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Abstract: Bile acids (BAs) play a crucial role in the human body’s defense against infections caused by
bacteria, fungi, and viruses. BAs counteract infections not only through interactions with intestinal
bacteria exhibiting bile salt hydrolase (BSH) activity but they also directly combat infections. Building
upon our research group’s previous discoveries highlighting the role of BAs in combating infec-
tions, we have initiated an in-depth investigation into the interactions between BAs and intestinal
microbiota. Leveraging the existing literature, we offer a comprehensive analysis of the relationships
between BAs and 16 key microbiota. This investigation encompasses bacteria (e.g., Clostridioides diffi-
cile (C. difficile), Staphylococcus aureus (S. aureus), Escherichia coli, Enterococcus, Pseudomonas aeruginosa,
Mycobacterium tuberculosis (M. tuberculosis), Bacteroides, Clostridium scindens (C. scindens), Streptococcus
thermophilus, Clostridium butyricum (C. butyricum), and lactic acid bacteria), fungi (e.g., Candida albicans
(C. albicans) and Saccharomyces boulardii), and viruses (e.g., coronavirus SARS-CoV-2, influenza virus,
and norovirus). Our research found that Bacteroides, C. scindens, Streptococcus thermophilus, Saccha-
romyces boulardii, C. butyricum, and lactic acid bacteria can regulate the metabolism and function of
BSHs and 7α-dehydroxylase. BSHs and 7α-dehydroxylase play crucial roles in the conversion of
primary bile acid (PBA) to secondary bile acid (SBA). It is important to note that PBAs generally
promote infections, while SBAs often exhibit distinct anti-infection roles. In the antimicrobial action
of BAs, SBAs demonstrate antagonistic properties against a wide range of microbiota, with the
exception of norovirus. Given the intricate interplay between BAs and intestinal microbiota, and their
regulatory effects on infections, we assert that BAs hold significant potential as a novel approach for
preventing and treating microbial infections.
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1. Introduction

The modulation of BAs in mammalian systems constitutes an intricate procedure,
jointly orchestrated by the liver, intestines, and intestinal microbiota [1]. PBAs, predom-
inantly comprising cholic acid and chenodeoxycholic acid (CDCA) [2], are largely reab-
sorbed within the enterohepatic circulation. These are subsequently converted by the
intestinal microbiota, yielding SBAs, largely comprising lithocholic acid (LCA) and ur-
sodeoxycholic acid (UDCA) [3,4]. In this metabolic cascading, enzymes engendered by the
intestinal microbiota, particularly BSHs mediated by the bile salt hydrolase (BSH) gene and
7α hydroxylase facilitated by the bai operon, assume a pivotal role [5–10].

Both BAs and intestinal microbiota emerge as keystones in host metabolism, wherein
their synthesized or regulated metabolites frequently function as signaling molecules,
precluding the colonization of pathogens within the host [5,11].

The changes in the concentration and composition of intestinal BAs are not only pivotal
in affecting the growth and colonization of various pathogens but also play a significant
role in the mechanisms of disease prevention and pathogenesis [11,12]. Some studies
have found that PBAs and SBAs play a vital role in maintaining intestinal homeostasis
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and combating infections [13–15]. For example, PBAs have been shown to facilitate the
germination of C. difficile spores, while SBAs play a role in inhibiting its proliferation [16].
Interestingly, alterations in the intestinal microbiota significantly affect the host’s health and
disease progression by profoundly influencing BAs’ conversion dynamics [17,18]. A wide
array of intestinal microbiota exhibit BSH activity, which plays a crucial role in maintaining
the balance of BA pools [9,10,19–23]. Moreover, the association between BSH activity
and various health conditions, such as obesity, cancer, and inflammatory bowel disease,
has become a burgeoning research hotspot [24–30], and BSHs are emerging as potential
therapeutic targets for metabolic diseases [31–35].

Recent studies have highlighted the critical role of the bai operon-mediated 7α-
dehydroxylation reaction in the intestinal microbiota, predominantly carried out by mem-
bers of Clostridium cluster XIVa, particularly Clostridium hiranonis and C. scindens [36]. The
bai operon consists of eight genes: seven encode enzymes and the eighth, baiG, encodes a
transporter. This operon is conserved in every bacterial species known to 7α-dehydroxylate
PBA, and its gene products are linked to specific steps in the pathway. The operon includes
genes such as baiB, baiCD, baiA2, baiE, baiF, baiH, and baiI, each playing a unique role
in the conversion of cholic acid to deoxycholic acid. The pathway involves both oxida-
tive and reductive steps, with enzymes BaiB, BaiCD, BaiA2, BaiE, BaiF, and BaiH being
necessary and sufficient for the complete conversion process [37]. This conversion not
only increases the hydrophobicity of BAs but also triggers significant biological effects,
including alterations in intestinal permeability, antibiotic biosynthesis, and activation of the
Farnesoid X Receptor (FXR) [38–40]. The bai operon has shown effectiveness in reducing
intestinal inflammation [41]. Furthermore, C. scindens, equipped with the bai operon, has
demonstrated promise in combating C. difficile infections [42].

