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Abstract: Globally, forests are constantly threatened by a plethora of disturbances of natural
and anthropogenic origin, such as climate change, forest fires, urbanization, and pollution.
Besides the most common stressors, during the last few years, Portuguese forests have
been impacted by severe decline phenomena caused by invasive pathogens, many of which
belong to the genus Phytophthora. The genus Phytophthora includes a large number of species
that are invading forest ecosystems worldwide, chiefly as a consequence of global trade
and human activities. This paper reports the results of a survey of Phytophthora diversity
in natural and semi-natural forest ecosystems in Portugal along an elevation gradient.
Isolations performed from 138 symptomatic plant tissues and rhizosphere samples collected
from 26 plant species yielded a total of 19 Phytophthora species belonging to 6 phylogenetic
clades, including P. cinnamomi (36 isolates), P. multivora (20), P. plurivora (9), P. cactorum (8),
P. lacustris (8), P. pseudocryptogea (8), P. amnicola (6), P. hedraiandra (6), P. pseudosyringae (5),
P. thermophila (5), P. bilorbang (4), P. inundata (4), P. asparagi (3), P. citricola (3), P. gonapodyides
(3), P. rosacearum (3), P. chlamydospora (2), P. pachypleura (2), and P. syringae (1). Overall, the
data obtained highlight the widespread occurrence of P. cinnamomi in natural ecosystems
from sea level to mountain habitats. The results of the pathogenicity tests carried out on
2-year-old chestnut plants confirmed the key role of P. cinnamomi in the recrudescence
of chestnut ink disease and the additional risk posed by P. pachypleura, P. plurivora, and
P. multivora to Portuguese chestnut forests. Finally, three species, P. citricola, P. hedraiandra,
and P. pachypleura, are reported for the first time in the natural ecosystems of Portugal.

Keywords: emerging diseases; invasive pathogens; diversity; host jump; oomycetes

1. Introduction
In Portugal, forests provide a variety of resources and play a primary role in the

national economy [1]. About 36% of the Portuguese mainland is covered by forested
areas [2]. According to the last National Forest Inventory, Portuguese forests are mainly
composed of Eucalyptus spp. (mostly Eucalyptus globulus) plantations with a surface of
over 845,000 hectares. The other key forest species are Quercus suber (720,000 ha) and Pinus
pinaster (713,000 ha) [2].
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Forest productions, such as timber, cork, pulp, paper, and wooden furniture, are an
important source of income and represent approximately 2% of the national gross domestic
product and 10% of total Portuguese exports [1].

In Portugal, during the past decades, a change in land management has occurred fol-
lowing the progressive abandonment of agricultural activities and the consequent transfer
of land use towards forestry [3]. Both natural and artificial forests in Portugal are constantly
threatened by disturbances of natural and anthropogenic origin. Forest fires and drought
induced by climate change are currently the most serious abiotic threats to Portuguese
forests, inducing phenomena of land degradation and desertification [4].

Although forest fires are natural occurrences in Mediterranean regions, the past few
decades have seen a clear increase in the frequency of major forest fire events, especially in
Portugal [4–6]. Portugal is the European country with the highest percentage of its forestry
land lost to wildfires between 2001 and 2021, about 13% [7].

Climate influences the structure and function of forest ecosystems and plays a primary
role in forest health. Rapid variation in climatic conditions can directly and indirectly
affect the growth and productivity of forests through changes in temperature, humidity,
precipitation, and other factors [8,9]. In the last three decades, a significant reduction in
summer rainfall characterized the Iberian Peninsula, alternating with extreme events of
concentrated rain [10,11]. Severe summer drought events combined with the spread of
fire-prone forest species such as E. globulus and P. pinaster create the most suitable conditions
for the occurrence of large-scale fires on the Portuguese mainland [12].

Abiotic disturbances and stress conditions can intensify many of the biotic threats
to forests, such as the outbreak of invasive pests and pathogens [9,13]. In recent years, a
drastic decline in forest ecosystems has characterized large areas of Portugal [14–16]. The
low diversity of forest species and the dominant occurrence of clonal stands could favour
the occurrence of large outbreaks of forest pests and pathogens, at either spatial or temporal
scales, whenever disturbances occur [14]. Pine and cork oak forests are the formations most
affected by multiple attacks of insects and fungi [14].

Among the most serious pathogens threatening European forests, some species be-
longing to the family Botryosphaeriaceae (Ascomycota) and the genus Phytophthora (Oomy-
cota) have been assuming a primary role in recent decades [17,18]. These invasive and
often polyphagous pathogens can simultaneously affect plants, causing serious decline
phenomena [19–21].

In Portugal, some recent studies have identified the widespread occurrence, in forest
ecosystems, of 22 species of Botryosphaeriaceae [15,22–25], whereas, until some years ago,
little was known about the occurrence and diversity of oomycetes in natural ecosystems
in Portugal [26,27]. Although serious outbreaks of ink disease have impacted chestnut
forests since the first half of the 19th century and cork oak stands since 1900, scientific
interest in Phytophthora disease has grown considerably only in recent years [27–30]. Recent
studies have revealed a widespread presence of P. cinnamomi in chestnut, eucalyptus and
cork oak forests, especially in the central and southern areas of the country [29,31–36]. In
addition, severe Phytophthora outbreaks are devastating riparian and wet habitats populated
by Alnus glutinosa in Central Portugal [27,37]. A recent study listed over 30 species and
hybrids in forest ecosystems and nurseries in Portugal [38].

