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Abstract: Wild birds may be involved in the transmission of agents of infectious diseases, in-
cluding zoonoses, a circumstance which raises a number of public and animal health issues.
Migratory bird species play a significant role in the introduction of tick-borne pathogens to
new geographic areas, contributing to the dissemination of various etiological agents. This
preliminary study aimed to assess the occurrence of four potentially zoonotic pathogens
(Hepatozoon spp., Borrelia spp., Babesia spp. and Theileria spp.) in the wild birds of Portugal.
Blood and tissue samples were taken from 103 birds admitted at wildlife rehabilitation
centers. Through the use of conventional PCR, our findings indicate no evidence of the
circulation of these pathogens among the studied bird populations in the region. In the
One Health context, it is relevant to understand how faraway avian populations play a role
in the epidemiology of infectious diseases. Further molecular studies are needed to deepen
the knowledge of avian piroplasmosis, borreliosis and hepatozoonosis.
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1. Introduction
Birds are widely recognized as reservoirs of tick-borne pathogens, playing a key role

in their transmission to new locations [1]. Some of these pathogens pose significant risks to
human health, making it crucial to understand their distribution and epidemiology [2,3].
Several bacteria (Anaplasma, Borrelia, Neoehrlichia, Rickettsia), viruses (tick-borne encephalitis,
Usutu, West Nile) and protozoan parasites (Babesia, Hepatozoon, Theileria, Toxoplasma) have
already been isolated from ticks carried by birds or directly from avian individuals [2,4–8].

The genus Hepatozoon Miller, 1908 (Apicomplexa, Hepatozoidae) comprises cosmopoli-
tan, arthropod-borne intracellular blood parasites frequently reported in many vertebrate
hosts [9,10]. Although birds are not the most affected group, around 20 species of Hepato-
zoon have been identified in avian hosts [9,10]. Their life cycle is not yet fully understood,
but infection most often occurs through the ingestion of infected blood-sucking inverte-
brates (ticks, mites, fleas and dipteran insects), in which gametogony and sporogony occur.
Invertebrates will get infected with the blood meal from an infected vertebrate host. The
parasites will infect erythrocytes and leucocytes [11,12].

Borrelia burgdorferi sensu lato is the etiological agent of Lyme disease (Lyme borrelio-
sis) and is transmitted mainly by ticks of the genus Ixodes Latreille, 1795. These agents
had already been isolated in arthropods infesting birds in the 1980s [13], and several re-
ports have been registered since then [14–16]. Wildlife reservoirs are needed to maintain
B. burgdorferi s.l. in nature, and birds (and mammals) vary in reservoir competence. Evi-
dence of the involvement of a bird species as a carrier of this pathogen in Europe has been
presented [17–19]. Competent reservoir hosts are capable of acquiring infection from vector
ticks, allowing spirochetes to proliferate and be readily able to infect other vector ticks.
There are reports from North America of a few bird species that were proven to be compe-
tent reservoirs of this bacterium, such as American Robins (Turdus migratorius), Northern
Cardinals (Cardinalis cardinalis) and Song Sparrows (Melospiza melodia). The duration of
infectivity is also a factor that influences transmission competence, with some species being
highly infectious but only transiently so [20,21].

The genus Babesia Starcovici, 1893 (Apicomplexa, Babesiidae) comprises tick-borne para-
sites, which may be etiological agents of emergent zoonotic diseases [22]. Deep knowledge
about their reservoirs and vectors is of paramount importance. The life cycle of these protozoa
consists in asexual multiplication (merogony) in erythrocytes of the vertebrate host (including
birds), and in sexual gametogony followed by asexual sporogony in the salivary glands of
infected ticks (from both the Ixodidae and Argasidae families) [23]. Theileria is a closely related
genus, and specimens of both genera are known as piroplasms. Theileria Bettencourt, França &
Borges, 1907 (Apicomplexa, Theileridae) differs from Babesia in its ability to form schizonts,
to colonize lymphocytes (besides erythrocytes) and to be transmitted only transstadially in
ticks [24]. Furthermore, it has not yet been isolated in humans [23,25,26].

Portugal has a strategic geographical location and is a connection point chosen by
many bird species for their migratory route between Europe and Africa. The country is the
main migratory corridor in Western Europe, and millions of birds cross the Strait of Gibral-
tar twice a year to nest in the Iberian Peninsula and return to their wintering grounds [27,28].
Migration is influenced by many factors, including the evolution of food distribution, fa-
vorable climates and potential partners, but also by negative interactions such as with
predators and pathogens [29,30]. In addition, the Portuguese region’s temperate climate
offers refuge to several species of northern breeding birds [27].