Among the diverse intestinal microbiota, Firmicutes, Lactobacillus, Bifidobacterium,
Enterococcus, Clostridium, Corbacteriaceae, Ruminococcaceae, and Clostridiaceae exhibit BSH
activity [36,43–45], while Clostridium cluster XIVa, particularly Clostridium hiranonis and
C. scindens, as well as Eubacterium and Peptostreptococcus, possess 7α-dehydroxylase activ-
ity [36,37,46]. They are crucial for BA metabolism and maintaining intestinal homeostasis.

The dynamic interaction between BAs and the intestinal microbiota not only leads
to changes in BA pools but also allows BAs to influence the structural composition of
the intestinal microbiota [47]. Although earlier research focused on the interactions of
PBAs or SBAs with specific intestinal microbiota, the transformation of PBAs to SBAs is an
ongoing process facilitated by intestinal microbiota exhibiting BSH activity [48]. Increasing
evidence suggests that the structure and function of the intestinal microbiota can exert
long-lasting impacts on the host [49,50]. This review aims to offer a comprehensive explo-
ration of the interactions between BAs and key intestinal microbes from the perspective
of the intestinal microbiota. In the current era of widespread antibiotic use and rising
microbial resistance [51], the role of BAs as preventive and therapeutic agents is becoming
increasingly important.

2. Regulatory Mechanisms of BAs in Maintaining Intestinal Homeostasis and
Counteracting Infections

BAs play a pivotal role in regulating intestinal homeostasis [52]. Some studies have
shown that BAs can enhance intestinal epithelial permeability, thereby increasing sus-
ceptibility to infections [53]. Interestingly, natural BAs have demonstrated significant
antimicrobial properties against a variety of organisms including bacteria, parasites, and
fungi [54–57]. That is because the roles of PBAs and SBAs are different. For instance,
PBAs like taurocholic acid (TCA) can promote C. difficile proliferation and facilitate C. al-
bicans colonization [12,28,58–60]. In contrast, SBAs such as taurodeoxycholic acid can
mitigate sepsis-induced intestinal inflammation, and deoxycholic acid and LCA encourage
C. scindens proliferation and inhibit C. difficile spore germination [61–64]. These diverse
effects could be attributed to specific BA species, the unique receptors they activate, and
their interactions with intestinal microbiota.
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BAs interact with various cellular receptors, including FXR, TGR5 (Takeda G Protein-
Coupled Receptor 5), Pregnane X Receptor, Sphingosine-1-Phosphate Receptor 2, and
Vitamin D Receptor. FXR is activated primarily by CDCA. FXR activation strengthens
the intestinal barrier, influences microbial community composition, and modulates in-
flammatory responses [65–67]. Moreover, FXR promotes the proliferation of regulatory T
cells, enhancing their antiviral capabilities [68–70]. Taurodeoxycholic acid-induced TGR5
activation, which can reduce cAMP levels, inhibit the Myosin Light-Chain Kinase pathway
and thus mitigate Escherichia coli epithelial barrier damage [71,72]. Other receptors such as
Sphingosine-1-Phosphate Receptor 2, Pregnane X Receptor, and Vitamin D Receptor also
play important roles in inflammatory response modulation when activated by BAs [73,74]
(Figure 1).
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Figure 1. The mechanism of BAs regulating infection. BAs (A) regulate the abundance of intestinal
microbiota. PBAs (B) promote pathogen proliferation and (C) increase intestinal epithelial permeabil-
ity. SBAs (D) exhibit anti-inflammatory effects; (E) inhibit pathogen proliferation; and (F) strengthen
intestinal barrier function. BA: bile acid; PBA: primary bile acid; SBA: secondary bile acid.

2.1. BAs and Fungi
2.1.1. Interactions between BAs and Candida albicans

C. albicans, an opportunistic fungus, primarily originates from its endogenous popula-
tions in the gastrointestinal tract [75–81]. C. albicans frequently causes invasive infections,
particularly in immunocompromised individuals or in those with dysbiosis of the intestinal
microbiota [58,78,82–85].

TCA, a primary bile acid, can modulate immune responses and microbial balance
within the intestine, promoting the colonization and spread of fungi like C. albicans [86].
Specifically, TCA has been shown to suppress key immune molecules, such as angiogenin-4
and CX3CR1, which are crucial for maintaining intestinal barrier integrity [87–89]. Addi-
tionally, TCA is associated with reduced expression of tight junction proteins [90–92]. This
may promote an increase in pathogen proliferation like C. difficile and facilitate C. albicans
over-colonization [28,93–96]. In contrast, SBA, specifically LCA and DCA, can prevent
C. albicans from transitioning from yeast to its virulent hyphal form and from its planktonic
to biofilm phase, thereby restricting its proliferation in the intestine [96]. Additionally, SBAs
can directly exhibit antimicrobial activity against C. albicans [96].
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During mouse experiment investigations into intestinal microbiota composition fol-
lowing C. albicans infection, there was an increase in Bacteroides, Proteobacteria, Pseudomonas,
and Enterococcus levels, while Firmicutes levels decreased [97,98]. These changes may facili-
tate enhanced C. albicans colonization by altering BSH activity and SBA concentrations in
the intestine. Moreover, TCA supplementation can heighten C. albicans’s invasiveness and
virulence by increasing specific bacterial populations, like enterohemorrhagic Escherichia
coli [93] (Figure 2).