Therefore, given the still limited information about the Phytophthora species involved in
the severe decline phenomena affecting natural and artificial forest formations in Portugal,
a study was conducted to evaluate the diversity and distribution of Phytophthora species in
the main habitats along an elevation gradient.
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2. Materials and Methods
2.1. Field Surveys and Sampling Procedure

From February to June 2022, a preliminary survey was conducted across Portugal
to evaluate the health status of forest formations. Afterwards, twenty-one different sites
were randomly selected along the entire elevation gradient from the sea level (0 m a.s.l)
to the highest mountains (1900 m a.s.l.). The 21 sites are representative of three differ-
ent macroclimatic areas, a Mediterranean/coastal zone (A), a temperate zone (B), and a
submontane/montane belt (C), according to the climatic zonation of Köppen [39].

At each site, the plants were checked for the presence of typical Phytophthora disease
symptoms on the canopy (leaf necrosis, bleeding cankers, epicormic shoots, sudden death,
and chlorosis) and root system (exudates, necrosis, and loss of fine roots). At some sites
(1, 5, 6, 8, 9, 10, 11, 12, 13, 16, 17, and 21), a linear transect of 50 m was randomly established
to evaluate the disease incidence and mortality rate, as reported in Bregant et al. [27]
(Table 1).

Table 1. Details of study sites and the samples collected.

Study
Site

Climate
Zone

Elevation
(m a.s.l.)

Coordinates Number of Samples

Latitude Longitude Rhizosphere Necrotic Tissues

1 A 40 37.118918 −8.567076 Pl(5), Pp(2), Qc(2), Eg(1) -
2 A 50 37.162606 −8.251300 Ces(3), Ph(1) -
3 A 4 41.071134 −8.657429 Ce(1) -
4 A 0 40.598795 −8.755363 Al(6), Ce(2) Ce(2)
5 B 12 40.724190 −8.570960 Psp(6) -
6 B 16 40.718277 −8.569993 Qr(3), Ssp(2) Qr(1)
7 B 6 40.704444 −8.607099 Fa(2), Al(1) -
8 B 5 40.695340 −8.633084 Eg(3), Fa(1) -
9 B 18 40.551664 −8.575524 Eg(3) -
10 B 437 41.554036 −8.375251 Qr(7), Qs(2) -
11 B 400 38.783018 −9.416210 Cs(5), Ap(4), Qc(3), Rp(2), Eg(1) Rp(21), Vm(2), Vt(4)
12 B 300 38.781366 −9.386651 Cs(7), Qr(6), Qs(2), Fm(2) -
13 C 1056 40.490891 −7.520354 Bc(4) -
14 C 500 40.612330 −7.519114 Qp(1) -
15 C 1092 40.442888 −7.511881 Fe(2), Bc(1), Ps(1) -
16 C 1107 40.541458 −7.454340 Cs(2), Qp(1) -
17 C 1300 40.299541 −7.537996 Ld(2), Sa(1) -
18 C 1450 40.328321 −7.587890 Bc(2), Ld(1) -
19 C 1900 40.332200 −7.611709 Jc(2) Jc(2)
20 C 900 40.327858 −7.677459 Cs(1) -
21 C 680 40.383422 −7.700445 Cs(2) -

In brackets the number of plants collected: Acacia longifolia (Al), Acer pseudoplatanus (Ap), Betula celtiberica (Bc),
Castanea sativa (Cs), Carpobrotus edulis (Ce), Ceratonia siliqua (Ces), Eucalyptus globulus (Eg), Ficus macrophylla
(Fm), Fraxinus angustifolia (Fa), Fraxinus excelsior (Fe), Juniperus communis (Jc), Larix decidua (Ld), Pinus halepensis
(Ph), Pistacia lentiscus (Pl), Pinus pinea (Pp), Pinus sylvestris (Ps), Populus sp. (Psp), Quercus coccifera (Qc), Quercus
pyrenaica (Qp), Quercus robur (Qr), Quercus suber (Qs), Rhododendron ponticum (Rp), Sorbus aucuparia (Sa), Salix sp.
(Ssp), Vinca major (Vm), Viburnum tinus (Vt).

A total of 138 samples were randomly collected from 26 plant host species, including
rhizosphere (106 samples), necrotic leaves, and bark tissues from bleeding cankers (32)
(Table 1). The plants sampled were divided into natural, planted, and invasive.

2.2. Isolation of Pathogens

In the laboratory, Phytophthora isolation was attempted as reported in Bregant et al. [27].
Rhizosphere soil samples were placed in plastic cylinders and flooded with distilled water.
Young Q. suber, Hedera helix, and Pittosporum sp. leaves were used as bait on the water
surface. Cylinders were kept at 20 ◦C under natural daylight and checked after 12–24 h
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for 3–5 days. Leaves showing dark spots were divided into small fragments of 5 mm2 and
placed on 90 mm Petri dishes containing the selective medium PDA+ reported in Bregant
et al. [40].

The isolation of Phytophthora species was also directly attempted from necrotic leaves
and bark tissues collected from bleeding cankers. Small fragments taken with a sterile
scalpel along the border of the necrosis were placed in Petri dishes containing PDA+.

The plates were incubated in the dark at 20 ◦C and examined every 12 h. Hyphal tips
typical of Phytophthora from the emerging colonies were sub-cultured on potato dextrose
agar (PDA) and carrot agar (CA) and incubated at 20 ◦C in the dark [41].

2.3. Identification of Pathogens

All isolates were initially divided into morphotypes based on colony growth character-
istics, including their colony appearance after 7 days of incubation on PDA and CA at 20 ◦C
in darkness, as well as the morpho-biometric data of sporangia and oogonia. All isolates
were initially divided into morphotypes. Phytophthora isolates were grouped according to
morphological descriptions provided by Erwin and Ribeiro [41]. To enhance sporangia pro-
duction, CA plugs (5 mm diameter) of each isolate were placed in Petri dishes containing
10 mL of unsterile pond water with 2 mL of carrot broth added. Sporangial production was
assessed every 6 h for 4 days by microscopic observation. For all isolates, breeding systems
were evaluated on CA Petri dishes after 20 days of incubation at 20 ◦C. The biometric
data of morphological structures were measured with the software Motic Images Plus
3.0 paired with a Moticam 10+ camera connected to a Motic BA410E microscope (MOTIC
INSTRUMENTS INC. Viking Way, Richmond, BC, Canada).