Within the framework of a One Health approach, understanding the spillover of
pathogens from wildlife to domestic animals and humans is critical. Enhanced epidemio-
logical knowledge of these pathogens’ circulation provides valuable insights for managing
and mitigating risks. This preliminary study aimed to assess the presence and species
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distribution of tick-borne pathogens capable of causing subclinical infection and clinical
disease in wild birds.

2. Materials and Methods
2.1. Sample Collection

Blood samples (n = 74) were collected from wild birds that were admitted to three distinct
wildlife recovery centers (WRCs) in mainland Portugal: the Wildlife Rehabilitation Centre
of the Veterinary Teaching Hospital of University of Trás-os-Montes e Alto Douro (CRAS-
HVUTAD), the Wildlife Rehabilitation Centre of Santo André (CRASSA) and the Biological
Park of Gaia (PBG). All the birds were found lost, weakened or injured due to different
causes, mostly anthropogenic ones (shotgun, electrocution, collision, etc.). Younger birds are
also often found falling out of nests. Venipuncture was performed in the ulnar, jugular or
metatarsal veins, according to the species’ anatomical features and the veterinarian’s prefer-
ence. A volume between 0.3 and 0–5 mL was collected from each individual and immediately
transferred to an EDTA tube. Samples were stored at −20 ◦C until further analysis.

Tissue samples (brain, cardiac muscle, kidney, liver, lung and spleen) (n = 29) were
collected from dead birds during necropsy at CRAS-HVUTAD, stored in dry Eppendorf
tubes and frozen at −20 ◦C until DNA extraction.

The databases of each center served as sources of information on the animals,
including their age, geographical location and sex. A description of the samples tested is
shown in Table 1.

Table 1. List of individuals tested, organized by order, family, species and wildlife rehabilitation
center (WRC).

Order Family Species CRAS-HVUTAD
n (%)

CRASSA
n (%)

PBG
n (%)

Accipitriformes Accipitridae

Accipiter gentilis (Northern goshawk) 1 (1.0) 0 (0) 2 (1.9)
Accipiter nisus (Sparrowhawk) 2 (1.9) 0 (0) 1 (1.0)
Buteo buteo (Common buzzard) 4 (3.9) 1 (1.0) 0 (0)

Circus pygargus (Montagu’s harrier) 2 (1.9) 0 (0) 0 (0)
Gyps fulvus (Griffon vulture) 5 (4.9) 1 (1.0) 0 (0)

Hieraaetus pennatus (Booted eagle) 2 (1.9) 0 (0) 0 (0)
Milvus migrans (Black kite) 2 (1.9) 1 (1.0) 0 (0)

Anseriformes Anatidae Anser anser (Greylag goose) 0 (0) 1 (1.0) 0 (0)

Apodiformes Apodidae Apus apus (Common swift) 1 (1.0) 0 (0) 0 (0)
Apus pallidus (Pallid swift) 2 (1.9) 0 (0) 0 (0)

Bucerotiformes Upupidae Upupa epops (Eurasian hoopoe) 0 (0) 1 (1.0) 0 (0)

Charadriiformes Laridae
Larus fuscus (Lesser black-backed gull) 0 (0) 4 (3.9) 1 (1.0)
Larus michahellis (Yellow-legged gull) 0 (0) 24 (23.3) 1 (1.0)

Egretta garzetta (Little egret) 0 (0) 0 (0) 1 (1.0)
Ciconiiformes Ciconiidae Ciconia ciconia (White stork) 3 (2.9) 10 (9.7) 0 (0)

Columbiformes Columbidae
Columba livia (Domestic pigeon) 3 (2.9) 0 (0) 1 (1.0)

Columba palumbus (Common woodpigeon) 3 (2.9) 0 (0) 0 (0)
Streptopelia decaocto (Eurasian collared dove) 2 (1.9) 0 (0) 0 (0)

Cocariiformes Meropidae Merops apiaster (European bee-eater) 2 (1.9) 0 (0) 0 (0)

Passeriformes

Corvidae Corvus corone (Carrion crow) 0 (0) 1 (1.0) 0 (0)
Garrulus glandarius (Eurasian jay) 2 (1.9) 0 (0) 0 (0)