Pathogens 2024, 13, x FOR PEER REVIEW 4 of 24 
 

 

C. albicans over-colonization [28,93–96]. In contrast, SBA, specifically LCA and DCA, can 
prevent C. albicans from transitioning from yeast to its virulent hyphal form and from its 
planktonic to biofilm phase, thereby restricting its proliferation in the intestine [96]. Ad-
ditionally, SBAs can directly exhibit antimicrobial activity against C. albicans [96]. 

During mouse experiment investigations into intestinal microbiota composition fol-
lowing C. albicans infection, there was an increase in Bacteroides, Proteobacteria, Pseudomo-
nas, and Enterococcus levels, while Firmicutes levels decreased [97,98]. These changes may 
facilitate enhanced C. albicans colonization by altering BSH activity and SBA concentra-
tions in the intestine. Moreover, TCA supplementation can heighten C. albicans’s invasive-
ness and virulence by increasing specific bacterial populations, like enterohemorrhagic 
Escherichia coli [93] (Figure 2). 

 
Figure 2. Interactions between BAs and Candida albicans. PBAs (A) reduce the tight junction proteins 
in the intestine; (B) inhibit the production of immune active substances angiogenin-4 and CX3CR1; 
(C) and increase the abundance of enterohemorrhagic Escherichia coli. SBAs (D) inhibit the transition 
of C. albicans from yeast to virulent hyphal form and from planktonic to biofilm phase and (E) direct 
antimicrobial activity against C. albicans. C. albicans (F) reduces the abundance of intestinal bacteria 
exhibiting BSH activity. PBA: primary bile acid; SBA: secondary bile acid; BSH: bile salt hydrolase; 
C. albicans: Candida albicans. 

2.1.2. Interactions between BAs and Saccharomyces boulardii 
Saccharomyces boulardii CNCM I-745 (SB) has been shown to effectively mitigate the 

risk of C. difficile enteritis following antibiotic therapy in a clinical randomized controlled 
trial [99,100]. Central to the protective mechanism of SB is its ability to inhibit bacterial 
proliferation while rapidly restoring the balance of the intestinal microbiota [101]. In de-
tail, SB can not only thwart bacterial adhesion but can also accelerate the neutralization of 
enteric toxins and bolster the immune response within the intestinal mucosa [102–104]. 
Furthermore, research involving healthy volunteer cohorts has illuminated that SB can 
safeguard the health of the intestine by promoting the proliferation of microbiota with 
BSH activity [28]. Complementing this, in vitro studies have also discovered that SB can 
hinder the germination of C. difficile spores [105–107]. 

  

Figure 2. Interactions between BAs and Candida albicans. PBAs (A) reduce the tight junction proteins
in the intestine; (B) inhibit the production of immune active substances angiogenin-4 and CX3CR1;
(C) and increase the abundance of enterohemorrhagic Escherichia coli. SBAs (D) inhibit the transition
of C. albicans from yeast to virulent hyphal form and from planktonic to biofilm phase and (E) direct
antimicrobial activity against C. albicans. C. albicans (F) reduces the abundance of intestinal bacteria
exhibiting BSH activity. PBA: primary bile acid; SBA: secondary bile acid; BSH: bile salt hydrolase; C.
albicans: Candida albicans.

2.1.2. Interactions between BAs and Saccharomyces boulardii

Saccharomyces boulardii CNCM I-745 (SB) has been shown to effectively mitigate the
risk of C. difficile enteritis following antibiotic therapy in a clinical randomized controlled
trial [99,100]. Central to the protective mechanism of SB is its ability to inhibit bacterial
proliferation while rapidly restoring the balance of the intestinal microbiota [101]. In detail,
SB can not only thwart bacterial adhesion but can also accelerate the neutralization of
enteric toxins and bolster the immune response within the intestinal mucosa [102–104].
Furthermore, research involving healthy volunteer cohorts has illuminated that SB can
safeguard the health of the intestine by promoting the proliferation of microbiota with BSH
activity [28]. Complementing this, in vitro studies have also discovered that SB can hinder
the germination of C. difficile spores [105–107].

2.2. BAs and Bacteria
2.2.1. Interactions between BAs and Clostridioides difficile

C. difficile is a Gram-positive bacterium. C. difficile can produce two major protein
toxins, TcdA and TcdB, which can disrupt host–cell signaling pathways and lead to apopto-
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sis [108]. In clinical settings, C. difficile infections can range from mild diarrhea to severe
pseudomembranous colitis [109].