Molecular analysis was used to confirm the identity of all isolates at the species level.
The genomic DNA was extracted from the mycelium of 5-day-old cultures grown on PDA
at 20 ◦C, according to the protocol reported by Möller et al. [42]. The primers ITS5 and
ITS4 were used to amplify and sequence the internal transcribed spacer (ITS) regions,
including the complete 5.8S gene [43]. Polymerase chain reaction (PCR) mixtures and
amplification conditions were as described by Bregant et al. [27]. PCR amplicons were
purified with the DNA NZY Gelpure kit MB01102 (Nzytech, Lisbon, Portugal) following
the manufacturer’s instructions. The ITS regions were sequenced by the GATC Biotech
(Cologne, Germany). The nucleotide sequences were read and edited with FinchTV 1.4.0
(Geospiza, Inc., http://www.geospiza.com/finchtv, accessed on 1 December 2024) and then
compared with reference sequences (ex-type material) retrieved from GenBank using the
BLASTn algorithm. ITS sequences from representative isolates obtained in this study were
deposited in GenBank www.ncbi.nlm.nih.gov/genbank (accessed on 1 December 2024)
(Table 2).

2.4. Phylogenetic Analysis

Molecular phylogeny based on ITS sequences was used to reconstruct evolutionary
relationships among the Phytophthora species obtained in this study into the known clades of
the genus [44]. Nineteen ITS sequences representative of the Phytophthora species obtained
were compiled in a dataset together with thirty-two sequences from ex-type material of
Phytophthora species representative of all phylogenetical clades (Table 2). Two isolates of
Halophytophthora avicenniae and two of Nothophytophthora caduca, including those obtained
in this study, were included as outgroup taxa.

Sequences were aligned with ClustalX v. 1.83 [45] using the parameters reported by
Bregant et al. [40].

http://www.geospiza.com/finchtv
www.ncbi.nlm.nih.gov/genbank
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Table 2. Details of isolates included in the phylogenetic analyses. Ex-type cultures are given in bold
and newly generated sequences are indicated in italics.

Species ITS Clade Collection No. Host ITS GenBank Accession No.

Phytophthora cactorum 1 CBS231.30 Syringa vulgaris MG783385
P. cactorum 1 CBP168 Castanea sativa PQ571399

P. hedraiandra 1 CBS111725 Viburnum sp. MG865504
P. hedraiandra 1 CBP188 Betula celtiberica PQ571404

P. citricola 2 CBS221.88 Citrus sinensis MG865475
P. citricola 2 CBP150 Acer pseudoplatanus PQ571402

P. multivora 2 CBS124094 Eucalyptus marginata FJ237521
P. multivora 2 CBP154 C. sativa PQ571407

P. pachypleura 2 IMI502404 Aucuba japonica KC855330
P. pachypleura 2 CBP158 C. sativa PQ571408

P. plurivora 2 CBS124093 Fagus sylvatica MG865568
P. plurivora 2 CBP164 C. sativa PQ571409

P. ilicis 3 P3939 Ilex aquifolium MG865511
P. pseudosyringae 3 CBS111772 Quercus robur MG865574
P. pseudosyringae 3 CBP195 B. celtiberica PQ571411

P. alticola 4 CBS141718 Eucalyptus grandis KX247599
P. palmivora 4 CBS305.62 Areca catechu LC595875

P. cocois 5 P19948 Cocos nucifera MG865478
P. heveae 5 CBS296.29 Hevea brasiliensis MG865505

P. amnicola 6 CBS131652 water JQ029956
P. amnicola 6 CBP134 Rhododendron ponticum PQ571396
P. asparagi 6 CBS132095 Lomandra sonderi EU301168
P. asparagi 6 CBP179 Pistacia lentiscus PQ571397
P. bilorbang 6 CBS161653 Rubus anglicandicans JQ256377
P. bilorbang 6 CBP140 R. ponticum PQ571398

P. chlamydospora 6 P6133 Prunus sp. MG865471
P. chlamydospora 6 CBP148 A. pseudoplatanus PQ571400
P. gonapodyides 6 P7050 Alnus sp. MG865501
P. gonapodyides 6 CBP186 B. celtiberica PQ571403

P. inundata 6 CBS216.85 Salix matsudana MG865516
P. inundata 6 CBP78 Eucalyptus globulus PQ571405
P. lacustris 6 IMI389725 S. matsundana JQ626605
P. lacustris 6 CBP162 Populus sp. PQ571406

P. rosacearum 6 CBS124696 Malus sp. EU925376
P. rosacearum 6 CBP116 Acacia longifolia PQ571412
P. thermophila 6 CBS127954 E. marginata EU301155
P. thermophila 6 CBP90 Q. robur PQ571414
P. cinnamomi 7 CBS144.22 Cinnamomum burmannii MG865473
P. cinnamomi 7 CBP185 C. sativa PQ571401

P. niederhauserii 7 CBS149824 Hedera helix MG865552
P. pseudocryptogea 8 CBS139749 Isopogon buxifolius KP288376
P. pseudocryptogea 8 CBP166 C. sativa PQ571410

P. syringae 8 CBS110161 S. vulgaris MG865590
P. syringae 8 CBP220 Q. robur PQ571413
P. parsiana 9 IMI395329 Ficus carica MG865562
P. polonica 9 CBS119650 Alnus glutinosa AB511828

P. boehmeriae 10 CBS 291.29 Boehmeria nivea MG783382
P. kernoviae 10 IMI393170 F. sylvatica AY940661

P. lilii 11 CBS135746 Lilium longiflorum MG865523
P. castanetorum 12 CBS142299 C. sativa MF036182

P. quercina 12 CBS784.95 Q. robur MG865578
Halophytophthora avicennae - CBS188.85 Avicennia marina HQ643147

H. avicenniae - CBP98 E. globulus PQ571415
Nothophytophthora caduca - CBS142350 water KY788401

N. caduca - CBP163 Vinca major PQ571416

Phylogenetic reconstructions were performed with MEGA-X 10.1.8, including all gaps
in the analyses. The best model of DNA sequence evolution was determined automatically
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by the software [46]. Maximum likelihood (ML) analysis was performed with a neighbour-
joining (NJ) starting tree generated by the software. A bootstrap analysis (1000 replicates)
was used to estimate the robustness of nodes.

