Advances in Leishmania Vaccines: Current Development and Future Prospects
Abstract
:1. Introduction
2. Immunological Landscape of Leishmania Infection
2.1. Host Immune Response against Leishmania
2.2. Mechanisms of Immune Evasion by Leishmania Parasites
2.3. Immune Dynamics of Leishmania–HIV Coinfection
3. First-Generation Antileishmanial Vaccines
3.1. Whole-Killed Parasites
3.2. Live-Attenuated Parasites
4. Second-Generation Antileishmanial Vaccines
5. Third-Generation Antileishmanial Vaccines
6. Conclusions: Limitations and Future Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Antinori, S.; Giacomelli, A. Leishmaniasis. In Encyclopedia of Infection and Immunity; Elsevier: Amsterdam, The Netherlands, 2022; pp. 622–643. [Google Scholar]
- Torres-Guerrero, E.; Quintanilla-Cedillo, M.R.; Ruiz-Esmenjaud, J.; Arenas, R. Leishmaniasis: A Review. F1000Research 2017, 6, 750. [Google Scholar] [CrossRef] [PubMed]
- Miramin-Mohammadi, A.; Javadi, A.; Eskandari, S.E.; Mortazavi, H.; Rostami, M.N.; Khamesipour, A. Immune Response in Cutaneous Leishmaniasis Patients with Healing vs. Non-Healing Lesions. Iran. J. Microbiol. 2020, 12, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Ronet, C.; Beverley, S.M.; Fasel, N. Muco-Cutaneous Leishmaniasis in the New World. Virulence 2011, 2, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Severino, P.; Santana, W.; Lisboa, E.S.; dos Santos, V.L.S.; Lima, E.T.d.S.; Cardoso, J.C.; de Albuquerque-Junior, R.L.C.; Naveros, B.C.; Santini, A.; Souto, E.B.; et al. Cutaneous/Mucocutaneous Leishmaniasis Treatment for Wound Healing: Classical versus New Treatment Approaches. Microbiol. Res. 2022, 13, 836–852. [Google Scholar] [CrossRef]
- Abadías-Granado, I.; Diago, A.; Cerro, P.A.; Palma-Ruiz, A.M.; Gilaberte, Y. Cutaneous and Mucocutaneous Leishmaniasis. Actas Dermo-Sifiliográficas (Engl. Ed.) 2021, 112, 601–618. [Google Scholar] [CrossRef]
- Pasha, F.; Saleem, S.; Nazir, T.; Tariq, J.; Qureshi, K. Visceral Leishmaniasis (Kala-Azar): A Triumph Against a Trickster Disease. Cureus 2022, 14, e25698. [Google Scholar] [CrossRef]
- Ready, P.D. Epidemiology of Visceral Leishmaniasis. Clin. Epidemiol. 2014, 6, 147–154. [Google Scholar] [CrossRef]
- Scarpini, S.; Dondi, A.; Totaro, C.; Biagi, C.; Melchionda, F.; Zama, D.; Pierantoni, L.; Gennari, M.; Campagna, C.; Prete, A.; et al. Visceral Leishmaniasis: Epidemiology, Diagnosis, and Treatment Regimens in Different Geographical Areas with a Focus on Pediatrics. Microorganisms 2022, 10, 1887. [Google Scholar] [CrossRef]
- Alvar, J.; Vélez, I.D.; Bern, C.; Herrero, M.; Desjeux, P.; Cano, J.; Jannin, J.; Boer, M. den Leishmaniasis Worldwide and Global Estimates of Its Incidence. PLoS ONE 2012, 7, e35671. [Google Scholar] [CrossRef]
- DebRoy, S.; Prosper, O.; Mishoe, A.; Mubayi, A. Challenges in Modeling Complexity of Neglected Tropical Diseases: A Review of Dynamics of Visceral Leishmaniasis in Resource Limited Settings. Emerg. Themes Epidemiol. 2017, 14, 10. [Google Scholar] [CrossRef]
- Chakravarty, J.; Sundar, S. Current and Emerging Medications for the Treatment of Leishmaniasis. Expert Opin. Pharmacother. 2019, 20, 1251–1265. [Google Scholar] [CrossRef] [PubMed]
- Ponte-Sucre, A.; Gamarro, F.; Dujardin, J.-C.; Barrett, M.P.; López-Vélez, R.; García-Hernández, R.; Pountain, A.W.; Mwenechanya, R.; Papadopoulou, B. Drug Resistance and Treatment Failure in Leishmaniasis: A 21st Century Challenge. PLoS Negl. Trop. Dis. 2017, 11, e0006052. [Google Scholar] [CrossRef] [PubMed]
- Knight, C.A.; Harris, D.R.; Alshammari, S.O.; Gugssa, A.; Young, T.; Lee, C.M. Leishmaniasis: Recent Epidemiological Studies in the Middle East. Front. Microbiol. 2023, 13, 1052478. [Google Scholar] [CrossRef]
- Kedzierski, L. Leishmaniasis Vaccine: Where Are We Today? J. Glob. Infect. Dis. 2010, 2, 177. [Google Scholar] [CrossRef]
- Zutshi, S.; Kumar, S.; Chauhan, P.; Bansode, Y.; Nair, A.; Roy, S.; Sarkar, A.; Saha, B. Anti-Leishmanial Vaccines: Assumptions, Approaches, and Annulments. Vaccines 2019, 7, 156. [Google Scholar] [CrossRef] [PubMed]
- Lacey, C.; Musa, A.; Khalil, E.T.; Younis, B.; Osman, M.; Wiggins, R.; Keding, A.; Kaye, P. LEISH2b—A Phase 2b Study to Assess the Safety, Efficacy, and Immunogenicity of the Leishmania Vaccine ChAd63-KH in Post-Kala Azar Dermal Leishmaniasis. Wellcome Open Res. 2022, 7, 200. [Google Scholar] [CrossRef]