In the lifecycle of C. difficile, BAs play a regulatory role [110,111]. Some studies have
identified that BAs can affect the proliferation of C. difficile by influencing both the structural
and functional aspects of the TcdB toxin [97,112]. In addition, C. difficile spores can detect
specific BAs as environmental cues in the gastrointestinal tract and initiate germination
processes [109,113,114]. Specifically, TCA, a primary bile acid, has been implicated in
facilitating the in vitro germination of C. difficile spores, which can promote the subsequent
release of toxins [115]. Conversely, SBAs like LCA and deoxycholic acid are known to
inhibit the growth and toxic effects of C. difficile [110,116,117]. This inhibition includes
(1) the activation of BA receptors such as FXR and TGR5 by SBAs, which enhances the
innate immune response and inhibits C. difficile proliferation through signaling pathways,
notably NF-κB [118], and (2) the direct interaction of SBAs with the C-terminal region of
TcdB, leading to conformational changes in the toxin and preventing its binding and toxic
effects on host cells [119] (Figure 3).
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Figure 3. Interactions between BAs and Clostridioides difficile. PBAs (A) promote the spore germination
of C. difficile. SBAs (B) bind to FXR and TGR5 receptors, activating NF-κB and other signaling
pathways, enhancing innate immunity, and inhibiting the growth of C. difficile, and (C) interact with
the C-terminus of toxin TcdB directly, inducing toxin structural changes, and preventing toxin binding
with host cells. C. difficile (D) promotes the release of C. difficile toxins TcdA and TcdB and (E) induces
intestinal inflammation. PBA: primary bile acid; SBA: secondary bile acid; FXR: Farnesoid X Receptor;
TGR5: Takeda G Protein-Coupled Receptor 5; C. difficile: Clostridioides difficile.

2.2.2. Interactions between BAs and Staphylococcus aureus

S. aureus, a Gram-positive bacterium, presents significant clinical management chal-
lenges, which are exacerbated by indiscriminate antibiotic use [120]. Recent studies, though
limited in number, with only two studies identified so far, have begun to elucidate the
significant role of SBAs in the response to S. aureus infections.

Deoxycholic acid, a secondary bile acid, has been observed to promote the repair of
tight junction proteins in the blood–milk barrier and substantially reduce the expression
of inflammation-associated markers in mouse experiments involving S. aureus-induced
mastitis [8,120]. Furthermore, deoxycholic acids can also alleviate S. aureus-induced en-
dometritis discovered in Hu J’s studies [121]. Their protective effects are thought to stem
from deoxycholic acid’s influence on the TGR5/PKA-NF-κB-NLRP3 inflammasome signal-
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ing axis [122]. However, deoxycholic acid does not directly suppress the proliferation of
S. aureus [8].

Additionally, studies indicate that an imbalance in intestinal microbiota leads to an
exacerbated response to mastitis in mouse experiments challenged with S. aureus, thereby
intensifying the clinical symptoms [123,124]. Remarkably, supplementing the intestinal
microbiota of infected mice with BSH-active organisms, such as C. scindens, significantly
reduces the inflammatory response to mastitis [8].

2.2.3. Interactions between BAs and Enterococci

In the gastrointestinal tract, Enterococcus faecalis (E. faecalis) is a commensal bacterium.
However, under conditions of intestinal microbiota dysbiosis, E. faecalis may transition to
a pathogenic state, particularly in elderly or immunocompromised individuals [125–127].
Recent clinical studies have elucidated that the elevation of deoxycholic acid levels or
a reduction in TCA levels can effectively curtail the proliferation of E. faecalis. Further
research suggests that deoxycholic acid’s growth-inhibitory effect on E. faecalis could be
due to its impact on the expression of various ribosomal protein genes [128].

Vancomycin-resistant enterococci (VRE) present significant challenges in clinical set-
tings due to their antibiotic resistance. The formation of biofilms is critical for the colo-
nization of enterococci in various host environments [129]. Rahman’s study has revealed
that LCA can curtail the growth of VRE by maintaining VRE in a diplococcal state and
inhibiting the morphological transformation of VRE. Additionally, LCA exposure induces
genetic mutations in VRE that result in persistent diplococcal morphology and reduced
biofilm production [130] (Figure 4B–D).
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Figure 4. Interactions between BAs and Enterococci and other pathogenic bacteria. PBAs (A) regulate
the synthesis of virulence-related metabolites, such as the iron chelator pyochelin, thereby affecting
Pseudomonas aeruginosa’s toxicity, and inhibit its biofilm formation. SBAs (B) inhibit the expression
of ribosomal protein genes, suppressing the growth of E. faecalis; (C) maintain VRE in a diplococcal
state and inhibit the morphological transformation of VRE; (D) inhibit the formation of VRE biofilms;
(E) optimize the structure of the intestinal microbiota; (F) increase TGR5 transcription, thereby
enhancing innate immunity, and strengthen the intestinal barrier; and (G) disrupt the cell wall of
lipid-rich M. tuberculosis. ESBL-EAEC (H) reduces the abundance of intestinal bacteria exhibiting
BSH activity. PBA: primary bile acid; SBA: secondary bile acid; VRE: vancomycin-resistant enterococci.
TGR5: Takeda G Protein-Coupled Receptor 5.
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2.2.4. Interactions between BAs and Other Bacteria (Extended-Spectrum
Beta-Lactamase-Resistant Escherichia coli, Mycobacterium tuberculosis, Pseudomonas
aeruginosa, etc.)

