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Abstract: Despite the vast amount of water on Earth, only a small percent is suitable for
consumption, and these resources are diminishing. Moreover, water resources are unevenly
distributed, leading to significant disparities in access to drinking water between countries
and populations. Increasing consumption and the expanding human population necessitate
the development of novel wastewater treatment technologies and the use of water treatment
byproducts in other areas, such as fertilisers. However, water treatment sludge often cannot
be used to enhance crop production due to the presence of parasite eggs, particularly from
roundworms (Ascaridae family), which are resistant to environmental factors and can
pose a threat for several years. Legislation prohibits the use of sludge containing parasite
eggs as fertiliser. In some cases, water may not contain parasite eggs but larvae, which
require different detection methods. Additionally, the presence of eggs does not necessarily
indicate danger since they may lose infectivity due to prolonged storage or exposure to
chemical compounds in the sewage. This paper reviews European Union regulations on
wastewater treatment, the selected parasitic diseases related to the presence of parasites in
wastewater, the spectrum of detection methods, and highlights differences in viability and
invasiveness, which is intended to draw attention to the need to determine both biological
properties of parasites.
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1. Introduction
Following the European Council Directive of 21 May 1991 [1], wastewater is under-

stood as water used during human activities for domestic or economic purposes. Addi-
tionally, the term wastewater includes, among others, liquid animal waste, leachate, water
from the cooling cycles of power plants or cogeneration plants, water from mine drainage,
and water used and discharged from fish farming or breeding facilities. Furthermore,
Asthana et al. [2] define wastewater as liquid or waterborne waste removed from homes,
industrial and commercial establishments, and various institutions, along with surface
water, groundwater, and rainwater. In this context, wastewater includes faeces, wash-
ing water, and everything that flows from homes to the sewer system [2]. Others define
wastewater as water which can no longer be used or as water, the disposal of which is more
cost-effective [3].

According to the European Council Directive of 21 May 1991 [1], concerning urban
wastewater treatment, three types of wastewater can be distinguished: domestic, industrial,
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and municipal. These types of wastewater are categorised based on their origin and
chemical composition. Domestic wastewater comprises waste from residential and public
utility buildings from the human metabolism and household activities. This type of
wastewater includes faeces, food residues, and various detergents. Industrial wastewater
is defined as all wastewater (excluding domestic wastewater, rainwater, or snowmelt)
associated with areas where commercial, industrial, storage, transport, or service activities
are conducted. The composition of this wastewater will vary depending on the nature of
the facilities’ activities in a given area. Municipal wastewater is understood as domestic
wastewater or a mixture of domestic wastewater with industrial wastewater, rainwater, or
snowmelt, which is discharged through the municipal sewer system [1].

The composition and quantity of wastewater are variable and depend on various
factors, including the population size of a given region, the degree of industrialisation,
and the extent of city sewerage. Additionally, the volume and type of generated waste are
influenced by the legal regulations in a specific area and the season the wastewater is pro-
duced [4,5]. Essentially, wastewater consists of 99.94% water by weight, with the remaining
0,06% being dissolved or suspended contaminants [3]. Untreated wastewater may contain
organic substances (proteins, carbohydrates, lipids, detergents) [6] and inorganic substances
(heavy metals) [7], as well as various pathogenic microorganisms (dangerous viruses, bac-
teria) [8,9]. Additionally, wastewater may be contaminated with pharmacological agents
(antibiotics, hormones) and may sometimes contain radionuclides [10–12].

1.1. Negative Impact of Wastewater

Due to the high biological harmfulness of most types of wastewater, it should be
processed in wastewater treatment plants before being discharged into the environment.
However, it is estimated that most developing countries (90%) discharge wastewater
directly into ponds, lakes, seas, oceans, and rivers without any prior treatment. Such
actions are detrimental to the environment and pose a threat to the health of both humans
and animals [13,14]. Harmful compounds in untreated wastewater discharged into the
environment can enter the food chain and cause numerous health problems, such as
cancer, delayed nervous responses, and DNA mutations [15]. Additionally, wastewater
effluents can infiltrate drinking water sources, leading to the spread of pathogens such
as viruses (poliovirus, adenovirus, and norovirus) bacteria (Escherichia coli, Salmonella
spp., Campylobacter spp., Vibrio cholera), protozoa (Cryptosporidium spp., Giardia spp.,) and
helminths (Ascaris spp., Trichuris spp., tapeworms) [16].