2.5. Pathogenicity Test

To fulfil Koch’s postulates, the pathogenicity of six representative isolates of Phy-
tophthora obtained from chestnut (P. cactorum CBP168, P. cinnamomi CBP185, P. multivora
CBP154, P. pachypleura CBP158, P. plurivora CBP164, and P. pseudocryptogea CBP166) was
tested against 2-year-old chestnut plants cultivated in plastic pots (1 L volume). The experi-
mental design consisted of eight seedlings inoculated per isolate. A 5 mm diameter hole
was made through the bark of the stem using a cork borer and replaced with an agar plug of
the same size taken from the margin of 5-day-old cultures grown on PDA. The inoculation
wounds were wrapped with sterile damp cotton wool and covered with aluminium foil.
Eight seedlings were inoculated with a sterile plug of PDA as a control. Plants were kept in
field conditions ranging from 9 to 29 ◦C and watered regularly for 30 days.

At the end of the experimental period, symptoms were checked and the extent of
the external lesions was measured. Pathogenicity assay data were first checked for nor-
mality (Anderson–Darling test) and then subjected to analysis of variance (ANOVA).
Significant differences among mean values were determined using Fisher’s least signifi-
cant differences multiple range test (p = 0.05) after one-way ANOVA using XLSTAT 2008
software (Addinsoft).

Re-isolation was made from small pieces of wood removed from lesion margins onto
PDA+. Growing colonies were sub-cultured onto CA and PDA, incubated in the dark at
20 ◦C, and identified through morphology and ITS sequencing.

2.6. Geographic Distribution of Phytophthora Species

A literature review was conducted, focusing on the terms “Phytophthora” and “Portu-
gal” (source: Scopus, Google Scholar, and GenBank, November 2024). All relevant records
containing geographic information were standardized and organized in a single dataset.
Records without a clear geographical identification were not included in this analysis.

3. Results
3.1. Field Survey

Symptoms of decline and mortality were recovered in almost all monitored sites in
Portugal. More specifically, emerging diseases are affecting all climatic regions in the
country, ranging from the Mediterranean vegetation of the Algarve to the montane habitats
in Serra da Estrela (>1900 metres a.s.l.).

Affected plants showed mainly typical root and collar rot symptoms, exudates at
the lower part of the stem, stunted growth, and, in severe cases, sudden death (Figure 1).
In some sites, aerial Phytophthora symptoms were observed on different plant species,
involving various plant organs such as leaves and twigs (Figure 1). Moreover, in stems and
branches, extensive bleeding cankers were observed and necrosis progressively girdled the
circumference of the branch, causing partial or total death of the crown (Figure 1).

Disease incidence ranged from 30 to 100% with an average mortality rate of 11–55%
(Table 3). The most affected formation appeared to be the coastal maquis of Pistacia
lentiscus and the mountain forests of Betula celtiberica, with a mortality rate of 31 and 55%,
respectively.
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Figure 1. Overview of Phytophthora disease symptoms observed in coastal ecosystems (a–e), tem-
perate (f–j), and montane forests (k–o) across Portugal: Acacia longifolia (a,d), Pistacia lentiscus (b),
Carpobrotus edulis (c,e), Quercus spp. (f–i), Rhododendron ponticum (j), Betula celtiberica (k,l,n), Castanea
sativa (m), and Juniperus communis (o). On the left, starting from the top, colony morphology of
Phytophthora amnicola, P. asparagi, P. bilorbang, P. cactorum, P. chlamydospora, P. cinnamomi, P. citri-
cola, P. gonapodyides, P. hedraiandra, P. inundata, P. lacustris, P. multivora, P. pachypleura, P. plurivora,
P. pseudocryptogea, P. pseudosyringae, P. rosacearum, P. syringae, and P. thermophila after 7 days of growth
at 20 ◦C on CA in the dark.

Table 3. Symptoms observed on each plant host and disease incidence/mortality rate estimated.

Plant Species Symptoms Observed Disease Incidence (%) Mortality Rate (%)

Acacia longifolia Root rot, bleeding cankers, canopy decline, sudden death 60–83 15–28

Acer pseudoplatanus Root rot, exudates, bleeding cankers, chlorosis, stunted growth nd nd

Betula celtiberica Root rot, bleeding cankers, canopy decline, sudden death 95 55

Carpobrotus edulis Leaf necrosis, wilting nd nd

Castanea sativa Root rot, bleeding cankers, chlorosis, canopy decline, sudden death 60–100 17–26

Ceratonia siliqua Root rot, chlorosis, canopy decline nd nd

Eucalyptus globulus Root rot, bleeding cankers, chlorosis, canopy decline, sudden death 80 20

Ficus macrophylla Root rot, bleeding cankers, chlorosis, canopy decline, sudden death nd nd

Fraxinus angustifolia Root and collar rot, canopy decline nd nd

Fraxinus excelsior Root rot, canopy decline nd nd

Juniperus communis Shoot blight, sudden death nd nd

Larix decidua Root rot, chlorosis, canopy decline, sudden death 50 10

Pistacia lentiscus Root rot, chlorosis, canopy decline, sudden death 76 31

Pinus halepensis Root rot, sudden death nd nd

Pinus pinea Root rot, sudden death nd nd

Pinus sylvestris Root rot, canopy decline nd nd
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Table 3. Cont.