The overuse of antibiotics has led to a widespread increase in the prevalence of
extended-spectrum beta-lactamase-resistant Escherichia coli (ESBL-EAEC). The pathological
hallmarks of ESBL-EAEC infection include inflammation, epithelial cell exfoliation, and
compromised epithelial barrier functionality [131]. UDCA, a secondary bile acid, has
shown significant inhibitory effects on ESBL-EAEC in mouse experiments. In the context
of ESBL-EAEC infection, a notable reduction in the abundance of key intestinal microbial
families with BSH activity such as Corbacteriaceae, Ruminococcaceae, and Lachnospiraceae
has been observed. However, this change is effectively countered by UDCA treatment by
repairing microbial imbalances [44]. Moreover, UDCA enhances tight junction function-
ality by upregulating TGR5 transcription and inhibiting IκB α phosphorylation [14,132]
(Figure 4E,F,H).

M. tuberculosis, the causative agent of tuberculosis, shows a unique susceptibility
pattern in the gastrointestinal tract [133]. Regions with lower BA concentrations, such as
the terminal ileum and cecum, are more susceptible to intestinal tuberculosis [134]. BAs
like CDCA, deoxycholic acid, and cholic acid have demonstrated inhibitory effects on the
proliferation of M. tuberculosis. This inhibition could be due to the detrimental impact of
BAs on the distinctive lipid-rich cell wall of M. tuberculosis [135] (Figure 4G).

Pseudomonas aeruginosa is known for its diverse infection profiles [136]. Surprisingly,
TCA, as a primary bile acid, demonstrates a significant inhibitory effect on Pseudomonas
aeruginosa. In detail, TCA is particularly effective in inhibiting biofilm formation and
dispersing existing biofilms [137,138]. This effect is believed to originate from TCA’s mod-
ulation of Pseudomonas aeruginosa’s virulence factors, including its impact on metabolites
like the siderophore pyochelin, thereby altering its toxicity and biofilm dynamics [139]
(Figure 4A).

Moreover, BAs influence various other pathogenic bacteria. For example, deoxycholic
acid has been shown to induce the transcription of genes involved in DNA repair and
recombination in response to infections by bacteria such as Escherichia coli, Salmonella
enterica serovar Typhimurium, Bacillus cereus, and Listeria monocytogenes [140]. However,
BAs also have a dual role; their presence has been linked to increased virulence in Shigella
dysenteriae, promoting infection [141].

2.2.5. Interactions between BAs and Bacteroidetes

The Bacteroidetes phylum significantly contributes to gastrointestinal health and the
prevention of infections [142]. It has been reported that Bacteroides thetaiotaomicron (B.
thetaiotaomicron), Bacteroides ovatus, and Bacteroides fragilis can alleviate colitis in mouse
experiments by promoting the production of SBAs to inhibit the proliferation of C. diffi-
cile [143–146].

In related research, the Bacteroides dorei strain (BDX-01) and its therapeutic effects
were investigated in a colitis mouse model by regulating BA metabolism, indicated by
changes in total fecal BA levels and BA ratios, and by affecting the FXR-NLRP3 inflam-
masome signaling pathway, which led to reduced proinflammatory cytokine expression
and diminished IL-1β secretion in the colon, thereby mitigating DSS-induced experimental
colitis [9,147–151].

However, a potential adverse role of Bacteroides fragilis NCTC9343 in gastrointestinal
health has been revealed, particularly concerning their BSH activity [152]. Elevated BSH
gene expression in colonizing Bacteroidetes strains can lead to an increased influx of
BAs, which may activate signaling pathways like WNT/β-catenin and NF-κB, resulting
in oxidative DNA damage and enhanced cellular proliferation, eventually exacerbating
colorectal cancer progression in mouse experiments [9,34,153] (Figure 5).
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mitigating experimental colitis. PBA: primary bile acid; SBA: secondary bile acid; BSH: bile salt
hydrolase; FXR: Farnesoid X Receptor.

2.2.6. Interactions between BAs and Clostridium scindens

C. scindens harbors a bile acid-inducible operon, the bai operon [61]. This operon is
essential for the synthesis of SBAs by regulating the expression of 7α-dehydroxylase [7,62].
Some studies have discovered that C. scindens plays a crucial role in preventing the
colonization and proliferation of C. difficile [41]. In cases of acute C. difficile infection, a
marked decrease in both BSH and 7α-dehydroxylase expression is observed in the cecal
contents of mice, aligning with reduced gene expressions in the Lachnospiraceae and
Clostridiaceae families [154]. However, introducing C. scindens into the gut of mice with
acute C. difficile infection significantly enhances intestinal health. Particularly, C. scindens
has been shown to suppress TcdA/TcdB toxin production by C. difficile and reduce its
overall count by inhibiting biofilm formation [41,110,155,156]. Therefore, the synergistic
action of SBAs and C. scindens is increasingly recognized as a critical strategy in countering
intestinal colonization by this pathogenic bacterium [157] (Figure 6).