Helminths are an artificial multicellular organism group that parasitises humans
and animals. They are widespread, especially in developing countries and tropical and
subtropical areas, leading to significant morbidity and economic losses in production. The
WHO (World Health Organization) estimates that around 1.5 billion people suffer from
helminth infections worldwide and emphasises that their high prevalence is associated
with poor access to clean water [17]. Depending on the species, they may cause symptoms
ranging from mild to severe. For example, pinworm infection is associated with itching
around the anus and does not pose a serious health problem [18]; moreover, the infection can
be easily controlled. On the other hand, Schistosoma spp. infection leads to 200,000 deaths
annually [19], and its control is becoming more difficult due to the development of drug-
resistant worm populations [20]. In the EU and the US, the infection rate is significantly
lower due to higher sanitation standards and more severe climates. However, climate
change, globalisation, and the ease of travel urge us to start seriously considering the
efficiency of water treatment technologies in helminth control.

More and more countries are struggling with water shortages, often using wastew-
ater that has not been fully treated to irrigate crops. Wastewater is characterised by a
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high content of nutrients such as phosphorus and nitrogen, which are essential for plant
growth. However, when these elements enter aquatic ecosystems in excess, they can cause
eutrophication [14,21,22]. The secondary use of untreated or partially treated wastewater
also increases the risk of intestinal nematode and protozoan infections, such as Ascaris
lumbricoides, Trichuris trichiura, Giardia lamblia, and Cryptosporidium parvum. These parasites
can cause acute gastrointestinal disorders and chronic diseases, especially in children and
young livestock, which are particularly vulnerable [23–25]. Furthermore, using byproducts
generated during wastewater treatment, such as sewage sludge, may also raise contro-
versies. Contaminated sewage sludge (e.g., with heavy metals or parasites) poses risks
to public health and environmental safety. However, proper sewage sludge management,
which includes monitoring and treatment processes, mitigates any issues associated with
its uncontrolled release into the environment. In developed countries, such as the Member
States of the European Union, regulations are in place to ensure the safe use of sewage
sludge. The appropriate management of sludge poses no threat to humans, animals, or the
environment and provides several benefits, including economic ones.

1.2. Benefits of Wastewater Treatment

As the global population increases, water demand also rises. Water is essential for
food production, the cultivation of crops, and raising livestock, and it has a huge impact on
demographic, economic, and military situations worldwide. Water is used in households
on a daily basis [14]. However, freshwater resources are limited globally. According to
data provided by UNICEF in 2022, 2.2 billion people worldwide still lacked access to
safely managed water services [26]. The problem of insufficient access to clean water
is often linked to the political and economic situation of a particular country, as well
as to social factors such as a lack of education, bad hygiene habits, and low knowledge
regarding waterborne pathogens. These factors contribute to the high death rate associated
with contaminated water, which can be up to twice as high in low-income countries.
Moreover, low-income countries spend limited financial resources on the construction of
water treatment infrastructure, which further reduces access to clean water, resulting in
social inequalities within a country, as the presence of the appropriate infrastructure may
be restricted to more urbanised areas. Low-income countries also struggle with insufficient
resources to counteract climate change, further reducing water availability. In countries
facing water scarcity, implementing effective water policies should be essential [27]. One
method of addressing the water scarcity problem is to reuse the wastewater. To ensure
that this solution is safe for the environment and human and animal health, appropriate
wastewater treatment and monitoring are crucial [15].