- Fernández Cotrina, J.; Iniesta, V.; Monroy, I.; Baz, V.; Hugnet, C.; Marañon, F.; Fabra, M.; Gómez-Nieto, L.C.; Alonso, C. A Large-Scale Field Randomized Trial Demonstrates Safety and Efficacy of the Vaccine LetiFend® against Canine Leishmaniosis. Vaccine 2018, 36, 1972–1982. [Google Scholar] [CrossRef]
- Coelho, E.A.F.; Christodoulides, M. Vaccines for Canine Leishmaniasis. In Vaccines for Neglected Pathogens: Strategies, Achievements and Challenges; Springer International Publishing: Cham, Switzerland, 2023; pp. 281–306. [Google Scholar]
- Velez, R.; Gállego, M. Commercially Approved Vaccines for Canine Leishmaniosis: A Review of Available Data on Their Safety and Efficacy. Trop. Med. Int. Health 2020, 25, 540–557. [Google Scholar] [CrossRef]
- Genaro, O.; de Toledo, V.P.C.P.; Da Costa, C.A.; Hermeto, M.V.; Afonso, L.C.C.; Mayrink, W. Vaccine for Prophylaxis and Immunotherapy, Brazil. Clin. Dermatol. 1996, 14, 503–512. [Google Scholar] [CrossRef]
- Araújo, M.S.S.; de Andrade, R.A.; Vianna, L.R.; Mayrink, W.; Reis, A.B.; Sathler-Avelar, R.; Teixeira-Carvalho, A.; Andrade, M.C.; Mello, M.N.; Martins-Filho, O.A. Despite Leishvaccine and Leishmune® Trigger Distinct Immune Profiles, Their Ability to Activate Phagocytes and CD8+ T-Cells Support Their High-Quality Immunogenic Potential against Canine Visceral Leishmaniasis. Vaccine 2008, 26, 2211–2224. [Google Scholar] [CrossRef]
- Satti, I.N.; Osman, H.Y.; Daifalla, N.S.; Younis, S.A.; Khalil, E.A.G.; Zijlstra, E.E.; El Hassan, A.M.; Ghalib, H.W. Immunogenicity and Safety of Autoclaved Leishmania major plus BCG Vaccine in Healthy Sudanese Volunteers. Vaccine 2001, 19, 2100–2106. [Google Scholar] [CrossRef] [PubMed]
- Armijos, R.X.; Weigel, M.M.; Romero, L.; Garcia, V.; Salazar, J. Field Trial of a Vaccine against New World Cutaneous Leishmaniasis in an At-Risk Child Population: How Long Does Protection Last? J. Infect. Dis. 2003, 187, 1959–1961. [Google Scholar] [CrossRef] [PubMed]
- Convit, J.; Ulrich, M.; Zerpa, O.; Borges, R.; Aranzazu, N.; Valera, M.; Villarroel, H.; Zapata, Z.; Tomedes, I. Immunotherapy of American Cutaneous Leishmaniasis in Venezuela during the Period 1990–1999. Trans. R. Soc. Trop. Med. Hyg. 2003, 97, 469–472. [Google Scholar] [CrossRef] [PubMed]
- Convit, J.; Ulrich, M.; Polegre, M.A.; Avila, A.; Rodríguez, N.; Mazzedo, M.I.; Blanco, B. Therapy of Venezuelan Patients with Severe Mucocutaneous or Early Lesions of Diffuse Cutaneous Leishmaniasis with a Vaccine Containing Pasteurized Leishmania Promastigotes and Bacillus Calmette-Guerin: Preliminary Report. Memórias Inst. Oswaldo Cruz 2004, 99, 57–62. [Google Scholar] [CrossRef]
- Dantas-Torres, F. Leishmune® Vaccine: The Newest Tool for Prevention and Control of Canine Visceral Leishmaniosis and Its Potential as a Transmission-Blocking Vaccine. Vet. Parasitol. 2006, 141, 1–8. [Google Scholar] [CrossRef]
- Lemesre, J.-L.; Holzmuller, P.; Gonçalves, R.B.; Bourdoiseau, G.; Hugnet, C.; Cavaleyra, M.; Papierok, G. Long-Lasting Protection against Canine Visceral Leishmaniasis Using the LiESAp-MDP Vaccine in Endemic Areas of France: Double-Blind Randomised Efficacy Field Trial. Vaccine 2007, 25, 4223–4234. [Google Scholar] [CrossRef]
- Velez, R.; Domenech, E.; Cairó, J.; Gállego, M. The Impact of Canine Leishmaniosis Vaccination with Canileish® in Leishmania infantum Infection Seroprevalence Studies. Acta Trop. 2020, 202, 105259. [Google Scholar] [CrossRef]
- Toepp, A.; Larson, M.; Wilson, G.; Grinnage-Pulley, T.; Bennett, C.; Leal-Lima, A.; Anderson, B.; Parrish, M.; Anderson, M.; Fowler, H.; et al. Randomized, Controlled, Double-Blinded Field Trial to Assess Leishmania Vaccine Effectiveness as Immunotherapy for Canine Leishmaniosis. Vaccine 2018, 36, 6433–6441. [Google Scholar] [CrossRef] [PubMed]
- Chakravarty, J.; Kumar, S.; Trivedi, S.; Rai, V.K.; Singh, A.; Ashman, J.A.; Laughlin, E.M.; Coler, R.N.; Kahn, S.J.; Beckmann, A.M.; et al. A Clinical Trial to Evaluate the Safety and Immunogenicity of the LEISH-F1+MPL-SE Vaccine for Use in the Prevention of Visceral Leishmaniasis. Vaccine 2011, 29, 3531–3537. [Google Scholar] [CrossRef]
- NCT01011309. A Study of the Efficacy and Safety of the LEISH-F2 + MPL-SE Vaccine for Treatment of Cutaneous Leishmaniasis. Available online: https://clinicaltrials.gov/study/NCT01011309 (accessed on 15 May 2024).