2.2.7. Interactions between BAs and Clostridium butyricum

C. butyricum can modulate lipid metabolism by influencing the BA profile within
the liver and ileum [158,159]. Research has shown that C. butyricum supplementation
can reshape the intestinal microbiota composition and BA distribution of intrauterine
growth-restricted piglets, thereby optimizing their lipid metabolism. At the same time,
it significantly reduces the abundance of specific intestinal microbiota Streptococcus and
Enterococcus in the ileum of these piglets, leading to an increase in conjugated bile acid
(CBA). This increase in CBA, which can be derived from both PBAs and SBAs through
conjugation with amino acids like glycine or taurine, activates key liver receptors, such as
liver X receptor α (LXRα) and FXR, which are crucial for reducing inflammatory responses
and protecting normal liver function [107,160–167].
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Specially, C. butyricum strain CCFM1299 administration leads to a significant increase
in UDCA levels in feces and taurocholic acid levels in serum, thereby activating TGR5 and
inhibiting FXR, subsequently enhancing GLP-1 production in the intestine, which helps
regulate blood sugar and reduce obesity. This effect has been observed in experiments
using a high-fat diet mouse model [168–171]. Furthermore, C. butyricum reshapes the
microbiota by increasing butyric acid levels, maintaining SBA balance, and attenuating the
inhibitory effects of the FXR/SHP pathway on lipid synthesis [172]. And it also activates
the butyrate/GPR43 pathway, reducing damage to the intestinal barrier and restoring the
intestinal immune microenvironment in rabbits with chronic pancreatitis [173] (Figure 7).

2.2.8. Interactions between BAs and Lactic Acid Bacteria

Pediococcus pentosaceus Li05 belong to the Pediococcus genus of the Lactobacillaceae fam-
ily. Li05 can improve tight junction proteins and downregulate inflammatory responses in
mouse experiments by modulating intestinal microbiota and BA metabolism [174]. Specif-
ically, in an acute C. difficile infection mouse model, it has been shown to promote the
growth of beneficial microbial taxa such as Lactobacillus, Prevotella, and Paraprevotella
while inhibiting opportunistic pathogens. This modulation of the intestinal microbiota
leads to alterations in BA composition, which subsequently influences liver injury pro-
cesses [59,175]. Additionally, it has been reported that Li05 treatment notably reduced
weight loss, liver damage, and bile stasis in 3,5-Diethoxycarbonyl-1,4-Dihydrocollidine-
induced cholestasis mouse experiments [176,177], which is likely linked to Li05’s modula-
tion of the intestinal microbiota, particularly enhancing propionate- and butyrate-producing
bacteria like Anaerostipes and Eubacterium. Anaerostipes and Eubacterium are known for
metabolizing inositol into propionic and butyric acids and converting PBAs into SBAs via
7α-dehydroxylation [19,178,179].
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Figure 7. Interactions between BAs and Clostridium butyricum. C. butyricum (A) modulates the
ratio of PBAs to SBAs and (B) promotes the production of CBA. CBA improves intrauterine growth
restriction and reduce liver inflammation by activating LXRα and FXR; (C) enhances the production
of butyric acid, which ameliorates chronic pancreatitis and strengthens the tight junctions of intestinal
epithelial cells, thereby reducing intestinal barrier damage and restoring the intestinal immune
microenvironment; (D) inhibits lipid synthesis; and (E) coordinates SBA regulation to activate FXR
and inhibit TGR5, thereby regulating blood sugar and reducing obesity. PBA: primary bile acid;
SBA: secondary bile acid; BSH: bile salt hydrolase; LXRα: liver X receptor alpha; FXR: Farnesoid X
Receptor; CBA: conjugated bile acid; C. butyricum: Clostridium butyricum.

Liu L et al. also revealed that Lactiplantibacillus plantarum LPJZ-658 modulates
intestinal microbiota and BA metabolism in mouse models, which reveals the potential for
treating non-alcoholic fatty liver disease [180]. Furthermore, Lactiplantibacillus plantarum
LPJZ-658 increased the abundance of Firmicutes and Actinobacteria, suggesting a healthier
intestinal environment conducive to non-alcoholic steatohepatitis mitigation [181–183].

2.2.9. Interactions between BAs and Streptococcus thermophilus

Streptococcus thermophilus MN002 (S. thermophilus), acknowledged as an efficacious
probiotic [184,185], has shown promising potential in mitigating the risks associated with
metabolic syndrome and colorectal tumors [186–188], as well as reducing the incidence of
obesity, neonatal bacteremia, and meningitis caused by Escherichia coli K1 [189]. The con-
sumption of a high-fat diet is known to disrupt the intestinal microbial equilibrium, leading
to both intestinal and systemic inflammation [190–192]. Intriguingly, deoxycholic acid can
reduce the inflammatory symptoms in high-fat diet mouse experiments. Specifically, S. ther-
mophilus is capable of optimizing BA configurations and fostering a balanced intestinal
microbiota [193,194]. This is achieved by augmenting the relative abundance of bacte-
ria proficient in producing SBAs, including members of the Ruminococcaceae, Bacteroides,
Clostridium, and Blautia families [45].
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2.3. BAs and Viruses
2.3.1. Interactions between BAs and Coronavirus SARS-CoV-2

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) utilizes the receptor-
binding domain within its spike protein to engage the host’s angiotensin-converting enzyme
2 (ACE2) receptor, facilitating cellular entry [195–197]. Recent investigations have revealed
the potential of BAs, particularly UDCA and CDCA, in disrupting this critical virus–
host interaction.