Treated wastewater can be used in agriculture, especially in countries facing water
shortages, where it can be employed for irrigating crops. This solution also reduces the
demand for groundwater extraction, providing economic benefits by requiring lower
financial investments. Furthermore, treated wastewater is nutrient-rich (e.g., with N, P,
K, Ca), enhancing crop yields [28–31]. During the wastewater treatment process, sewage
sludge is also produced, which, after proper treatment, becomes a valuable source of
nutrients and organic matter. Utilising wastewater and sewage sludge as fertiliser reduces
the need for synthetic fertilisers in agriculture, lowering production costs. Additionally,
sewage sludge can serve as the energy source for heat and electricity production. Therefore,
reusing sewage sludge offers economic and environmental benefits [30,31].

2. Legal Acts
At the end of the 20th century, global interest in wastewater reuse increased due to its

numerous benefits. However, the risks to public health and the environment prompted
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a series of guidelines concerning more efficient wastewater management [28]. The first
WHO guidelines on the use of wastewater for agricultural and aquaculture purposes
were developed in 1973, aiming to protect public health and facilitate the rational use of
wastewater and excreta in these sectors. The document “Reuse of Effluents: Methods of
Wastewater Treatment and Health Safeguards” was developed with the assumption of a
low risk and without conducting epidemiological studies [32,33].

It was not until 1989 that updated guidelines were published, which included a thor-
ough analysis of the available epidemiological studies. These guidelines focused primarily
on protecting public health, emphasising minimising contact with pathogens and examin-
ing microbiological parameters (faecal coliforms and helminth eggs) in wastewater intended
for irrigation. Another update of the WHO guidelines was published in 2006, considering
the oversight of wastewater use and the importance of wastewater monitoring [28,33–36].

Around the same time, the FAO (Food and Agriculture Organization of the United
Nations) also developed guidelines for the safe use of wastewater in agriculture. In 1987 and
1999, the FAO published guidelines on reducing water usage due to salinity, infiltration
parameters, the toxicity of sodium, chloride, or boron, and the reuse of treated water in
agriculture and treatment requirements [28].

The European Union also developed documents on wastewater reuse. One of the main
acts is the Council Directive of 21 May 1991, concerning urban wastewater treatment [1].
The directive aims to protect the environment from the adverse effects of discharging
inadequately treated wastewater. It imposes obligations on Member States regarding
wastewater treatment and pollution reductions. It has been updated several times to align
with the latest technological and ecological requirements [37].

Another significant legal act in the European Union is Regulation (EU) 2020/741 of
the European Parliament and of the Council of 25 May 2020 on minimum requirements
for water reuse. This document was created in response to the need to standardise and
unify regulations on water reuse in different Member States. It aims, among other things,
to protect the environment and public health and ensure the safety of reclaimed water
in agriculture. The regulation introduced quality standards, water monitoring, and risk
management procedures, setting minimum quality requirements for water reclaimed from
treated wastewater [38].

The issue of sewage sludge contamination with pathogens, and consequently with
parasite eggs, is indirectly regulated by Directive 86/278/EEC [39], which provides guide-
lines aimed at preventing the negative effects of using sewage sludge for agricultural
purposes, thereby protecting the environment and public health. The directive obliges
Member States to control the content of heavy metals and other chemical contaminants in
sewage sludge. Although it does not directly address the presence of parasites and their
eggs in sewage sludge, it allows Member States to establish additional, stricter national
regulations concerning sludge quality, including the content of parasite eggs. For example,
in Poland, the Regulation of the Minister of the Environment of 6 February 2015 on the
use of municipal sewage sludge was introduced (O.J. 2015, item 257) [40]. This regulation
provides detailed guidelines on the quality, application, monitoring, and management of
municipal sewage sludge. It regulates the principles of safe sludge use to ensure public
health and environmental protection. It also specifies the scope, frequency, and reference
methods for testing sewage sludge and the soils where it is to be applied. The regulation
includes acceptable concentrations of heavy metals and other contaminants (including
bacteria and parasite eggs) in sewage sludge intended for use on agricultural, reclaimed,
and non-agricultural land. It focuses in particular on Ascaris spp., Trichuris spp., and
Toxocara spp. eggs. For example, it notes that for agricultural purposes, no eggs should be
found in 1 kg of dry matter [40]. However, this Polish regulation does not account for all
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potential pathogens that may be present in wastewater sludge. In addition to helminth
eggs (Ascaris spp., Trichuris spp., Toxocara spp.), other parasite species, such as Echinococcus
spp., may also be present in sewage sludge [41]. Moreover, this legislation does not specify
the methods to be used for detecting these parasites, which can lead to discrepancies in the
results obtained by different laboratories.