Plant Species Symptoms Observed Disease Incidence (%) Mortality Rate (%)

Populus sp. Root rot, chlorosis, canopy decline, sudden death 70 12

Quercus coccifera Root rot, canopy decline 60 17

Quercus pyrenaica Root rot, canopy decline nd nd

Quercus robur Root rot, bleeding cankers, chlorosis, canopy decline, sudden death 67 11

Quercus suber Root rot, bleeding cankers, chlorosis, canopy decline, sudden death nd nd

Rhododendron ponticum Leaf necrosis, wilting, shoot blight, root rot, sudden death 100 16

Salix sp. Root rot, chlorosis, canopy decline, sudden death 75 22

Sorbus aucuparia Root rot, canopy decline nd nd

Vinca major Leaf necrosis, wilting nd nd

Viburnum tinus Leaf necrosis, wilting nd nd

nd = not determined.

3.2. Phytophthora Diversity in Portugal

From the 138 samples collected in different habitats across Portugal, 136 Phytophthora
isolates were obtained belonging to six different ITS clades (Table 4). Of these, 22 isolates
emerged from bleeding cankers and necrotic leaves and 114 from rhizosphere soil samples.

Table 4. Number of isolates obtained from the monitored plants in the investigated sites.

Species ITS Clade Plant Species * Total Number of Isolates Sites

Halophytophthora
avicenniae - Eg(2) 2 8

Nothophytophthora
caduca - Vm(2) 2 11

Phytophthora amnicola 6 Rp(5), Qr(1) 6 11, 12
P. asparagi 6 Pl(3) 3 1
P. bilorbang 6 Rp(4) 4 11
P. cactorum 1 Qr(5), Qs(1) Cs(1), Jc(1) 8 10, 12, 19

P. chlamydospora 6 Qs(1), Ap(1) 2 10,11

P. cinnamomi 7 Eg(7), Qr(6), Qc(5), Bc(4), Qs(2), Al(2),
Cs(3), Ce(3), Rp(1), Ces(1), Pl (1), Pp(1) 36 1–4, 6, 10–13, 16, 20, 21

P. citricola 2 Ap(3) 3 11
P. gonapodyides 6 Bc(2), Al(1), Qr(1) 4 4, 10, 18
P. hedraiandra 1 Rp(3), Vm(2), Bc(1) 6 11, 18

P. inundata 6 Eg(2), Qr(2) 4 6, 8
P. lacustris 6 Ssp(2), Psp(4), Qr(2) 8 5, 6, 10

P. multivora 2 Rp(13), Cs(3), Fm(2), Fa(1), Al(1) 20 4, 7, 11, 12
P. pachypleura 2 Cs(2) 2 12

P. plurivora 2 Qr(3), Cs(2), Fe(1), Bc(1), Qp(1), Eg(1) 9 10, 12, 14–16
P. pseudocryptogea 8 Al(2), Pl(3), Ph(1), Cs(2) 7 1, 2, 4, 11, 12
P. pseudosyringae 3 Jc(2), Bc(1), Sa(1), Ld(1) 5 13, 17, 19

P. rosacearum 6 Al(3) 3 4, 7
P. syringae 8 Qr(1) 1 6

P. thermophila 6 Pp(2), Rp(1), Qr(1), Qs(1) 5 1, 10, 11

* In brackets, the number of Phytophthora isolates on: Acacia longifolia (Al), Acer pseudoplatanus (Ap), Betula celtiberica
(Bc), Castanea sativa (Cs), Carpobrotus edulis (Ce), Ceratonia siliqua (Ces), Eucalyptus globulus (Eg), Ficus macrophylla
(Fm), Fraxinus angustifolia (Fa), Fraxinus excelsior (Fe), Juniperus communis (Jc), Larix decidua (Ld), Pinus halepensis
(Ph), Pistacia lentiscus (Pl), Pinus pinea (Pp), Pinus sylvestris (Ps), Populus sp. (Psp), Quercus coccifera (Qc), Quercus
pyrenaica (Qp), Quercus robur (Qr), Quercus suber (Qs), Rhododendron ponticum (Rp), Salix sp. (Ssp), Sorbus aucuparia
(Sa), Vinca major (Vm), and Viburnum tinus (Vt).

On the bases of morphology, colony appearance, and ITS sequence data, Phytophthora
isolates were identified as P. cinnamomi (36 isolates), P. multivora (20), P. plurivora (9),
P. cactorum (8), P. lacustris (8), P. pseudocryptogea (8), P. amnicola (6), P. hedraiandra (6),
P. pseudosyringae (5), P. thermophila (5), P. bilorbang (4), P. inundata (4), P. asparagi (3),
P. citricola (3), P. gonapodyides (3), P. rosacearum (3), P. chlamydospora (2), P. pachypleura (2),
and P. syringae (1). In addition to Phytophthora species, two isolates of Halophytophthora
avicenniae and two of Nothophytophthora caduca were obtained (Table 4).
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The most common and widespread Phytophthora species detected in this study across
Portugal was P. cinnamomi. This species was isolated from 12 out of the 26 hosts, in 12 sites
distributed across all climatic regions. The other dominant species were P. multivora and
P. plurivora, isolated from five and six hosts and four and five sites, respectively.

3.3. Phytophthora Distribution in Portugal

As regards the geographical distribution of the species isolated in this study, a great
variability emerged according to the climatic areas. All three zones (coastal/Mediterranean,
temperate, and montane regions) showed a wide diversity in Phytophthora assemblages
(Figure 2).
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Figure 2. Isolation frequency and distribution of the most common Phytophthora species isolated in
this study.

