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Abstract: Neglected tropical diseases (NTDs) are a group of illnesses which usually present with a
chronic clinical picture. NTDs can lead to permanent disability and are often associated with social
stigma. In many developing countries where NTDs are endemic, there are no diagnostic tools for
the safe storage and transport of biological samples, and there are no specialist diagnostic centers
where the samples could be processed. The transport of biological samples (blood, urine) collected in
field conditions and brought to laboratories located in developed countries requires the maintenance
of the cold chain during transportation. Ensuring temperature control during transport could be
problematic or even impossible to achieve; it is also expensive. A helpful solution to this problem
is to use the dried matrix spot (DMS) technique, which seems to be a reliable method for collecting
biological samples to be used for screening purposes and conducting epidemiological surveillance of
NTDs in developing countries. This article is an overview of how DMSs can be used in the diagnosis
of most neglected tropical diseases.

Keywords: dried matrix spots; neglected tropical diseases; diagnostics

Neglected tropical diseases (NTDs) are a group of illnesses caused by various etio-
logical factors, e.g., bacteria, fungi, viruses and parasites. Most NTDs are chronic and
debilitating conditions which can lead to permanent disability and are often associated
with social stigma or exclusion. Some NTDs have a long incubation period and therefore
can be difficult to diagnose [1]. NTDs are primarily prevalent in low-income, tropical or
subtropical countries. Their occurrence is determined by poor sanitation, regular contact
with reservoirs of infections (infected people or animals) and limited access to healthcare.
Climate change and population growth facilitate the spread of NTDs, but global eradication
initiatives still prioritize the diagnosis and treatment of AIDS, malaria and tuberculosis
rather than NTDs. In 2021, the World Health Organization (WHO) initiated a global project
titled Ending the neglect to achieve the Sustainable Development Goals: a road map for
neglected tropical diseases 2021–2030, which sets out goals for the prevention, control and
elimination of NTDs worldwide. Despite these efforts, NTDs remain a serious health issue
in many countries globally, especially in neglected communities living in extreme poverty.
Every year, NTDs are responsible for 200,000 deaths globally. People affected by NTDs
are not only at risk of various disabilities, disfigurement and social stigma, but they are
also in danger of socio-economic exclusion because they are unfit to work. In addition,
the treatment of NTDs puts considerable strain on family budgets in many developing
countries [2–5]. According to the World Health Organization, NTDs include 20 diseases
and disorders: Buruli ulcer, Chagas disease, dengue and chikungunya, dracunculiasis,
echinococcosis, foodborne trematodiases, human African trypanosomiasis, leishmaniasis,
leprosy, lymphatic filariasis, mycetoma, chromoblastomycosis and other deep mycoses,
onchocerciasis, rabies, scabies and other ectoparasitoses, schistosomiasis, snakebite en-
venoming, soil-transmitted helminthiases, taeniasis and cysticercosis, trachoma and yaws.
NTDs are difficult to control because many of them are vector-borne illnesses that are
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transmitted from infected animals and are often caused by pathogenic organisms which
have complex life cycles [6].

NTDs can be eradicated by promoting health education, personal hygiene, the use of
insect repellents, proper sanitation, immunization and treatment. However, it is equally
important to focus of the diagnostics of NTDs and to develop and implement workable
solutions for the detection of pathogens responsible for causing these conditions [4,7].

In countries with limited diagnostic capabilities, even the first diagnostic stage (i.e.,
the collection, processing, transport and storage of biological samples) can be extremely
problematic [8]. A helpful solution to this problem could be the application of the in-
creasingly popular dried matrix spot (DMS) sampling technique. This technique consists
of applying a small amount of a liquid biological sample, such as blood, urine, saliva,
sweat, cerebrospinal fluid, etc., onto specially manufactured filter paper and leaving it
to dry [9,10]. The dried matrix spots can be used in bioanalysis using a range of tools
and techniques, including chromatography, mass spectrometry, DNA analysis and immu-
noenzymatic tests [11]. This means, that the DMS technique could successfully be used
for multiple purposes, including the surveillance of illnesses caused by microbiological
agents, genetic testing, drug monitoring, clinical pharmacotherapy, forensic toxicology
or environmental contamination control [12–17]. DMS testing dates back to 1963, when
Guthrie and Susi [18] developed an assay for the detection of phenylketonuria in neonates.
For this purpose, they collected capillary blood samples from neonates using the heel prick
method, applied the samples onto filter paper, left the samples to dry, and then used the
dried blood spots to measure the level of phenylalanine. This breakthrough invention
gave rise to the diagnosis of many other congenital and inherited disorders and led to the
introduction of large-scale newborn screening programs [19]. It also proved effective in the
diagnosis of many infectious diseases such as syphilis, trypanosomiasis, amoebiasis, rubella
and hepatitis B [20–23]. Over the next few decades, there was an increase in interest in the
use of DBSs, and thanks to the development of this and other novel diagnostic techniques,
it was possible to improve accessibility to diagnostics even in the most remote areas of the
world [24].