Apart from these documents, other legal acts in the European Union impact wastew-
ater regulations and its reuse. These include Directive 2000/60/EC of the European
Parliament and of the Council of 23 October 2000, establishing a framework for Community
action in the field of water policy [42]; Directive (EU) 2020/2184 of the European Parlia-
ment and of the Council of 16 December 2020, on the quality of water intended for human
consumption [43]; the Council Directive of 12 December 1991, on the protection of surface
waters against pollution caused by nitrates from agricultural sources [44]; the Council
Directive of 12 June 1986, on the protection of the environment, and in particular of the soil,
when sewage sludge is used in agriculture [39]; and Directive 2010/75/EU of the European
Parliament and of the Council of 24 November 2010, on industrial emissions (integrated
pollution prevention and control) [45]. The European Parliament and Council Regulation
(EU) 2020/741 of 25 May 2020, on minimum requirements for water reuse, stipulates that
reclaimed water used for irrigating pastures or fodder crops must contain no more than
one helminth egg per litre [38]. Additionally, under the European Parliament and Council
Directive (EU) 2020/2184 of 16 December 2020, water intended for human consumption
must be free from any microorganisms and parasites [43].

3. Selected Parasites Found in Sewage Sludge
There are a number of relationships between organisms, such as mutualism, commen-

salism, predation, and parasitism. The broad definition of parasitism says that parasites
are organisms that are harmful to their hosts and benefit from them. These parasites
have adapted so as to colonise the host organism and have a negative impact on the host,
leading to several negative outcomes such as disturbances in programmed cell growth,
programmed cell death and cell division, diarrhoea, immunosuppression, allergies, the de-
creased efficiency of vaccines, and many other clinical symptoms. In addition, the parasite’s
presence affects the host’s lifespan and fertility [46].

Various developmental stages of parasites are released into the environment and
can be found in the water, sewage, or on vegetables and fruits. For example, Taenia spp.,
Hymenolepis spp., Entamoeba spp., G. lamblia, Ascaris spp., T. trichiura, and Toxocara spp.
were found on vegetables from Soran City (Iraq) [47]. The number of detected parasites
depends on factors such as the detection method used, the detection timeframe, or the
sample’s origin [48]. In Sweden, a trend of increased numbers of parasitic protozoa in
samples from wastewater treatment plants was observed from February to June [49].
Furthermore, in Tunisia, significantly more parasites were detected in raw sewage samples
than in treated sewage samples [50]. The number of parasites detected in treated and raw
sewage is particularly significant in arid regions where wastewater agricultural reuse is
practised [51].

The average load of parasite eggs in Morocco in raw wastewater is about 9 eggs
per litre. For the treated wastewater, this number is lower, and it is less than 1 egg per
litre [51], but it also varies depending on the region in the city. Studies indicate that a
greater number of detected parasites are recorded in Northern Africa. It was found that this
continent has a higher average contamination with parasites in raw sewage [52]. However,
it should be noted that factors such as hygiene standards or sewage treatment may differ
between regions belonging to a given country or climate zone. These factors may affect the
correlation between place and the number of detected parasites [53].
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The appearance of parasites in sewage may affect human health and indicate emerging
infection hotspots. Studies conducted in Spain revealed a high incidence of protozoal
infections, which coincided with the rate of parasite detection [54]. Additionally, in Brazil,
a reduction in parasite prevalence was associated with increased sewer coverage in the
study areas [55].