Hirundinidae Delichon urbicum (Western house martin) 1 (1.0) 0 (0) 0 (0)
Muscicapidae Erithacus rubecula (European robin) 1 (1.0) 0 (0) 0 (0)

Passeridae Passer domesticus (House sparrow) 2 (1.9) 0 (0) 0 (0)

Turdidae Turdus merula (Blackbird) 3 (2.9) 0 (0) 0 (0)
Turdus philomelos (Song thrush) 1 (1.0) 0 (0) 0 (0)

Strigiformes Strigidae
Athene noctua (Little owl) 0 (0) 1 (1.0) 0 (0)

Bubo bubo (Eurasian eagle owl) 3 (2.9) 0 (0) 0 (0)
Strix aluco (Tawny owl) 2 (1.9) 0 (0) 0 (0)

Tytonidae Tyto alba (Barn owl) 1 (1.0) 0 (0) 0 (0)

50 (48.5) 46 (44.7) 7 (6.8)

Total 103 (100)

n—Number of samples.
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Most of the birds (n = 52) sampled were below the adult age (nestling, fledgling or
juvenile), 10 were classified as subadult and 30 as adult (mature). An age range was not
registered for 11 individuals.

The geographical areas where the birds were found correspond to the following NUTS
II regions: North (n = 48), Center (n = 2), Greater Lisbon (n = 1), Setúbal Peninsula (n = 2)
and Alentejo (n = 43). Seven birds were classified as of unknown origin. The sex of 78 birds
was not determined. Only 15 males and 10 females were identified. Of the represented
species, most of the birds were resident in the Portuguese territory (n = 69), 14 were
considered summer breeding visitors/residents, 13 were considered migratory summer
breeding visitors, 5 were considered wintering visitors/residents, and 2 were considered
exclusively wintering visitors.

2.2. DNA Extraction and Purification

DNA extraction from blood and organs was performed by adding a mixture of 420 µL
of lysis buffer and 25 µL proteinase K solution and incubating at 37 ◦C for 10 min. After-
ward, incubation samples were briefly vortexed and centrifuged for 2 min at 6000× g. After
centrifugation, 140 µL of the supernatant was used for DNA extraction and purification
with the QIAamp DNA Mini Kit (Qiagen, Hilden, Germany), following the manufac-
turer’s instructions. The extraction was automated using the QIAcube® platform (Qiagen,
Hilden, Germany). The purified DNA was then stored at −20 ◦C in RNase-free water until
further analysis.

2.3. Molecular Detection of Zoonotic Pathogens

The detection of Hepatozoon spp. was performed with the set of primers Hep F/Hep
R, targeting the 18S SSU rRNA element and amplifying a fragment of 800 bp [31]. The
detection of Borrelia spp. was performed using the primer set M1/M2, targeting the highly
conserved 357/358 bp segment of the borrelial 16S rRNA gene [32]. The detection of
piroplasms was performed using oligonucleotide primers targeting the highly conserved
408 bp segment of the small subunit ribosomal DNA [33]. Positive controls for all targets
were derived from previously identified isolates in our lab [34], including a Borrelia sample
with accession number PQ682435.

2.4. General Procedures

All PCR procedures were run on a T100 thermocycler (Bio-Rad; Hercules, CA, USA).
Each reaction mixture had a total volume of 20 µL, containing 0.4 µM of each primer, 10 µL
of Speedy Supreme NZYTaq 2× Green Mastermix (NZYTech®, Lisboa, Portugal), 5.5 µL of
RNase-free water and 5 µL of template DNA, prepared according to the manufacturer’s
instructions. The amplified DNA fragments were subjected to electrophoresis at 100 V for
40 min on 1.5% agarose gels stained with Xpert Green Safe DNA gel dye (GriSP®, Porto,
Portugal), and the results were confirmed under UV light.

3. Results and Discussion
A total of 103 samples (74 blood samples and 29 mixed organ samples) were tested by

PCR for Hepatozoon spp., Borrelia spp., Babesia and Theileria spp. Results were negative for all
four agents. Two of the samples exhibited a band of the expected size in the gel, suggesting
the presence of Borrelia in the corresponding assay. However, sequencing revealed only the
host’s DNA. All the results were negative for the other three genera.