DMS sampling is a suitable alternative to traditional sampling methods, such as the
collection of wet plasma and serum samples, especially in settings with limited diagnostic
capabilities or shortages of qualified personnel. This technique is also a helpful solution
in situations when the transport of liquid biological samples would be problematic. DMS
samples, even if collected outside healthcare facilities, are a good alternative to rapid
diagnostic tests (RDTs) [25].

Another advantage of this diagnostic method is the small sample size, which con-
tributes to higher analyte stability. In addition, DMS sampling is cost-effective, as dried
specimens are easy to store. Processing DMSs is also safer because it is associated with a
much lower risk of transmitting an infection (the process of drying damages the envelope of
some viruses and can reduce their infectivity). The transportation of dried sample matrices
is also much safer compared to the transport of liquid samples, as there is no risk of damage
to transport containers or leakage of samples. Another advantage of this technique is the
fact that there is no need for centrifugation to separate serum from blood clots, which
further limits the risk of exposure to potentially infectious material [26,27].

As was mentioned before, a small volume of the sample helps stabilize the analyte
but is associated with potentially lower analyte concentration. For this reason, DMS
testing requires the use of more sensitive analytical tools and techniques [9,28]. A lower
concentration of the analyte is correlated with lower analytical sensitivity of the assays
performed on DBSs compared to tests on serum/plasma or other liquid samples (biomarker
concentrations can be low during an infection), but the analytical sensitivity of the DBS
technique generally exceeds the analytical sensitivity of RDTs [25]. The pre-analysis of DMS
samples is performed manually and it involves cutting out a disc of a selected diameter from
the filter paper and placing the disc in a test tube filled with appropriate buffer solution
and eluting it for a minimum of 2 h on a shaker. All these procedures require rigorous
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validation in order to ensure reliable test results [14,25]. Another positive feature of the
DMS samples is their long-term stability. Obviously, analyte stability can be affected by
factors such as the type of filter paper used for sample collection, exposure of the specimen
to sunlight, the temperature or humidity and the type of the target analyte. Nevertheless,
if dried matrices are stored properly, they retain their properties for a long time and can
be used for clinical testing for up to several years [29]. The DMS method has certain
limitations, of which the lack of standardization of the pre-analytical phase is one of the
most important. Only the DBS tests for newborn screening are conducted in line with the
approved preparatory protocol, whereas no such protocols exist for any other DBS tests.
Depending on the type and the amount of biological material used for testing, as well as
the type of filter paper and the method of DMS extraction, the analytical efficiency may
vary significantly between different tests. One should also bear in mind that hemolysis
may occur while applying a blood specimen onto a filter paper, and this may give a false
negative result in some cases. These limitations require careful pre-evaluation and refining
of the test’s methodology [29]. However, the sensitivity and specificity of DBSs is higher
than that of RDTs, which allows for more precise testing and accurate results [25]. A major
disadvantage of DBSs, in comparison to RDTs, is the length of the diagnostic procedure (it
takes longer to obtain a result) and the need to maintain appropriate microbiological purity,
which is a serious obstacle in field-testing.

The aim of the present article is to demonstrate an alternative method for the collection
of specimens used in the diagnosis of neglected tropical diseases, whose application
could greatly improve the health of thousands of people affected by extreme poverty
and exclusion. For this purpose, the authors searched the electronic database PubMed
for observational studies and randomized controlled trials on diagnosing NTDs. We
only focused on those reports in which the use of DMSs had a positive impact on the
diagnostic results.

There are numerous reports in the literature on DMSs being used for the diagnosis of
NTDs. As an example, DBSs can be used to perform serological tests for the diagnosis of
echinococcosis [29–33], Chagas disease [34–38], dengue and chikungunya viruses [39–44],
foodborne trematodiases [45–47], human African trypanosomiasis [48–52], leishmania-
sis [8,53–55], leprosy [56,57], lymphatic filariasis [58–62], onchocerciasis [63,64], schistoso-
miasis [65–67], trachoma [68–72], yaws [73,74], taeniasis and cysticercosis [75–78], as well as
soil-transmitted helminthiases [79,80]. Dried urine spots (DUS) are used for the diagnosis
of the circulating cathodic antigen (CCA) of Schistosoma mansoni [81,82], dried saliva spots
(DSS) are used for the serodiagnosis of the dengue virus [39], and dried cerebrospinal fluid
(CSF) is used in ELISA tests for cysticercosis [83]. Dried blood samples collected from foxes,
dogs and racoon dogs are commonly used for the serodiagnosis of rabies [84,85]. Dried
matrix spots have also been found to be effective in molecular diagnostics. Loop-mediated
isothermal amplification (LAMP) assays are capable of detecting Chagas disease [86] and
leishmaniasis [87,88] from DBS samples, and the LAMP method is also effective in diag-
nosing schistosomiasis from DUS samples [89]. Quantitative real-time PCR (qPCR) assays
using DMSs can be used to diagnose dengue and chikungunya viruses [90], Buruli ulcer [91]
and leishmaniasis [8,92]. According to the literature, gel-based PCR is the most common
diagnostic method for the detection of NTDs from dried matrix spots. This technique is
effective in diagnosing Chagas disease [34,93], lymphatic filariasis [94,95], dengue virus
infection [96–99], human African trypanosomiasis [100], leishmaniasis [101–105], onchocer-
ciasis [62] and schistosomiasis [106–110]. Rabies virus can be detected with RT-PCR assays
in DBS samples collected from infected dogs or with reverse transcription followed by a
hemi-nested polymerase chain reaction (RT-hn-PCR), and in the case of wild animals, in
dried brain tissue samples stored on filter paper [111,112]. There are reports in the literature
which support the validity of using FTA cards for the diagnosis of mycetoma, chromoblas-
tomycosis and other deep mycoses, and study results suggest that both serological and
molecular methods are effective in diagnosing mycoses; however, this issue requires further
research. Table 1 shows the diagnostic possibilities of DMSs for the diagnosis of NTDs.
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Table 1. The use of dried matrix spots in the diagnostics of NTDs.