Several pieces of literature data deal with the controversial issue of Ascaris suum
and A. lumbricoides. There is a theory stating that these two species are actually one
species, so some studies indicate the possibility of synonymising these two species [56].
This is due to their high morphological similarity, the possibility of cross-infection and
interbreeding [57,58], and the similarity of their mitochondrial genome structures [59].
However, some studies indicate genetic diversity between the studied populations [60].
The A. suum genome has been sequenced, producing a draft assembly of 272,782,664 base
pairs and 18,542 predicted genes. SNPs (single nucleotide polymorphisms) were also found
within the coding regions of the genome, and a high nucleotide variability was noted. In
addition, the potential for intervention was found within the least variable genes, which
encoded i.a receptors or threonine–serine phosphatases [61]. The regions used to identify
A. lumbricoides and A. suum were ITS1, ITS2, and the cox1 gene [62]. Another important
issue was to identify SNPs located in the β-tubulin gene family that would contribute to
resistance to benzimidazoles [63]. A. lumbricoides may lead to two types of pathology. The
first is associated with an immune response against migrating larvae, which are likely to
cause eosinophilic pneumonia associated with shortness of breath, cough, fever, or tender
hepatomegaly [64]. Ascaris spp. entering the lungs (Figure 1) can be particularly dangerous
for children [65]. Due to the migration of larvae, hepatobiliary ascariasis can also develop in
the host. This type of ascariasis causes biliary colic, acute cholangitis, acute cholecystitis, or
liver abscesses [66]. Adult roundworms cause nutrient depletion along with gastrointestinal
obstruction. The infection is often asymptomatic, but abdominal pain, intestinal volvulus,
and intussusception may occur [64]. Ascaris spp. infection can cause complications such
as intestinal perforation [67]. The problem associated with roundworm eggs is related to
their durability and resistance to external factors, allowing for survival in soil for up to
7 years [68]. Both acetic acid and ammonia have been proven to be effective against A.
lumbricoides/suum eggs, which can be found, for example, on vegetables. However, the
concentration of acetic acid had to be much higher in this case due to the durability of the
eggs [69]. Still, the efficient concentration of ammonia may be encountered in sludge [68].