- Coler, R.N.; Duthie, M.S.; Hofmeyer, K.A.; Guderian, J.; Jayashankar, L.; Vergara, J.; Rolf, T.; Misquith, A.; Laurance, J.D.; Raman, V.S.; et al. From Mouse to Man: Safety, Immunogenicity and Efficacy of a Candidate Leishmaniasis Vaccine LEISH-F3+GLA-SE. Clin. Transl. Immunol. 2015, 4, e35. [Google Scholar] [CrossRef]
- Younis, B.M.; Osman, M.; Khalil, E.A.G.; Santoro, F.; Furini, S.; Wiggins, R.; Keding, A.; Carraro, M.; Musa, A.E.A.; Abdarahaman, M.A.A.; et al. Safety and Immunogenicity of ChAd63-KH Vaccine in Post-Kala-Azar Dermal Leishmaniasis Patients in Sudan. Mol. Ther. 2021, 29, 2366–2377. [Google Scholar] [CrossRef] [PubMed]
- Elmahallawy, E.K.; Alkhaldi, A.A.M.; Saleh, A.A. Host Immune Response against Leishmaniasis and Parasite Persistence Strategies: A Review and Assessment of Recent Research. Biomed. Pharmacother. 2021, 139, 111671. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Uzonna, J.E. The Early Interaction of Leishmania with Macrophages and Dendritic Cells and Its Influence on the Host Immune Response. Front. Cell Infect. Microbiol. 2012, 2, 83. [Google Scholar] [CrossRef] [PubMed]
- Young, J.; Kima, P.E. The Leishmania Parasitophorous Vacuole Membrane at the Parasite-Host Interface. Yale J. Biol. Med. 2019, 92, 511–521. [Google Scholar]
- Scott, P.; Novais, F.O. Cutaneous Leishmaniasis: Immune Responses in Protection and Pathogenesis. Nat. Rev. Immunol. 2016, 16, 581–592. [Google Scholar] [CrossRef]
- Costa-da-Silva, A.C.; Nascimento, D.d.O.; Ferreira, J.R.M.; Guimarães-Pinto, K.; Freire-de-Lima, L.; Morrot, A.; Decote-Ricardo, D.; Filardy, A.A.; Freire-de-Lima, C.G. Immune Responses in Leishmaniasis: An Overview. Trop. Med. Infect. Dis. 2022, 7, 54. [Google Scholar] [CrossRef]
- Mills, C. M1 and M2 Macrophages: Oracles of Health and Disease. Crit. Rev. Immunol. 2012, 32, 463–488. [Google Scholar] [CrossRef]
- Vacas, A.; Fernández-Rubio, C.; Larrea, E.; Peña-Guerrero, J.; Nguewa, P.A. LmjF.22.0810 from Leishmania major Modulates the Th2-Type Immune Response and Is Involved in Leishmaniasis Outcome. Biomedicines 2020, 8, 452. [Google Scholar] [CrossRef] [PubMed]
- Tomiotto-Pellissier, F.; Bortoleti, B.T.d.S.; Assolini, J.P.; Gonçalves, M.D.; Carloto, A.C.M.; Miranda-Sapla, M.M.; Conchon-Costa, I.; Bordignon, J.; Pavanelli, W.R. Macrophage Polarization in Leishmaniasis: Broadening Horizons. Front. Immunol. 2018, 9, 2529. [Google Scholar] [CrossRef]
- Colmenares, M.; Kima, P.E.; Samoff, E.; Soong, L.; McMahon-Pratt, D. Perforin and Gamma Interferon Are Critical CD8 + T-Cell-Mediated Responses in Vaccine-Induced Immunity against Leishmania amazonensis Infection. Infect. Immun. 2003, 71, 3172–3182. [Google Scholar] [CrossRef]
- Belkaid, Y.; Von Stebut, E.; Mendez, S.; Lira, R.; Caler, E.; Bertholet, S.; Udey, M.C.; Sacks, D. CD8+ T Cells Are Required for Primary Immunity in C57BL/6 Mice Following Low-Dose, Intradermal Challenge with Leishmania major. J. Immunol. 2002, 168, 3992–4000. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, H.; Bras-Gonçalves, R.; Negi, N.S.; Lemesre, J.-L.; Papierok, G.; Salotra, P. Role of CD8+ T Cells in Protection against Leishmania donovani Infection in Healed Visceral Leishmaniasis Individuals. BMC Infect. Dis. 2014, 14, 653. [Google Scholar] [CrossRef] [PubMed]
- Müller, I.; Kropf, P.; Etges, R.J.; Louis, J.A. Gamma Interferon Response in Secondary Leishmania major Infection: Role of CD8+ T Cells. Infect. Immun. 1993, 61, 3730–3738. [Google Scholar] [CrossRef] [PubMed]
- McMahon-Pratt, D.; Alexander, J. Does the Leishmania major Paradigm of Pathogenesis and Protection Hold for New World Cutaneous Leishmaniases or the Visceral Disease? Immunol. Rev. 2004, 201, 206–224. [Google Scholar] [CrossRef]
- Bosque; Saravia; Valderrama; Milon. Distinct Innate and Acquired Immune Responses to Leishmania in Putative Susceptible and Resistant Human Populations Endemically Exposed to L. (Viannia) panamensis Infection. Scand. J. Immunol. 2000, 51, 533–541. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Inchaustegui, D.A.; Xin, L.; Soong, L. Leishmania braziliensis Infection Induces Dendritic Cell Activation, ISG15 Transcription, and the Generation of Protective Immune Responses. J. Immunol. 2008, 180, 7537–7545. [Google Scholar] [CrossRef]
- Tuon, F.F.; Gomes-Silva, A.; Da-Cruz, A.M.; Duarte, M.I.S.; Neto, V.A.; Amato, V.S. Local Immunological Factors Associated with Recurrence of Mucosal Leishmaniasis. Clin. Immunol. 2008, 128, 442–446. [Google Scholar] [CrossRef]
- Da-Cruz, A.M.; Conceição-Silva, F.; Bertho, A.L.; Coutinho, S.G. Leishmania-Reactive CD4+ and CD8+ T Cells Associated with Cure of Human Cutaneous Leishmaniasis. Infect. Immun. 1994, 62, 2614–2618. [Google Scholar] [CrossRef]
- Coutinho, S.G.; Oliveira, M.P.; Da-Cruz, A.M.; De Luca, P.M.; Mendonça, S.C.F.; Bertho, A.L.; Soong, L.; McMahon-Pratt, D. T-Cell Responsiveness of American Cutaneous Leishmaniasis Patients to Purified Leishmania pifanoi Amastigote Antigens And Leishmania braziliensis Promastigote Antigens: Immunologic Patterns Associated with Cure. Exp. Parasitol. 1996, 84, 144–155. [Google Scholar] [CrossRef]