Hepatozoon spp. infect all groups of terrestrial vertebrates, and their infections in
domestic animals have frequently been reported across Europe [35–38]. Hepatozoon spp. in-
fecting birds have also been reported, infecting either erythrocytes or leucocytes [9,11,39,40].
Both the Ixodidae and Argasidae tick families are involved in transmitting these agents, as
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well as fleas, mosquitoes and other arthropods. In vertebrate hosts, Hepatozoon merogony
occurs in different tissues (e.g., liver, spleen, bone marrow, lymph nodes and intestine),
but some species’ cycles are not yet fully elucidated, as is the case for Hepatozoon in avian
species. Several species have been identified, but recent studies have found that some
are more similar to amphibian parasites, namely, Lankestrella spp. [10,41,42]. Our results,
which showed that all of our wild birds tested negative for Hepatozoon spp., contribute
valuable information to this field. While Hepatozoon spp. infections have been documented
across a range of vertebrates, including birds, the absence of detectable infections in our
sample highlights the potential for regional or ecological variability in the prevalence of
these parasites. This underscores the importance of further molecular and prevalence
studies in wild avian populations to clarify the distribution of Hepatozoon spp. and their
role in avian health.

Lyme disease is the most common vector-borne disease in the temperate regions of
the Northern Hemisphere, caused by B. burgdorferi s.l. bacteria transmitted by Ixodes ticks.
In North America, B. burgdorferi sensu stricto is the etiological agent, but worldwide, the
B. burgdorferi s.l. spirochete complex is mainly responsible for causing disease. Subadult
ticks (larvae or nymphs) ingest spirochetes while feeding upon a bacteremic host and may
then infect other vertebrate hosts while feeding during subsequent life stages (nymphs or
adults, respectively) [43,44]. Although the role of birds as alternative hosts and reservoirs
of B. burgdorferi s.l. and their involvement in the transmission cycle have not yet been
definitively established, it is widely acknowledged that birds likely contribute to the
maintenance of B. burgdorferi s.l. in nature. Furthermore, they may facilitate long-distance
dispersal by carrying infected ticks and are increasingly recognized as an underestimated
component of Lyme disease ecology [13,18,45]. B. burgdorferi s.l. is the most prevalent
species in southwestern Europe, with the genospecies B. lusitaniae (also present in North
Africa) being the most commonly encountered in Portugal. This agent has already been
isolated from ticks parasitizing different species of the order Passeriformes. In Western and
Central Europe, Turdus (Linnaeus, 1758) has been identified as a genus that seems to play
an important role in keeping Borrelia spp. in circulation [43,46,47]. In the present study,
only four Turdus individuals were tested, and all were negative for B. burgdorferi, consistent
with the negative results observed in all other samples.

Avian infecting piroplasms are largely under-studied compared to other hemopar-
asites, like Haemoproteus spp., Leucocytozoon spp. or Plasmodium spp. In contrast, of the
majority of species that infect domestic mammals and are responsible for causing disease,
only two avian species, Babesia shortti and Babesia uriae, are recognized as pathogenic.
Babesia infection has already been reported in several orders of birds (Charadriiformes,
Passeriformes, Procellariiformes and Sphenisciformes, among others) from different parts
of the world [48–51]. Some studies have reported that the prevalence of Babesia infection in
birds is relatively low [24,52], but others revealed a relevant proportion of animals positive
for piroplasmid-specific 18S rDNA [53]. Juveniles seem to be more susceptible to Babesia
infections compared to adults, with the latter likely exhibiting greater resistance due to
factors such as advancing age and the development of acquired immunity. Additionally,
immunosuppressed individuals are more vulnerable to infection, as their compromised
immune systems are less able to mount an effective defense [52].

Hemoparasites are transmitted through various vectors (e.g., ticks, mosquitoes and
fleas), and their transmission to birds is largely influenced by factors such as habitat
type and population density. While seabirds are often considered to be relatively free
from blood parasites, this perception may be influenced by specific ecological conditions
or gaps in surveillance [52]. On the other hand, colonial seabirds may be particularly
exposed to vectors during the reproduction season, because of their tendency to breed
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in high densities and reuse the same colony locations during consecutive years. Yellow-
legged gulls (Larus michahellis) are one of the species in which Babesia spp. have been
described [50], with notable representation in this study in Southern France, in which it
yielded only negative results.