Many species are typical of one or two geographical areas; only P. cinnamomi and
P. gonapodyides have been isolated in all three areas spanning from sea level to the mountain
belt (Figure 2). In addition to P. cinnamomi, P. pseudocryptogea, and P. multivora are the other
most frequent species in coastal (23%) and temperate areas (21%), respectively, whereas
at higher altitudes, P. pseudosyringae and P. plurivora have been isolated from 24% of the
examined samples.

Combining data from the literature review with our present study, a total of 34 different
known Phytophthora species and 3 hybrids have been isolated and officially reported in
natural and semi-natural ecosystems in Portugal, including 122 host–pathogen interactions
(Table 5).
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Table 5. Phytophthora species reported in natural and semi-natural ecosystems in Portugal.

Species Host References

P. alticola Eucalyptus globulus [29]

P. amnicola Alnus glutinosa, Castanea sativa, Fagus sylvatica, Rhododendron
ponticum, Quercus robur [27,38]; this study

P. asparagi A. glutinosa, Pistacia lentiscus [27]; this study

P. bilorbang R. ponticum, water [27,38]; this study

P. cactorum A. glutinosa, Castanea sativa, Quercus robur, Q. suber,
Juniperus communis [27]; this study

P. cambivora Acer pseudoplatanus, Betula celtiberica, C. sativa, F. sylvatica, Salix
caprea, Quercus ilex, Quercus pyrenaica, water [38,47–49]

P. castanetorum C. sativa [28,38]

P. chlamydospora A. pseudoplatanus, A. glutinosa, C. sativa, F. sylvatica, Q. suber [27,38]; this study

P. cinnamomi

Abies alba, Acacia longifolia, A. glutinosa, Arbutus unedo,
B. celtiberica, Calluna vulgaris, Carpobrotus edulis, C. sativa, Ceratonia

siliqua, Cistus crispus, C. ladanifer, C. populifolius, C. salvifolius,
E. globulus, F. sylvatica, Genista triacanthos, Phyllirea latifolia,
Pinus pinaster, P. pinea, P. lentiscus, Quercus coccifera, Q. ilex,

Q. pyrenaica, Q. robur, Quercus rubra, Q. suber, R. ponticum, Ulex spp.

[27,29–32,34,38,50,51]; this study

P. citricola A. pseudoplatanus This study

P. citrophthora water [38,52]

P. condilina water [26]

P. gonapodyides A. longifolia, A. glutinosa, B. celtiberica, Q. robur, water [26,27,38]; this study

P. hedraiandra B. celtiberica, R. ponticum, Vinca major This study

P. hibernalis E. globulus [30]

P. honggalleglyana water [38]

P. inundata E. globulus, Q. robur, water [26,38]; this study

P. kelmanii water [38]

P. lacustris A. glutinosa, Populus sp., Q. robur, Salix sp., water [27,37,38]; this study

P. multivora Acacia dealbata, A. longifolia, A. glutinosa, A. pseudoplatanus,
C. sativa, E. globulus, Fraxinus angustifolia, Q. rubra, R. ponticum [27,30,38]; this study

P. niederhauserii E. globulus [30]

P. pachypleura C. sativa This study

P. plurivora A. glutinosa, A. pseudoplatanus, B. celtiberica, C. sativa, F. sylvatica,
Fraxinus excelsior, Prunus lusitanica, Q. pyrenaica, Q. robur [27,38]; this study

P. polonica A. glutinosa [27]

P. pseudocitrophthora water [38,52]

P. pseudocryptogea A. dealbata, A. longifolia, A. glutinosa, C. sativa, P. lentiscus, Pinus
halepensis, P. pinea, Q. suber, water [26,27,52]; this study

P. pseudosyringae A. pseudoplatanus, B. celtiberica, J. communis, Larix decidua,
Q. pyrenaica, Prunus avium, Sorbus aucuparia [38,49]; this study

P. psychrophila Q. ilex [38,49]

P. quercina A. unedo, C. sativa, Q. ilex, Q. pyrenaica, Q. robur [28,38]

P. ramorum Viburnum sp.; water [38,53]

P. rosacearum A. longifolia, A. glutinosa [27]; this study

P. syringae A. unedo; Q. robur [38]; this study

P. thermophila P. pinea, Q. robur, Q. suber, R. ponticum; water [38]; this study

P. uliginosa Q. suber [38]

P. × alni A. glutinosa [37,38]

P. × lusitanica water [38,52]

P. × stagnum water [38]
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For the 37 Phytophthora species and hybrids for which data on isolation points are avail-
able, geographical and altitudinal distribution in Portugal’s mainland were reconstructed
(Figures 3 and 4).
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Among the different species, P. cinnamomi is the most widespread from north to south
and from west to east and has been reported from 29 different hosts (Table 5, Figure 3).

Other species widespread in the country are P. gonapodyides, P. plurivora, P. pseudocryp-
togea, and P. quercina (Figure 3). The distribution of the remaining species is more localized
and fragmented (Figure 3).

Historically, the occurrence of P. cinnamomi appears related chiefly to Q. suber stands
in the southern part of Portugal, but our study also revealed a common presence of this
species in northern and central Portugal, including mountain areas.