- Jayakumar, A.; Castilho, T.M.; Park, E.; Goldsmith-Pestana, K.; Blackwell, J.M.; McMahon-Pratt, D. TLR1/2 Activation during Heterologous Prime-Boost Vaccination (DNA-MVA) Enhances CD8+ T Cell Responses Providing Protection against Leishmania (Viannia). PLoS Negl. Trop. Dis. 2011, 5, e1204. [Google Scholar] [CrossRef]
- Stäger, S.; Rafati, S. CD8+ T Cells in Leishmania Infections: Friends or Foes? Front. Immunol. 2012, 3, 5. [Google Scholar] [CrossRef] [PubMed]
- Ikeogu, N.M.; Akaluka, G.N.; Edechi, C.A.; Salako, E.S.; Onyilagha, C.; Barazandeh, A.F.; Uzonna, J.E. Leishmania Immunity: Advancing Immunotherapy and Vaccine Development. Microorganisms 2020, 8, 1201. [Google Scholar] [CrossRef]
- Filho, A.A.P.; Nascimento, A.A.d.S.; Saab, N.A.A.; Fugiwara, R.T.; D’Ávila Pessoa, G.C.; Koerich, L.B.; Pereira, M.H.; Araújo, R.N.; Sant’Anna, M.R.V.; Gontijo, N.F. Evasion of the Complement System by Leishmania through the Uptake of Factor H, a Complement Regulatory Protein. Acta Trop. 2021, 224, 106152. [Google Scholar] [CrossRef]
- Hermoso, T.; Fishelson, Z.; Becker, S.I.; Hirschberg, K.; Jaffe, C.L. Leishmanial Protein Kinases Phosphorylate Components of the Complement System. EMBO J. 1991, 10, 4061–4067. [Google Scholar] [CrossRef]
- Chan, A.; Ayala, J.-M.; Alvarez, F.; Piccirillo, C.; Dong, G.; Langlais, D.; Olivier, M. The Role of Leishmania GP63 in the Modulation of Innate Inflammatory Response to Leishmania major Infection. PLoS ONE 2021, 16, e0262158. [Google Scholar] [CrossRef] [PubMed]
- El-Zayat, S.R.; Sibaii, H.; Mannaa, F.A. Toll-like Receptors Activation, Signaling, and Targeting: An Overview. Bull. Natl. Res. Cent. 2019, 43, 187. [Google Scholar] [CrossRef]
- Chauhan, P.; Shukla, D.; Chattopadhyay, D.; Saha, B. Redundant and Regulatory Roles for Toll-like Receptors in Leishmania Infection. Clin. Exp. Immunol. 2017, 190, 167–186. [Google Scholar] [CrossRef]
- Srivastava, S.; Pandey, S.P.; Jha, M.K.; Chandel, H.S.; Saha, B. Leishmania Expressed Lipophosphoglycan Interacts with Toll-like Receptor (TLR)-2 to Decrease TLR-9 Expression and Reduce Anti-Leishmanial Responses. Clin. Exp. Immunol. 2013, 172, 403–409. [Google Scholar] [CrossRef]
- Faria, M.S.; Reis, F.C.G.; Azevedo-Pereira, R.L.; Morrison, L.S.; Mottram, J.C.; Lima, A.P.C.A. Leishmania Inhibitor of Serine Peptidase 2 Prevents TLR4 Activation by Neutrophil Elastase Promoting Parasite Survival in Murine Macrophages. J. Immunol. 2011, 186, 411–422. [Google Scholar] [CrossRef]
- Shweash, M.; Adrienne McGachy, H.; Schroeder, J.; Neamatallah, T.; Bryant, C.E.; Millington, O.; Mottram, J.C.; Alexander, J.; Plevin, R. Leishmania mexicana Promastigotes Inhibit Macrophage IL-12 Production via TLR-4 Dependent COX-2, INOS and Arginase-1 Expression. Mol. Immunol. 2011, 48, 1800–1808. [Google Scholar] [CrossRef]
- Desjardins, M.; Descoteaux, A. Inhibition of Phagolysosomal Biogenesis by the Leishmania Lipophosphoglycan. J. Exp. Med. 1997, 185, 2061–2068. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, S.; Ghosh, S.; Hussain, S.; Paul, J.; Mukherjee, B. Linking Membrane Fluidity with Defective Antigen Presentation in Leishmaniasis. Parasite Immunol. 2021, 43, e12835. [Google Scholar] [CrossRef]
- Shio, M.T.; Hassani, K.; Isnard, A.; Ralph, B.; Contreras, I.; Gomez, M.A.; Abu-Dayyeh, I.; Olivier, M. Host Cell Signalling and Leishmania Mechanisms of Evasion. J. Trop. Med. 2012, 2012, 819512. [Google Scholar] [CrossRef]
- Steigerwald, M.; Moll, H. Leishmania major Modulates Chemokine and Chemokine Receptor Expression by Dendritic Cells and Affects Their Migratory Capacity. Infect. Immun. 2005, 73, 2564–2567. [Google Scholar] [CrossRef]
- Seyed, N.; Taheri, T.; Rafati, S. Live Attenuated-Nonpathogenic Leishmania and DNA Structures as Promising Vaccine Platforms against Leishmaniasis: Innovations Can Make Waves. Front. Microbiol. 2024, 15, 6369. [Google Scholar] [CrossRef] [PubMed]
- Nateghi-Rostami, M.; Sohrabi, Y. Memory T Cells: Promising Biomarkers for Evaluating Protection and Vaccine Efficacy against Leishmaniasis. Front. Immunol. 2024, 15, 4696. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.-W.; Karmakar, S.; Gannavaram, S.; Dey, R.; Lypaczewski, P.; Ismail, N.; Siddiqui, A.; Simonyan, V.; Oliveira, F.; Coutinho-Abreu, I.V.; et al. A Second Generation Leishmanization Vaccine with a Markerless Attenuated Leishmania major Strain Using CRISPR Gene Editing. Nat. Commun. 2020, 11, 3461. [Google Scholar] [CrossRef]
- Maksoud, S.; El Hokayem, J. The Cytokine/Chemokine Response in Leishmania/HIV Infection and Co-Infection. Heliyon 2023, 9, e15055. [Google Scholar] [CrossRef]
- Bernier, R.; Turco, S.J.; Olivier, M.; Tremblay, M. Activation of Human Immunodeficiency Virus Type 1 in Monocytoid Cells by the Protozoan Parasite Leishmania donovani. J. Virol. 1995, 69, 7282–7285. [Google Scholar] [CrossRef]
- Wolday, D.; Akuffo, H.; Britton, S.; Hathaway, A.; Sander, B. HIV-1 Inhibits Leishmania-Induced Cell Proliferation but Not Production of Interleukin-6 and Tumour Necrosis Factor Alpha. Scand. J. Immunol. 1994, 39, 380–386. [Google Scholar] [CrossRef]