Other Ascaridoidea superfamily members that are a serious threat to public health
are two species of roundworms, Toxocara canis and Toxocara cati [70], which develop into
adults (living in the intestine) in their definitive hosts: dogs and cats, respectively. Upon
the infection of paratenic hosts (i.e., humans), their development is significantly different.
Upon the hatching of the eggs in the intestine, the larvae migrate towards various tissues
(Figure 1) [71], and the clinical symptoms of the disease are associated with the occupancy
of the particular organ. Four clinical classes of toxocariasis may be distinguished: visceral
larva migrans, neurological toxocariasis, ocular larva migrans, and latent toxocariasis [72].
Ocular larva syndrome may be associated with blindness [73]. Symptoms of neurological
toxocariasis may include epilepsy [74], meningitis, encephalitis, cerebellar vessels, or optic
neuritis [75]. In addition to the common symptoms, novel research shows that Toxocara spp.
infection may have other long-term negative effects. Dogs that were infected have reduced
numbers of intestinal flora, and their composition is similar to that of the flora carried by
the parasite [76]. T. canis may be a potential contributor to Alzheimer’s disease due to its
involvement in disrupting cholesterol homeostasis, which can lead to neurodegeneration.
This disruption, in conjunction with alterations in the amyloid pathway, suggests a link
to the development of Alzheimer’s disease [77]. Molecular identification may also be
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associated with genomic or mitochondrial DNA detection. In the draft genome of T. canis,
the total length of the genome was determined to be 341,776,187 base pairs, and it contained
20,178 genes [78]. Moreover, the possibility of 715 essential homologues was also found.
These include ion channels, transporters, kinases, peptidases, and phosphatases. Some of
the essential effector genes were associated with the RNAi pathway. In addition, the sid-1
gene, present in A. suum, was found in T. canis [79]. In studies attempting to distinguish T.
canis from other species belonging to the genus Toxocara and to investigate the evolutionary
relationships of the organisms, the ITS-2 region, the rrnL [80], and cox1 genes were used [81].
Furthermore, a nested multiplex PCR (polymerase chain reaction) assay was developed
to detect the infection. This assay could distinguish between T. canis, T. cati, and A. suum.
It was also found that A. suum and A. lumbricoides could not be distinguished using this
system [82]. Toxocara spp. eggs, similar to Ascaris spp. eggs, may persist in the environment
for a long time, which, in association with difficulties in molecular identification, requires
the development of novel techniques allowing for the rapid detection of the roundworms
in sewage and water.
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Figure 1. The most significant water, wastewater, and sewage-borne parasitic infections and their
impact on humans. Parasites living in the gastrointestinal tract release eggs, cysts (Giardia intestinalis),
or oocysts (Cryptosporidium spp.) through faeces into the environment. The life stages undergo
various transformations, leading to the development of the infectious stage. Toxocara spp. (canis
or cati) eggs are released by dogs or cats, respectively, and may be ingested by humans. In the
intestine, larvae hatch but do not develop into adult worms. Instead, they migrate to different tissues,
leading to diseases depending on the infected organ: ocular toxocariasis, visceral toxocariasis, and
neurotoxocariasis. Ascaris lumbricoides larvae (blue) hatch in the intestine and migrate to the lungs,
leading to clinical complications. After the lung stage, the worms migrate back to the intestine, where
they mature, causing ascariasis. The course of hookworm infection varies with the species. Human
species (green), such as Ancylostoma duodenale and Necator americanus, penetrate the skin to infect
and mature into adult forms in the intestine, leading to ancylostomiasis. Zoonotic species (yellow)
larvae, upon contact with human skin, cannot complete the life cycle and migrate through the skin,
resulting in serious complications. Protozoan parasites, such as Cryptosporidium spp. (orange) and
Giardia intestinalis (grey) may also inhabit the gastrointestinal tract, and the infection occurs upon
ingesting their infective forms.
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Another group of soil-transmitted helminths are hookworms (nematodes from Ancy-
lostomatidae family): Ancylostoma duodenale, Ancylostoma ceylanicum, Ancylostoma caninum,
and Necator americanus [70]. Human infection can lead to blood loss from the intestine,
resulting in iron deficiency, hypoproteinaemia, anarca, weight loss, vomiting, anaemia, and
eosinophilia [83]. Larvae hatch from eggs within 1–2 days, and L3 larvae can stay in the
environment for up to a month under appropriate conditions. In addition, these parasites
can stay for years in the human small intestine [84]. In contrast to Ascaris spp., the invasive
form of hookworms is L3 larvae not protected by the egg shield, making them more prone
to the technological and chemical processes engaged in sewage treatment.

Furthermore, dangerous parasites directly detected in wastewater [41] include individ-
uals from the genus Echinococcus (family Taeniidae). Species whose eggs can cause human
infection are Echinococcus granulosus, Echinococcus multilocularis, Echinococcus vogeli, and
Echinococcus oligarthrus. Following development in a host, larvae or metacestodes cause
various echinococcoses depending on the species. Human echinococcoses include cys-
tic, polycystic, unicystic, and alveolar echinococcosis [85,86]. Moreover, the geographical
distribution of these echinococcoses varies [87]. For example, in Poland, hydatid disease
(echinococcosis) is observed, with E. granulosus causing cystic echinococcosis and E. mul-
tilocularis causing alveolar echinococcosis. Moreover, the number of infections in Poland
was most numerous in 2023 compared to the previous three years. Echinococcosis often
does not show symptoms but can be particularly dangerous if parasites develop within
the central nervous system or the eye [88]. Symptoms of cystic echinococcosis may include
fever, pain, jaundice, haemoptysis, and tumour formation. The complications observed
in patients include mechanical (fistulas, cyst rupture), immune–allergic (anaphylaxis), in-
fectious (coinfections with bacteria and fungi), and mixed types [89]. The treatment of
hydatid disease involves the surgical removal of cysts and drug therapy [88]. Individuals
of this genus have been detected in wastewater [41] and on vegetables [90]. Survival of E.
multilocularis eggs in the environment has been observed for over 100 days. Additionally,
their viability and infectivity were noted after 240 days of being suspended in tap water [91].
Furthermore, the survival and infectivity of eggs were observed under varying low and
high temperatures [92], as well as after exposure to disinfectants [91].