Disease Material Diagnostic Assay Reference

Buruli ulcer DBS qPCR [91]

Echinococcosis DBS immunoenzymatic assay [30–33]

Chagas disease DBS

immunoenzymatic assay [34,35,37,38]

LAMP [86]

gel-based PCR [34,93]

Dengue
and chikungunya

DBS, DSS immunoenzymatic assay [39–44]

DBS
RT-PCR, qPCR [90]

gel-based PCR, RT-PCR [96–99]

Foodborne
trematodiases DBS immunoenzymatic assay [45–47]

Human African
trypanosomiasis DBS

immunoenzymatic assay [48–52]

gel-based PCR [100]

Leishmaniasis DBS

immunoenzymatic assay [8,53–55]

LAMP [87,88]

qPCR [53,87]

gel-based PCR [101–105]

Leprosy DBS immunoenzymatic assay [56,57]

Lymphatic filariasis DBS
immunoenzymatic assay [58–61]

gel-based PCR [94,95]

Onchocerciasis DBS
immunoenzymatic assay [62–64]

gel-based PCR [62]

Schistosomiasis
DBS, DUS

immunoenzymatic assay [65–67,81,82]

gel-based PCR [106–110]

DUS LAMP [87]

Trachoma DBS immunoenzymatic assay [68–72]

Yaws DBS immunoenzymatic assay [73,74]

Taeniasis
and cysticercosis

DBS,
dried cerebrospinal fluid spot immunoenzymatic assay [75–78,83]

Soil-transmitted
helminthiases DBS immunoenzymatic assay [45,79,80]

Rabies
DBS

immunoenzymatic assay [84,85]

RT-PCR [111]

animal brain samples applied to
filter paper RT-hn-PCR [112]

DBSs—dried blood spots; DSSs—dried saliva spots; DUSs—dried urine spots; RT-PCR—real-time polymerase
chain reaction; qPCR—quantitative polymerase chain reaction; LAMP—loop-mediated isothermal amplification;
RT-hn-PCR—real-time hemi-nested polymerase chain reaction.

Summary

Limited access to specialist diagnostic facilities in countries where NTDs are endemic
is a major restraint for the safe storage and transport of biological samples. The transport
of biological samples collected in field conditions and brought to laboratories located in
developed countries requires the maintenance of the cold chain during transportation.
Ensuring temperature control during transport could be problematic or even impossible to
achieve, and it is also expensive. A good solution to this problem is to use the dried matrix
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spot (DMS) technique, which is a reliable method for collecting biological samples to be
used for the diagnosis and epidemiological surveillance of NTDs. It needs to be emphasized
that the DBS or DUS sampling technique will never replace tests on wet plasma, serum or
urine matrices; however, following careful test validation to ensure its high sensitivity and
specificity, the DMS technique could become a reliable testing method for the diagnosis of
most NTDs, as evidenced by this review. Given the fact that many tropical illnesses are co-
endemic in certain areas, it would be possible to monitor several diseases affecting a given
community simultaneously simply by using the existing infrastructure and non-invasive
DMS sampling method. This intervention could simplify the process of the epidemiological
surveillance of NTDs, reduce the costs of NTD monitoring, and help control outbreaks of
existing and emerging illnesses, especially in low-income, tropical countries.

The present review summarizes the DMS method, which has successfully been used
in the diagnosis of NTDs in recent years, despite the fact that there are few publications
available on DMS sample preparation and validation. The review provides a solution for
those medical diagnostic centers which are located far from the areas affected by NTDs,
where the collection and safe transport of samples is a challenge. This convenient, easy
and relatively inexpensive sampling method represents an important advancement in
medical research, especially in hard-to-reach populations, in populations without access to
healthcare or in those heavily dependent on external support. One of the most important
problems encountered by the authors while searching for relevant publications was the lack
of standardization of the methodology and sample validation. For this reason, the results re-
ported by different authors were not uniform or comparable. Although the DMS technique
represents a promising sampling alternative which could be used in remote areas affected
by extreme poverty, it requires refinement and the development of a uniform methodology.
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