- Bentwich, Z. Concurrent Infections That Rise the HIV Viral Load. J. HIV Ther. 2003, 8, 72–75. [Google Scholar] [PubMed]
- Wolday, D.; Akuffo, H.; Demissie, A.; Britton, S. Role of Leishmania donovani and Its Lipophosphoglycan in CD4+ T-Cell Activation-Induced Human Immunodeficiency Virus Replication. Infect. Immun. 1999, 67, 5258–5264. [Google Scholar] [CrossRef]
- Cacopardo, B.; Nigro, L.; Preiser, W.; Famà, A.; Satariano, M.I.; Braner, J.; Celesia, B.M.; Weber, B.; Russo, R.; Doerr, H.W. Prolonged Th2 Cell Activation and Increased Viral Replication in HIV-Leishmania Co-Infected Patients despite Treatment. Trans. R. Soc. Trop. Med. Hyg. 1996, 90, 434–435. [Google Scholar] [CrossRef] [PubMed]
- Barreto-de-Souza, V.; Pacheco, G.J.; Silva, A.R.; Castro-Faria-Neto, H.C.; Bozza, P.T.; Saraiva, E.M.; Bou-Habib, D.C. Increased Leishmania Replication in HIV-1–Infected Macrophages Is Mediated by Tat Protein through Cyclooxygenase-2 Expression and Prostaglandin E 2 Synthesis. J. Infect. Dis. 2006, 194, 846–854. [Google Scholar] [CrossRef] [PubMed]
- Alvar, J.; Aparicio, P.; Aseffa, A.; Den Boer, M.; Cañavate, C.; Dedet, J.-P.; Gradoni, L.; Ter Horst, R.; López-Vélez, R.; Moreno, J. The Relationship between Leishmaniasis and AIDS: The Second 10 Years. Clin. Microbiol. Rev. 2008, 21, 334–359. [Google Scholar] [CrossRef]
- Crum-Cianflone, N.F.; Wallace, M.R. Vaccination in HIV-Infected Adults. AIDS Patient Care STDS 2014, 28, 397–410. [Google Scholar] [CrossRef] [PubMed]
- Rubin, L.G.; Levin, M.J.; Ljungman, P.; Davies, E.G.; Avery, R.; Tomblyn, M.; Bousvaros, A.; Dhanireddy, S.; Sung, L.; Keyserling, H.; et al. Executive Summary: 2013 IDSA Clinical Practice Guideline for Vaccination of the Immunocompromised Host. Clin. Infect. Dis. 2014, 58, 309–318. [Google Scholar] [CrossRef]
- Khalil, E.A.G. Vaccines for Visceral Leishmaniasis: Hopes and Hurdles. In Leishmaniases as Re-emerging Diseases; InTech: London, UK, 2018. [Google Scholar]
- Noazin, S.; Khamesipour, A.; Moulton, L.H.; Tanner, M.; Nasseri, K.; Modabber, F.; Sharifi, I.; Khalil, E.A.G.; Bernal, I.D.V.; Antunes, C.M.F.; et al. Efficacy of Killed Whole-Parasite Vaccines in the Prevention of Leishmaniasis—A Meta-Analysis. Vaccine 2009, 27, 4747–4753. [Google Scholar] [CrossRef] [PubMed]
- Kamil, A.A.; Khalil, E.A.G.; Musa, A.M.; Modabber, F.; Mukhtar, M.M.; Ibrahim, M.E.; Zijlstra, E.E.; Sacks, D.; Smith, P.G.; Zicker, F.; et al. Alum-Precipitated Autoclaved Leishmania major plus Bacille Calmette-Guérrin, a Candidate Vaccine for Visceral Leishmaniasis: Safety, Skin-Delayed Type Hypersensitivity Response and Dose Finding in Healthy Volunteers. Trans. R. Soc. Trop. Med. Hyg. 2003, 97, 365–368. [Google Scholar] [CrossRef]
- Schetters, T.H.P.M.; Gravendyck, M. Regulations and Procedures in Parasite Vaccine Development. Parasitology 2006, 133, S189–S195. [Google Scholar] [CrossRef]
- Bertholet, S.; Goto, Y.; Carter, L.; Bhatia, A.; Howard, R.F.; Carter, D.; Coler, R.N.; Vedvick, T.S.; Reed, S.G. Optimized Subunit Vaccine Protects against Experimental Leishmaniasis. Vaccine 2009, 27, 7036–7045. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.C.; Kumar, A.; Samant, M. Genetically Modified Live Attenuated Vaccine: A Potential Strategy to Combat Visceral Leishmaniasis. Parasite Immunol. 2020, 42, e12732. [Google Scholar] [CrossRef]
- Dey, R.; Dagur, P.K.; Selvapandiyan, A.; McCoy, J.P.; Salotra, P.; Duncan, R.; Nakhasi, H.L. Live Attenuated Leishmania donovani P27 Gene Knockout Parasites Are Nonpathogenic and Elicit Long-Term Protective Immunity in BALB/c Mice. J. Immunol. 2013, 190, 2138–2149. [Google Scholar] [CrossRef]
- Abbaszadeh Afshar, M.J.; Elikaee, S.; Saberi, R.; Mohtasebi, S.; Mohebali, M. Expression Analysis of Centrin Gene in Promastigote and Amastigote Forms of Leishmania infantum Iranian Isolates: A Promising Target for Live Attenuated Vaccine Development against Canine Leishmaniasis. BMC Vet. Res. 2021, 17, 162. [Google Scholar] [CrossRef] [PubMed]
- Selvapandiyan, A.; Dey, R.; Gannavaram, S.; Solanki, S.; Salotra, P.; Nakhasi, H.L. Generation of Growth Arrested Leishmania Amastigotes: A Tool to Develop Live Attenuated Vaccine Candidates against Visceral Leishmaniasis. Vaccine 2014, 32, 3895–3901. [Google Scholar] [CrossRef] [PubMed]
- Volpedo, G.; Pacheco-Fernandez, T.; Holcomb, E.A.; Zhang, W.-W.; Lypaczewski, P.; Cox, B.; Fultz, R.; Mishan, C.; Verma, C.; Huston, R.H.; et al. Centrin-Deficient Leishmania mexicana Confers Protection against New World Cutaneous Leishmaniasis. NPJ Vaccines 2022, 7, 32. [Google Scholar] [CrossRef]
- Sharma, R.; Avendaño Rangel, F.; Reis-Cunha, J.L.; Marques, L.P.; Figueira, C.P.; Borba, P.B.; Viana, S.M.; Beneke, T.; Bartholomeu, D.C.; de Oliveira, C.I. Targeted Deletion of Centrin in Leishmania braziliensis Using CRISPR-Cas9-Based Editing. Front. Cell Infect. Microbiol. 2022, 11, 790418. [Google Scholar] [CrossRef]