The distribution along altitude shows the potential adaptability of the 37 Phytophthora
species and hybrids to different climatic conditions (Figure 4). Most of the species reported
in Portugal have been isolated at low altitudes from 0 to 500 metres a.s.l. Some species,
such as P. cactorum, P. cinnamomi, and P. gonapodyides, manifest plasticity to all altitudes
from sea level to over 1000 m a.s.l. Finally, P. pseudosyringae is the only species isolated
exclusively in mountain forests.
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3.4. ITS Phylogeny

The phylogenetic relationships among the Phytophthora isolates obtained in this study
were elucidated using ITS sequences (Figure 5). In particular, the isolates included in
the phylogenetic analysis were distributed in 19 terminal clades with the relative ex-type
of 19 formally described species (Figure 5). Isolates of Halophytophthora avicenniae and
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Nothophytophthora caduca obtained in this study clustered in two basal clades with the
relative ex-type strains.
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Figure 5. Maximum likelihood tree obtained from the internal transcribed spacer (ITS) sequences of
Phytophthora species representative of the 12 clades. The tree was rooted to Halophytophthora avicenniae
and Nothophytophthora caduca. Data are based on the General Time Reversible model. A discrete
Gamma distribution was used to model evolutionary rate differences among sites. The tree is drawn
to scale, with branch lengths measured in the number of substitutions per site. Bootstrap support
values in percentage (1000 replicates) are given at the nodes. Ex-type cultures are in bold, and isolates
obtained in this study are in red.

The 19 Phytophthora species belong to 6 of the 12 phylogenetic clades of this genus [44].
Among all, nine species (P. amnicola, P. asparagi, P. bilorbang, P. chlamydospora, P. gonapodyides,
P. inundata, P. lacustris, P. rosacearum, and P. thermophila) belong to clade 6, whereas
four species reside in the ex-type P. citricola complex in clade 2 (P. citricola, P. multivora,
P. pachypleura, P. plurivora). The other clades (1, 3, 7, and 8) are represented by only one or
two species.

3.5. Pathogenicity Test

All Phytophthora species proved to be pathogenic to chestnut plants. At the end of
the experimental period, inoculated seedlings showed dark brown inner bark lesions that
spread up and down from the inoculation point at the collar root (Figure 6). Among the dif-
ferent species assayed, the length of the necrotic lesion differed significantly (Figure 6). The
lesions caused by P. cinnamomi were significantly larger than those caused by other species
(Figure 6). Also, P. pachypleura, P. plurivora, and P. multivora caused large lesions, while
the other species only caused small necrotic lesions. Lesions caused by P. cinnamomi,
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P. pachypleura, and P. plurivora progressively girdled the twigs, causing shoot blight,
browned foliage, and wilting symptoms. Control seedlings remained asymptomatic. Re-
isolation was conducted positively for 100% of seedlings inoculated with Phytophthora spp.
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4. Discussion
The results obtained in this study have allowed us to clarify both the symptomatology

and aetiology related to severe decline phenomena affecting natural and planted forest
ecosystems in Portugal from the sea level to the mountain belt. Over the past decades,
research concerning the impact of Phytophthora in Portuguese forests has predominantly
focused on the central and southern regions of the country, especially on chestnut and
cork oak trees [31–34]. Furthermore, the recent occurrence of new outbreaks has made it
possible to associate a large community of Phytophthora spp. with extensive decline phe-
nomena of Eucalyptus globulus plantings and Alnus glutinosa riparian systems [27,29,30,37].
Furthermore, a study conducted from 2010 to 2015 reported a high diversity of oomycetes
across Portuguese forests, rivers, and nurseries [38].

Regarding this study, the field surveys conducted in twenty-one Portuguese forest
systems highlight and confirm that the severe disease outbreaks and mortality are affecting
several woody plant species, from the Mediterranean to the sub-montane and montane for-
est formations in Portugal. The most impacted formations were the coastal Mediterranean
maquis dominated by Pistacia lentiscus and the mountain forests of Betula celtiberica, but
Phytophthora-related diseases affect a multitude of plant species including chestnut, oaks,
poplars, willows, and eucalyptus.

The results showed a complex of pathogenic Phytophthora species associated with
different symptoms, including leaf and shoot blights, bleeding cankers, and root rot on
twenty-six different plant species. Overall, nineteen Phytophthora species belonging to
six different phylogenetic clades were isolated and identified by means of morphologi-
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cal characters and DNA sequence data. These include Phytophthora amnicola, P. asparagi,
P. bilorbang, P. cactorum, P. chlamydospora, P. cinnamomi, P. citricola, P. gonapodyides, P. hedra-
iandra, P. inundata, P. lacustris, P. multivora, P. pachypleura, P. plurivora, P. pseudocryptogea,
P. pseudosyringae, P. rosacearum, P. syringae, and P. thermophila. The Phytophthora diversity
found in Portugal includes both cosmopolitan and polyphagous pathogens and rare species
known to attack a limited number of plant hosts in a few geographic areas.

The most common species isolated in this study is P. cinnamomi. This invasive
pathogen has been isolated from 12 hosts in 12 sites across different climatic regions.
This confirms previous studies on the wide occurrence of this pathogen in forest systems of
Portugal [29,31,34,38]. It is considered one of the most invasive organisms worldwide [54].
In our study, P. cinnamomi has been isolated from declining trees from the Algarve (Mediter-
ranean maquis) to the undisturbed cold Betula celtiberica forests in the Serra da Estrela (over
1200 m a.s.l.). This finding highlights the strong potential and plasticity of P. cinnamomi to
invade, survive, and adapt to different environments, including low-temperature habitats,
confirming the recent distribution patterns developed for this species and the results of
other recent investigations in Europe and Australia [55–59].

This study has significantly expanded knowledge on the diversity and impact of
pathogenic oomycetes in mountainous areas of Europe. Serra da Estrela, located in Central
Portugal, is the highest mountain range and largest protected area. It is characterized
by heterogeneous ecological conditions based on the various slopes and altitudes from
300 to over 1900 m. a.s.l. [60]. The involvement of both airborne and soilborne Phytophthora
species is causing extensive mortality of many natural and planted mountain species such
as birch, larch, and common juniper. In addition to P. cinnamomi, some species belonging to
clades 1 and 3 and characterized by producing caducous sporangia emerged frequently
from tissue samples of different alpine hosts. These included P. pseudosyringae, a typical
species of mountain habitats, and the more plastic P. cactorum and P. hedraiandra. As
reported in two previous studies conducted in alpine formations, low cardinal temperature
for growth, the production of resistant structures, and an aerial lifestyle would seem to
favour the affirmation of these species in cold environments [18,40]. Interestingly, the results
of this study confirm the wide diffusion of all the species belonging to clade 1a, except
P. aleatoria, in the mountainous areas of Europe including the wildest ones not disturbed by
humans [18,40,61].