Some studies have identified that UDCA can directly bind the receptor-binding do-
main of SARS-CoV-2, thereby diminishing its affinity for ACE2 and potentially mitigating
cellular damage [198–200]. Specifically, UDCA appears to alter the virus’s structural in-
tegrity, allowing the penetration of polar inhibitors and solvents into the viral cells, which
could impede replication [200,201].

Beyond direct antiviral effects, UDCA can also modulate the host’s immune re-
sponse. The cytokine storm, a critical factor in severe COVID-19 cases, can be miti-
gated by UDCA’s anti-inflammatory, antioxidant, immunomodulatory, and anti-apoptotic
properties [202–207]. Notably, UDCA can also reduce FXR expression in various human
and animal tissues by regulating ACE2 transcription [208–212]. In addition, retrospective
studies have indicated that UDCA can improve clinical outcomes in patients [213]. How-
ever, UDCA did not demonstrate a reduction in susceptibility to SARS-CoV-2 infection in
pediatric populations [214].

Emerging research suggests a correlation between the intestinal microbiome, par-
ticularly the Collinsella genus, and COVID-19 outcomes. Hirayama M et al. employed
machine learning to uncover a potential link between intestinal Collinsella and reduced
COVID-19 severity [215]. UDCA produced by Collinsella may prevent COVID-19 infection
and ameliorate acute respiratory distress syndrome in COVID-19 by suppressing cytokine
storm syndrome in clinical setting [216] (Figure 8).
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Figure 8. Interactions between UDCA and Coronavirus SARS-CoV-2. UDCA (A) directly damages the
virus structure, inhibiting its replication; (B) reduces the affinity between the receptor-binding domain
of coronavirus SARS-CoV-2 and the host ACE2; (C) inhibits FXR gene expression, thereby suppressing
ACE2 expression; (D) increases the abundance of Collinsella and promotes the synthesis of 7β-
Hydroxysteroid dehydrogenase, ameliorating acute respiratory distress syndrome in COVID-19; and
(E) possesses anti-inflammatory, antioxidative, immunomodulatory, and anti-apoptotic properties.
UDCA: ursodeoxycholic acid; SARS-CoV-2: Severe Acute Respiratory Syndrome Coronavirus 2; FXR:
Farnesoid X Receptor; ACE2: angiotensin-converting enzyme 2; SBA: secondary bile acid.
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2.3.2. Interactions between BAs and Other Viruses (Influenza Virus, Norovirus, etc.)

Influenza A virus (IAV) is a significant respiratory pathogen. Recent studies have
uncovered the antiviral potential of CDCA and sodium taurocholate against IAV. They
attenuate IAV infection by inhibiting the nuclear export of viral ribonucleoproteins and
modulating the Toll-like receptor 4/NF-κB signaling pathway [217,218]. Specifically, CDCA,
a secondary bile acid, shows promise in inhibiting IAV subtypes, including H5N1, H9N2,
and H1N1, by interfering with viral ribonucleoproteins’ nuclear export and inhibiting viral
replication [217]. Sodium taurocholate, a primary bile acid derivative, surprisingly exhibits
antiviral efficacy against various influenza strains, including H5N6 and H3N2, by targeting
the early stages of viral transcription and replication via the TLR4/NF-κB pathway [219].

BAs play a interesting role in norovirus infection [220,221]. Glycine deoxycholic
acid, a secondary bile acid, enhances murine noroviruses’ infectivity [222]. In addition,
the intestinal microbiota distinctly modulates norovirus infection dynamics in different
intestinal regions, with BAs mediating their inhibitory effect in the proximal small intestine,
while BA receptors regulate infection in the distal small intestine [223,224].

Moreover, CDCA has shown inhibitory effects against digestive system viruses, in-
cluding rotavirus, hepatitis B, and hepatitis D viruses [68,225]. Specifically, CDCA activates
FXR and TGR5 receptors in HBV infections in mouse experiments. Also, CDCA can inhibit
the replication of rotavirus by reducing virus-induced lipid synthesis [69,218] (Figure 9).
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demonstrates the capacity to attenuate IAV infections by inhibiting the nuclear export of vRNPs;
(C) CDCA can reduce virus-induced lipid synthesis, inhibiting the replication of rotavirus; (D) CDCA
activates FXR and TGR5 receptors to counteract HBV infection; (E) GCDCA enhances the virulence
of norovirus through a mechanism that is not yet clarified. STH: sodium taurocholate; TLR4: Toll-like
receptor 4; CDCA: chenodeoxycholic acid; vRNPs: viral ribonucleoproteins; IAV: influenza A virus;
GCDCA: glycine deoxycholic acid; FXR: Farnesoid X Receptor; TGR5: Takeda G Protein-Coupled
Receptor 5; HBV: hepatitis B virus.