- Selvapandiyan, A.; Debrabant, A.; Duncan, R.; Muller, J.; Salotra, P.; Sreenivas, G.; Salisbury, J.L.; Nakhasi, H.L. Centrin Gene Disruption Impairs Stage-Specific Basal Body Duplication and Cell Cycle Progression in Leishmania. J. Biol. Chem. 2004, 279, 25703–25710. [Google Scholar] [CrossRef] [PubMed]
- Plitnick, L.M. Global Regulatory Guidelines for Vaccines. In Nonclinical Development of Novel Biologics, Biosimilars, Vaccines and Specialty Biologics; Elsevier: Amsterdam, The Netherlands, 2013; pp. 225–241. [Google Scholar]
- Avendaño-Rangel, F.; Agra-Duarte, G.; Borba, P.B.; Moitinho, V.; Avila, L.T.; da Silva, L.O.; Viana, S.M.; Sharma, R.; Gannavaram, S.; Nakhasi, H.L.; et al. Immunization with Centrin-Deficient Leishmania braziliensis Does Not Protect against Homologous Challenge. Vaccines 2024, 12, 310. [Google Scholar] [CrossRef]
- Datta, S.; Roy, S.; Manna, M. Therapy with Radio-Attenuated Vaccine in Experimental Murine Visceral Leishmaniasis Showed Enhanced T Cell and Inducible Nitric Oxide Synthase Levels, Suppressed Tumor Growth Factor-Beta Production with Higher Expression of Some Signaling Molecules. Braz. J. Infect. Dis. 2015, 19, 36–42. [Google Scholar] [CrossRef]
- Daneshvar, H.; Coombs, G.H.; Hagan, P.; Phillips, R.S. Leishmania mexicana and Leishmania major: Attenuation of Wild-Type Parasites and Vaccination with the Attenuated Lines. J. Infect. Dis. 2003, 187, 1662–1668. [Google Scholar] [CrossRef] [PubMed]
- Daneshvar, H.; Namazi, M.J.; Kamiabi, H.; Burchmore, R.; Cleaveland, S.; Phillips, S. Gentamicin-Attenuated Leishmania infantum Vaccine: Protection of Dogs against Canine Visceral Leishmaniosis in Endemic Area of Southeast of Iran. PLoS Negl. Trop. Dis. 2014, 8, e2757. [Google Scholar] [CrossRef]
- Saljoughian, N.; Taheri, T.; Rafati, S. Live Vaccination Tactics: Possible Approaches for Controlling Visceral Leishmaniasis. Front. Immunol. 2014, 5, 134. [Google Scholar] [CrossRef] [PubMed]
- Breton, M.; Tremblay, M.J.; Ouellette, M.; Papadopoulou, B. Live Nonpathogenic Parasitic Vector as a Candidate Vaccine against Visceral Leishmaniasis. Infect. Immun. 2005, 73, 6372–6382. [Google Scholar] [CrossRef]
- Saljoughian, N.; Taheri, T.; Zahedifard, F.; Taslimi, Y.; Doustdari, F.; Bolhassani, A.; Doroud, D.; Azizi, H.; Heidari, K.; Vasei, M.; et al. Development of Novel Prime-Boost Strategies Based on a Tri-Gene Fusion Recombinant L. tarentolae Vaccine against Experimental Murine Visceral Leishmaniasis. PLoS Negl. Trop. Dis. 2013, 7, e2174. [Google Scholar] [CrossRef]
- Topuz Ata, D.; Hussain, M.; Jones, M.; Best, J.; Wiese, M.; Carter, K.C. Immunisation with Transgenic L. tarentolae Expressing Gamma Glutamyl Cysteine Synthetase from Pathogenic Leishmania Species Protected against L. major and L. donovani Infection in a Murine Model. Microorganisms 2023, 11, 1322. [Google Scholar] [CrossRef]
- Coler, R.; Reed, S. Second-Generation Vaccines against Leishmaniasis. Trends Parasitol. 2005, 21, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Morales-Yuste, M.; Martín-Sánchez, J.; Corpas-Lopez, V. Canine Leishmaniasis: Update on Epidemiology, Diagnosis, Treatment, and Prevention. Vet. Sci. 2022, 9, 387. [Google Scholar] [CrossRef]
- Dantas-Torres, F. Canine Leishmaniasis in the Americas: Etiology, Distribution, and Clinical and Zoonotic Importance. Parasit. Vectors 2024, 17, 198. [Google Scholar] [CrossRef]
- Moreno, J. Assessment of Vaccine-Induced Immunity Against Canine Visceral Leishmaniasis. Front. Vet. Sci. 2019, 6, 168. [Google Scholar] [CrossRef]
- Borja-Cabrera, G.P.; Santos, F.N.; Bauer, F.S.; Parra, L.E.; Menz, I.; Morgado, A.A.; Soares, I.S.; Batista, L.M.M.; Palatnik-de-Sousa, C.B. Immunogenicity Assay of the Leishmune® Vaccine against Canine Visceral Leishmaniasis in Brazil. Vaccine 2008, 26, 4991–4997. [Google Scholar] [CrossRef] [PubMed]
- Grimaldi, G.; Teva, A.; dos-Santos, C.B.; Santos, F.N.; Pinto, I.d.-S.; Fux, B.; Leite, G.R.; Falqueto, A. Field Trial of Efficacy of the Leish-Tec® Vaccine against Canine Leishmaniasis Caused by Leishmania infantum in an Endemic Area with High Transmission Rates. PLoS ONE 2017, 12, e0185438. [Google Scholar] [CrossRef] [PubMed]
- Bhowmick, S.; Ravindran, R.; Ali, N. Gp63 in Stable Cationic Liposomes Confers Sustained Vaccine Immunity to Susceptible BALB/c Mice Infected with Leishmania donovani. Infect. Immun. 2008, 76, 1003–1015. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.; Sundaram, S.; Singh, A.P.; Tripathi, A. A Gp63 Based Vaccine Candidate against Visceral Leishmaniasis. Bioinformation 2011, 5, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Kemp, M.; Theander, T.G.; Handman, E.; Hey, A.S.; Kurtzhals, J.A.L.; Hviid, L.; Sørensen, A.L.; Were, J.O.B.; Koech, D.K.; Kharazmi, A. Activation of Human T Lymphocytes by Leishmania Lipophosphoglycan. Scand. J. Immunol. 1991, 33, 219–224. [Google Scholar] [CrossRef]
- Mendoça, S.C.F.; Russell, D.G.; Coutinho, S.G. Analysis of the Human T Cell Responsiveness to Purified Antigens of Leishmania: Lipophosphoglycan (LPG) and Glycoprotein 63 (Gp 63). Clin. Exp. Immunol. 2008, 83, 472–478. [Google Scholar] [CrossRef]