The abundant production of chlamydospores and hyphal swellings by the strains of
P. cinnamomi and P. pseudosyringae obtained in Serra da Estrela could explain the adaptation
and resistance of these species in a very “hostile” area, characterized by extremely cold
winters and very hot and dry summers with frequent forest fires.

The other two most common species obtained in this study were P. multivora and
P. plurivora (clade 2). The distribution of P. plurivora in Europe has been documented for a
long time in several countries, with population studies indicating a European origin [62]. Its
occurrence in the Iberian Peninsula was associated with many hosts in forest and nursery
systems [27,38,63–65].

However, the introduction of the invasive P. multivora in Europe seems recent and
it is currently spreading in Mediterranean regions, thanks to its greater adaptations to
heat and dry conditions [27,61,66,67]. In Portugal, P. multivora was recently reported on
Acacia dealbata, Acer pseudoplatanus, Alnus glutinosa, Eucalyptus globulus, Fraxinus angustifolia,
and Quercus rubra [27,30,38]. The new association of this pathogen with several other
native and invasive plant species suggests the good adaptation of this invasive species
to Portugal’s climate and confirms the polyphagous nature of this organism reported in
Australia and South Africa, posing a serious threat to European forests in the face of climate
changes [67–70].
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In addition to P. multivora and P. plurivora, another two clade 2 species of P. citricola
sensu latu complex, namely P. citricola and P. pachypleura, have been isolated for the first
time from natural forests of sycamore maple and sweet chestnut near Sintra (temperate
sites 11 and 12), respectively. Phytophthora citricola s.s. is a pathogen known for a long
time to cause severe diseases in wood crops, although many historical reports of this
species probably belong to the cryptic species P. multivora and P. plurivora [71]. Phytophthora
pachypleura was recently described from ornamental plants in Europe [72]. Before this
study, these two species had never been recovered in Portugal and in natural areas of
the continent.

Six species were isolated from Castanea sativa in this study. The under-bark inoculation
assay confirmed the aggressiveness of P. multivora, P. pachypleura, and P. plurivora on
Castanea sativa, with a statistically more extensive necrosis than that of P. pseudocryptogea
and P. cactorum and slightly less than that caused by P. cinnamomi. These results confirm
that the aetiology of ink disease is rapidly evolving in Europe and now includes P. multivora
and P. pachypleura, reported here for the first time as chestnut pathogens.

A conspicuous number of species found in this study belong to the ITS clade
6 sensu [44]. Phytophthora species from clade 6 have an aquatic and saprotrophic lifestyle;
however, some species can act as opportunistic or aggressive tree pathogens [61,73]. This
result is due to the numerous samples collected along riparian systems or wetlands and
confirms the wide diversity of clade 6 species found in previous research in water systems
of Portugal and Europe [27,37,38,74].

In particular, P. gonapodyides is widespread in all climatic areas. The other clade
6 species (P. asparagi, P. bilorbang, P. chlamydospora, P. inundata, and P. rosacearum) appear
rarer and geographically confined [26,27,38]. Finally, the isolation of P. thermophila from
four hosts in north, central, and south Portugal is very important and confirms the common
presence of this species in Portugal, recently reported along watercourses [38]. Phytoph-
thora thermophila was previously described from Eucalyptus forests and river systems of
Australia and South Africa [75,76]. This species has high optimum and maximum temper-
atures for growth and a relative capacity for interspecific hybridization [75,77,78]. Some
unstable hybrids close to P. amnicola and P. thermophila have also been isolated from riparian
systems in this study (Bregant and Alves, unpublished). Future studies are necessary to
clarify the pathogenicity of P. thermophila and the role of the related hybrids in order to
understand the real risk posed by this pathogen to Portuguese and European forests.

Finally, combining the results of this study with the literature review data, a total of
37 species and hybrids are now officially reported in the forest ecosystems of Portugal.
The distribution of Phytophthora covers all climatic areas investigated along the altitudinal
gradient. Some species are restricted to one altimetric range whereas others such as
P. cactorum, P. cinnamomi, and P. gonapodyides are invasive. A survey is currently in progress
to clarify the pathogenicity of the new host pathogens’ association and to understand the
susceptibility of native plants to the most invasive pathogens detected in this study.

Three species, P. citricola, P. hedraiandra, and P. pachypleura are here reported for the
first time in the natural ecosystems of Portugal, whereas for P. thermophila, this is the first
report from declining forests in Europe.

5. Conclusions
Overall, the results obtained have contributed to expanding scientific knowledge

about the diversity of Phytophthora in Portuguese forest ecosystems. Portugal is a country
characterized by extremely varied climatic and vegetation conditions, with a high human
impact on land management. The coasts and surrounding areas are strongly related to
the Mediterranean Sea and the Atlantic Ocean, while the internal part has continental
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influences typical of the Iberian Peninsula. To date, Phytophthora research in Portugal has
been conducted chiefly in temperate and Mediterranean areas in the central and southern
parts of the country, concentrating on cork oak, chestnut, and eucalyptus.

The results obtained in this study revealed the occurrence of Phytophthora-related
diseases on many other tree and shrub species, contributing to expanding the knowledge
about the impact of Phytophthora species on natural ecosystems. A total of 34 species and
3 hybrids of Phytophthora are now officially reported in Portugal.
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