Regarding the variables analyzed, we relied on available information concerning the
locations where the birds were found and rescued. It is important to note that there may be
intermediate individuals for which age and/or sex cannot be reliably determined based
solely on phenotypic characteristics. Many species still lack comprehensive data on this
topic. Sex determination is even more complex than age estimation, as the methods used
to sex birds vary across species, often influenced by age and season [54,55]. Furthermore,
while the DNA extraction process ensured high-quality isolation, we acknowledge the
limitation that viability testing to confirm the DNA’s origin from live pathogens was
not performed, which may have influenced the interpretation of our results regarding
pathogen presence. Considering the influence of age on the prevalence of blood parasites
and other pathogens, an observed age dependency has been reported (juveniles are infected
less, adults more), especially evident in long-distance migrating species. This could be
related to the tolerance of migratory birds toward these parasites. Knowledge of the age of
migratory birds and resident birds in specific geographical areas is a significant variable in
determining not only the distribution but also the transmission of parasites in the regions
studied [56]. The probability of infection increases as birds get older [57].

The term resident bird describes species that spend the whole year at their breeding
grounds. Migratory birds fly south or west. It is widely demonstrated that birds can carry
pathogens or infected vectors during migratory movements, which can be transmitted
between species wherever there is a higher concentration of individuals [58,59]. Migration
and infection can interact in several ways, and evaluating the migratory status of birds
in relation to pathogen detection is essential for understanding their potential role in the
epidemiology of various diseases. Migrating species face a higher infection risk than
species that do not migrate, and the increased circulation of infected individuals can lead
to the spread of diseases that would otherwise be localized [30]. Specifically, vector-borne
diseases, migration or dispersion movements may lead to an increased risk of exposure
to different tick species and potential contact with other hosts [60]. On the other hand, it
has already been suggested that seasonal migration can drastically reduce the prevalence
of pathogens in animal populations and that the presence of a pathogen can alter the
migratory strategy that maximizes the size of the host population [61]. For other pathogens,
like Babesia spp., many studies report infection in immature birds, suggesting that infection
is probably acquired very early, in the nest. In adult birds, chronic infectious disease is
more frequently related to depressed immune status [62]. An early prediction of how
migratory patterns are likely to shift in the future is already being studied [29]. In this study,
no pathogens were detected, which provides important information about the absence of
these pathogens in the sampled population. Our study offers a robust geographical sample,
though further research is needed to expand on these findings and explore additional
factors influencing pathogen dynamics in avian species.

Exposure to ticks depends on the behavior of species at different levels. Ground-
feeder birds spend a predominant part of their lifespan in potential tick habitats and
have a higher chance of being infested with ticks than birds that have other feeding
behaviors. In turn, sedentary birds are more susceptible to tick exposure than migratory
birds, and short-distance migratory birds are more prone to being exposed to ticks than
long-distance migratory birds [63,64]. In this study, unfortunately, no information was
available on when the birds were sampled. This could be relevant, because climatic
variables, especially temperature fluctuations, significantly affect the distribution, survival
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and foraging behavior of ticks [64]. It is important to highlight that the prevalence of ticks in
birds admitted to the WRCs is generally low, including within the population studied here.
Furthermore, the detection of infection in feeding ticks or their hosts does not necessarily
indicate that these hosts serve as competent reservoirs for the pathogens. This distinction
is critical for understanding the role of birds in the transmission and maintenance of tick-
borne disease [18]. This study only included descriptive statistics, as a relatively small
proportion of the animals had complete data for all variables under analysis, and all results
were negative. As a result, it was not possible to assess potential predisposing factors. The
tested birds originated from wildlife rehabilitation clinics and do not represent a random or
unbiased sample of wild bird populations. As such, estimating prevalence or conducting
a power analysis would not yield reliable results for broader wild bird populations. This
highlights the need for further investigation, suggesting that additional variables should
be considered in future studies to better understand the underlying factors involved.

4. Conclusions
We employed PCR to assess the prevalence of Hepatozoon, Borrelia and piroplasms

in wild birds rescued in Portugal. All results were negative in this preliminary study,
suggesting that, at present, wild birds do not seem to pose a significant threat to animal
or public health regarding the transmission of these pathogens, but more comprehensive
studies are needed to accurately assess the presence and distribution of these pathogens in
wild birds in Portugal using a larger and more representative number of samples. Indeed,
the sample in this study was relatively small, and the biological material (blood or tissues)
used to detect the agents was not determined specifically for each of them in the design of
the study. Further research is essential to deeply evaluate the role of avian species in the
epidemiology of these pathogens.
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