- Jaffe, C.L.; Shor, R.; Trau, H.; Passwell, J.H. Parasite Antigens Recognized by Patients with Cutaneous Leishmaniasis. Clin. Exp. Immunol. 2008, 80, 77–82. [Google Scholar] [CrossRef]
- Garde, E.; Ramírez, L.; Corvo, L.; Solana, J.C.; Martín, M.E.; González, V.M.; Gómez-Nieto, C.; Barral, A.; Barral-Netto, M.; Requena, J.M.; et al. Analysis of the Antigenic and Prophylactic Properties of the Leishmania Translation Initiation Factors EIF2 and EIF2B in Natural and Experimental Leishmaniasis. Front. Cell Infect. Microbiol. 2018, 8, 112. [Google Scholar] [CrossRef]
- de Mendonça, S.C.F.; Cysne-Finkelstein, L.; Matos, D.C.d.S. Kinetoplastid Membrane Protein-11 as a Vaccine Candidate and a Virulence Factor in Leishmania. Front. Immunol. 2015, 6, 524. [Google Scholar] [CrossRef]
- Almeida, A.P.M.M.; Machado, L.F.M.; Doro, D.; Nascimento, F.C.; Damasceno, L.; Gazzinelli, R.T.; Fernandes, A.P.; Junqueira, C. New Vaccine Formulations Containing a Modified Version of the Amastigote 2 Antigen and the Non-Virulent Trypanosoma cruzi CL-14 Strain Are Highly Antigenic and Protective against Leishmania infantum Challenge. Front. Immunol. 2018, 9, 465. [Google Scholar] [CrossRef]
- Buxbaum, L.U.; Denise, H.; Coombs, G.H.; Alexander, J.; Mottram, J.C.; Scott, P. Cysteine Protease B of Leishmania mexicana Inhibits Host Th1 Responses and Protective Immunity. J. Immunol. 2003, 171, 3711–3717. [Google Scholar] [CrossRef] [PubMed]
- Mortazavidehkordi, N.; Fallah, A.; Abdollahi, A.; Kia, V.; Khanahmad, H.; Najafabadi, Z.G.; Hashemi, N.; Estiri, B.; Roudbari, Z.; Najafi, A.; et al. A Lentiviral Vaccine Expressing KMP11-HASPB Fusion Protein Increases Immune Response to Leishmania major in BALB/C. Parasitol. Res. 2018, 117, 2265–2273. [Google Scholar] [CrossRef]
- Lopes Valentim Di Paschoale Ostolin, T.; Rodrigues Gusmão, M.; Augusto Siqueira Mathias, F.; Mirelle de Oliveira Cardoso, J.; Mendes Roatt, B.; Dian de Oliveira Aguiar-Soares, R.; Conceição Ruiz, J.; de Melo Resende, D.; Cristiane Fortes de Brito, R.; Barbosa Reis, A. A Specific Leishmania infantum Polyepitope Vaccine Triggers Th1-Type Immune Response and Protects against Experimental Visceral Leishmaniasis. Cell Immunol. 2022, 380, 104592. [Google Scholar] [CrossRef] [PubMed]
- Joshi, J.; Kaur, S. Studies on the Protective Efficacy of Second-Generation Vaccine along with Standard Antileishmanial Drug in Leishmania donovani Infected BALB/c Mice. Parasitology 2014, 141, 554–562. [Google Scholar] [CrossRef] [PubMed]
- Melo, A.R.d.S.; de Macêdo, L.S.; Invenção, M.d.C.V.; de Moura, I.A.; da Gama, M.A.T.M.; de Melo, C.M.L.; Silva, A.J.D.; Batista, M.V.d.A.; Freitas, A.C.d. Third-Generation Vaccines: Features of Nucleic Acid Vaccines and Strategies to Improve Their Efficiency. Genes 2022, 13, 2287. [Google Scholar] [CrossRef]
- Walker, P.S.; Scharton-Kersten, T.; Rowton, E.D.; Hengge, U.; Bouloc, A.; Udey, M.C.; Vogel, J.C. Genetic Immunization with Glycoprotein 63 cDNA Results in a Helper T Cell Type 1 Immune Response and Protection in a Murine Model of Leishmaniasis. Hum. Gene Ther. 1998, 9, 1899–1907. [Google Scholar] [CrossRef]
- Dumonteil, E. DNA Vaccines Induce Partial Protection against Leishmania mexicana. Vaccine 2003, 21, 2161–2168. [Google Scholar] [CrossRef]
- Jorjani, O.; Ghaffarifar, F.; Sharifi, Z.; Dalimi, A.; Ziaei-Hezarjaribi, H.; Talebi, B. LACK Gene’s Immune Response Induced by Cocktail DNA Vaccine with IL-12 Gene Against Cutaneous Leishmaniasis in BALB/c Mice. Avicenna J. Med. Biotechnol. 2018, 10, 134–140. [Google Scholar]
- Gomes, D.C.O.; Souza, B.L.d.S.C.; Schwedersky, R.P.; Covre, L.P.; de Matos Guedes, H.L.; Lopes, U.G.; Ré, M.I.; Rossi-Bergmann, B. Intranasal Immunization with Chitosan Microparticles Enhances LACK-DNA Vaccine Protection and Induces Specific Long-Lasting Immunity against Visceral Leishmaniasis. Microbes Infect. 2022, 24, 104884. [Google Scholar] [CrossRef]
- Kardani, K.; Bolhassani, A.; Shahbazi, S. Prime-Boost Vaccine Strategy against Viral Infections: Mechanisms and Benefits. Vaccine 2016, 34, 413–423. [Google Scholar] [CrossRef]
- Mazumder, S.; Maji, M.; Das, A.; Ali, N. Potency, Efficacy and Durability of DNA/DNA, DNA/Protein and Protein/Protein Based Vaccination Using Gp63 Against Leishmania donovani in BALB/c Mice. PLoS ONE 2011, 6, e14644. [Google Scholar] [CrossRef] [PubMed]
- Zanin, F.H.C.; Coelho, E.A.F.; Tavares, C.A.P.; Marques-da-Silva, E.A.; Silva Costa, M.M.; Rezende, S.A.; Gazzinelli, R.T.; Fernandes, A.P. Evaluation of Immune Responses and Protection Induced by A2 and Nucleoside Hydrolase (NH) DNA Vaccines against Leishmania chagasi and Leishmania amazonensis Experimental Infections. Microbes Infect. 2007, 9, 1070–1077. [Google Scholar] [CrossRef] [PubMed]
- Tabatabaie, F.; Mahdavi, M.; Faezi, S.; Dalimi, A.; Sharifi, Z.; Akhlaghi, L.; Ghaffarifar, F. Th1 Platform Immune Responses Against Leishmania major Induced by Thiol-Specific Antioxidant-Based DNA Vaccines. Jundishapur J. Microbiol. 2014, 7. [Google Scholar] [CrossRef]
