96 1.99–6.97

Positive rodents in the household
Yes 407 29 7.13 4.82–10.07
No 500 25 5.00 3.26–7.29

Positive dogs in the household
Yes 128 10 7.81 4.13–7.51
No 779 44 5.64 3.81–13.90

Positive cattles in the household
Yes 299 16 5.35 3.09–8.54
No 608 38 6.25 4.46–8.48

Positive sheep in the household
Yes 282 13 4.61 2.48–7.75
No 625 41 6.56 4.75–8.79

Work in garden
Yes 269 11 4.09 2.06–7.20
No 638 43 6.73 4.92–8.97

Clean barn
Yes 337 23 6.82 4.37–10.06
No 570 31 5.44 3.73–7.63

Clean sewage drains
Yes 46 1 2.27 0.05–11.53
No 861 53 6.15 4.64–7.97

Person slaughters animals
Yes 123 9 7.31 3.40–13.43
No 784 45 5.74 4.22–7.60

Person milks animals
Yes 48 4 8.33 2.32–19.98
No 859 50 5.82 4.35–7.60

Clean animal at birth
Yes 96 5 5.21 1.71–11.73
No 811 49 6.04 4.50–7.91
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