3. Conclusions

The regulation of BAs is a complex process in mammalian systems. Intestinal micro-
biota play a crucial role in converting PBAs to SBAs by regulating the metabolic activities
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of BSHs and 7α-hydroxylase. Among the diverse intestinal microbiota, Firmicutes, Lac-
tobacillus, Bifidobacterium, Enterococcus, Clostridium, Corbacteriaceae, Ruminococcaceae, and
Clostridiaceae exhibit BSH activity [36,43–45] while Clostridium cluster XIVa, particularly
Clostridium hiranonis and C. scindens, as well as Eubacterium and Peptostreptococcus, possess
7α-dehydroxylase activity [36,37,46]. They are crucial for BA metabolism and maintaining
intestinal homeostasis.

Here, we explored the interactions between BAs and a comprehensive array of 16 key
intestinal microbiota. Our research found that Bacteroides, C. scindens, Streptococcus ther-
mophilus, Saccharomyces boulardii, C. butyricum, and lactic acid bacteria can regulate the
metabolism and function of BSHs and 7α-dehydroxylase. BSHs and 7α-dehydroxylase
play crucial roles in the conversion of PBAs to SBAs. It is important to note that PBAs
generally promote infections, while SBAs often exhibit distinct anti-infection roles. In the
antimicrobial action of BAs, SBAs demonstrate antagonistic properties against a wide range
of microbiota, with the exception of norovirus.

SBAs combat infections in several ways. First, SBAs slow down the growth of pathogen
proliferation, inhibit the transformation of C. albicans, reduce C. difficile spore sprouting,
disrupt VRE biofilms, and weaken M. tuberculosis cell walls. SBAs also reduce SARS-
CoV-2’s binding to ACE2 receptors and inhibit influenza virus replication. Second, SBAs
modify the structure of C. difficile’s TcdB toxin and trigger the NF-κB signaling pathway
via BA receptors like FXR and TGR5. This interaction boosts the body’s immune defenses,
enhancing responses against pathogens like C. difficile and SARS-CoV-2. Last, the synergy
between SBAs and some specific intestinal microbiota is crucial, particularly in enhancing
their anti-infective potential. C. butyricum, for example, promotes intestinal health through
enterohepatic circulation, reducing BSH-active microbiota and increasing CBA production.
However, certain Bacteroidetes strains with high BSH gene expression may inadvertently
increase BA entry into the colon, potentially triggering colorectal cancer.

The interaction between viruses and BAs is complex. Most SBAs preserve intestinal
mucosal health, but glycine deoxycholic acid, a secondary bile acid, potentially exacerbates
norovirus infection. In addition, STH is a primary bile acid derivative and surprisingly
shows efficacy against the influenza virus.

BAs are diverse, each possessing unique physical structures and biological properties.
The dynamic metabolism of BAs in the human body results in fluctuations in their types
and concentrations along the intestinal tract. Current research, often utilizing fixed BA
formulations, may not fully capture these variations. Additionally, it is important to note
that most interactions between BAs and microbiota have been studied in vitro. However,
the in vivo effects may differ significantly due to the complex intestinal environment. For
example, BAs can alter the mucus layer, which in turn affects pathogenicity, the effective-
ness of antimicrobials, and immune responses. These in vivo dynamics remain largely
unstudied, indicating the need for further research to fully understand BAs’ therapeutic
potential. Nonetheless, it is evident that SBAs generally exert a favorable anti-infectious
influence against most microbiota-induced infections.

Given the intricate interplay between BAs and intestinal microbiota, and their regula-
tory effects on infections, we assert that BAs hold significant potential as a novel approach
for preventing and treating microbial infections.
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Abbreviations

BAs Bile acids
BSHs Bile salt hydrolases
BSH Bile salt hydrolase
CBA Conjugated bile acid
PBA Primary bile acid
CDCA Chenodeoxycholic acid
TCA Taurocholic acid
SBA Secondary bile acid
LCA Lithocholic acid
UDCA Ursodeoxycholic acid
FXR Farnesoid X Receptor
LXRα Liver X receptor α
TGR5 Takeda G Protein-Coupled Receptor 5
ACE2 Angiotensin-converting enzyme 2
C. albicans Candida albicans
C. difficile Clostridioides difficile
C. scindens Clostridium scindens
E. coli Escherichia coli
S. aureus Staphylococcus aureus
E. faecalis Enterococcus faecalis
ESBL-EAEC Extended-spectrum beta-lactamase-resistant Escherichia coli
VRE Vancomycin-resistant enterococci
M. tuberculosis Mycobacterium tuberculosis
S. thermophilus Streptococcus thermophilus
SB Saccharomyces boulardii
C. butyricum Clostridium butyricum
SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus 2
IAV Influenza A virus
COVID-19 Coronavirus Disease 2019
PBA Examples Cholic acid, chenodeoxycholic acid, taurocholic acid, and sodium taurocholate
SBA Examples Lithocholic acid, deoxycholic acid, ursodeoxycholic acid, taurodeoxycholic acid,

and glycine deoxycholic acid
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