- Martínez-Rodrigo, A.; Dias, D.S.; Ribeiro, P.A.F.; Roatt, B.M.; Mas, A.; Carrión, J.; Coelho, E.A.F.; Domínguez-Bernal, G. Immunization with the HisAK70 DNA Vaccine Induces Resistance against Leishmania amazonensis Infection in BALB/c Mice. Vaccines 2019, 7, 183. [Google Scholar] [CrossRef] [PubMed]
- Osman, M.; Mistry, A.; Keding, A.; Gabe, R.; Cook, E.; Forrester, S.; Wiggins, R.; Di Marco, S.; Colloca, S.; Siani, L.; et al. A Third Generation Vaccine for Human Visceral Leishmaniasis and Post Kala Azar Dermal Leishmaniasis: First-in-Human Trial of ChAd63-KH. PLoS Negl. Trop. Dis. 2017, 11, e0005527. [Google Scholar] [CrossRef]
- Qin, F.; Xia, F.; Chen, H.; Cui, B.; Feng, Y.; Zhang, P.; Chen, J.; Luo, M. A Guide to Nucleic Acid Vaccines in the Prevention and Treatment of Infectious Diseases and Cancers: From Basic Principles to Current Applications. Front. Cell Dev. Biol. 2021, 9, 633776. [Google Scholar] [CrossRef]
- Dinc, R. Leishmania Vaccines: The Current Situation with Its Promising Aspect for the Future. Korean J. Parasitol. 2022, 60, 379–391. [Google Scholar] [CrossRef]
- You, H.; Jones, M.K.; Gordon, C.A.; Arganda, A.E.; Cai, P.; Al-Wassiti, H.; Pouton, C.W.; McManus, D.P. The MRNA Vaccine Technology Era and the Future Control of Parasitic Infections. Clin. Microbiol. Rev. 2023, 36, e00241-21. [Google Scholar] [CrossRef]
- Duthie, M.S.; Van Hoeven, N.; MacMillen, Z.; Picone, A.; Mohamath, R.; Erasmus, J.; Hsu, F.-C.; Stinchcomb, D.T.; Reed, S.G. Heterologous Immunization with Defined RNA and Subunit Vaccines Enhances T Cell Responses That Protect Against Leishmania donovani. Front. Immunol. 2018, 9, 2420. [Google Scholar] [CrossRef]
- Thakur, A.; Mikkelsen, H.; Jungersen, G. Intracellular Pathogens: Host Immunity and Microbial Persistence Strategies. J. Immunol. Res. 2019, 2019, 1356540. [Google Scholar] [CrossRef]
Vaccine | Classification | Vaccine Antigen | Adjuvant | Target | Phase Reached | Major Findings | References |
---|---|---|---|---|---|---|---|
Leishvaccine | First generation | Whole-killed promastigotes of L. amazonensis | BCG | Dogs | III | Induced modifications in monocytes, activation of CD4+ T cells, CD8+ T cells, and B lymphocytes. It also prompted a mixed cytokine profile including IFN-γ and IL-4. | [21,22] |
Autoclaved Leishmania | First generation | Killed Leishmania spp. | BCG | Humans | III | Minimal LST conversion in participants and significant reduction in VL incidence among LST-converted individuals. | [23,24,25,26] |
Leishmune | Second generation | FML | Saponin | Dogs | III | Between 92 and 95% of vaccinated dogs were protected against canine VL. | [27] |
CaniLeish | Second generation | LiESP | Saponin | Dogs | III | Vaccinated dogs developed a Th1 immune response within three weeks, and the vaccine exhibited a protection against infection rate of 99.4%. | [28,29] |
Leish-Tec | Second generation | L. donovani A2 protein | Saponin | Dogs | III | Vaccination of infected healthy animals significantly reduced clinical progression and decreased mortality. | [30] |
LetiFend | Second generation | L. infantum proteins (H2A, LiP2a, LiP2b, and LiP0) | None | Dogs | III | Overall efficacy in the prevention of confirmed cases of canine leishmaniasis in endemic areas with high disease pressure was shown to be 72%. | [18] |
Leish-F1 | Second generation | TSA, LmSTI1, and LeIF | MPL-SE | Humans | I | The vaccine was safe and well tolerated by participants and induced T cell production of IFN-γ and other cytokines in response to stimulation with the antigen. | [31] |
Leish-F2 | Second generation | TSA, LmSTI1, and LeIF | MPL-SE | Humans | II | Showed potential therapeutic effects on CL patients when combined with the adjuvant. | [32] |
Leish-F3 | Second generation | NH36 and SMT | MPL-SE and GLA-SE | Humans | I | Subjects vaccinated with Leish-F3 and GLA-SE had significant levels of antigen-specific IgG antibodies in their serum, along with IFN-γ, TNF, and IL-2 secretion in response to the antigen. | [33] |
ChAd63-KH | Third generation | KMP-11 and HASPB | None | Humans | II | It elicited a variety of CD8+ T cells specific to Leishmania antigens in PKDL patients. Vaccination was safe and effectively stimulated the production of IFN-γ and the activation of dendritic cells. | [34] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayala, A.; Llanes, A.; Lleonart, R.; Restrepo, C.M. Advances in Leishmania Vaccines: Current Development and Future Prospects. Pathogens 2024, 13, 812. https://doi.org/10.3390/pathogens13090812
Ayala A, Llanes A, Lleonart R, Restrepo CM. Advances in Leishmania Vaccines: Current Development and Future Prospects. Pathogens. 2024; 13(9):812. https://doi.org/10.3390/pathogens13090812
Chicago/Turabian StyleAyala, Andreina, Alejandro Llanes, Ricardo Lleonart, and Carlos M. Restrepo. 2024. "Advances in Leishmania Vaccines: Current Development and Future Prospects" Pathogens 13, no. 9: 812. https://doi.org/10.3390/pathogens13090812
APA StyleAyala, A., Llanes, A., Lleonart, R., & Restrepo, C. M. (2024). Advances in Leishmania Vaccines: Current Development and Future Prospects. Pathogens, 13(9), 812. https://doi.org/10.3390/pathogens13090812