4. Methods for Identifying Parasites in Wastewater
Various microscopic and molecular methods have been developed for detecting para-

sites (Table 1). Numerous studies identify parasite eggs in wastewater and sewage sludge.
For instance, in 2016, research conducted in wastewater from Puno, Peru, confirmed the
presence of parasite eggs using microscopic observations [93]. Helminth eggs have also
been detected in wastewater from Iran, India, and Morocco [94–96]. Bastos et al. demon-
strated the presence of parasite eggs in sewage sludge [97]. However, identifying parasite
eggs through microscopic techniques is time-consuming, requires expertise, and cannot
be automated. Moreover, artefacts and flocculants used to form larger particles in sludge
hinder microscopic diagnostic [98]. To address these challenges, a digital imaging system
for identifying and quantifying several helminth egg species in wastewater was developed
in 2016 (T. trichiura, T. canis, A. lumbricoides, Taenia saginata, Hymenolepis nana, Hymenolepis
diminuta, Schistosoma mansoni). This system provides information on the number of eggs
per species and counts the total egg quantity, distinguishing whether the detected A. lumbri-
coides eggs are fertilised. The system’s specificity is around 99%, with a sensitivity ranging
from 80 to 90% [99].
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Table 1. Comparison of methods detecting the presence of parasites.

Sample Type Used Method Detected Parasites Country Comments

Influent and effluent
wastewater [49]

Multiplex real-time
PCR

Giardia intestinalis
Entamoeba dispar

Dientamoeba fragilis
Sweden

The tested treatment plants used
mechanical, chemical, and biological

treatment.
Two multiplex real-time PCR reactions

were performed, the first one specific for
Entamoeba histolytica, E. dispar, and D.

fragilis, and the second one for
Cryptosporidium parvum/hominis and

G. intestinalis.

Raw and treated
wastewater [50] Microscopy

Ascaris sp.
Entamoeba coli

Entamoeba histolytica/dispar
Enterobius vermicularis

Giardia sp.
Hymenolepis nana

Taenia sp.

Tunisia

The studied treatment plants used
activated sludge treatment and waste

stabilisation ponds.
A modified Bailenger method was used
to determine the presence of parasites.

Raw and treated
wastewater [51] Microscopy

Ascaris sp.
Toxocara sp.
Capillaria sp.

Hymenolepis nana
Hymenolepis diminuta

Spirometra spp.

Morocco

The tested treatment plants used natural
lagoons during treatment.

The concentration of parasite eggs
dispersed in a biological sample was
assessed using the Arther–Fitzgerald

technique.

Samples of influent
and effluent

wastewater and
selected intermediate
stages of wastewater

treatment [54]

Optic microscopy and
PCR techniques

Cryptosporidium spp.
(Cryptosporidium hominis,
Cryptosporidium parvum)

Giardia duodenalis
Entamoeba histolytica

Entamoeba moshkovskii
Entamoeba dispar

Spain

PCR techniques were performed to
identify the presence of Crysptosporidium

spp., Giardia duodenalis, and
Entamoeba spp.

Molecular techniques proved to be more
sensitive in detecting parasites and

allowed one to distinguish between the
practically identical morphological

species of Entamoeba
histolytica/dispar/moshkovskii.

Mouse or chicken
liver [82] Nested multiplex PCR

Toxocara canis
Toxocara cati
Ascaris suum

Japan

Both mouse and chicken livers were
infected with parasites isolated from

dogs (Toxocara canis), cats (Toxocara cati),
and pigs (Ascaris suum).

Multiplex PCR has been shown to be
much more sensitive than the direct

counting of larvae after tissue digestion.

Fresh domestic
wastewater–influent

and effluent in
up-flow Anaerobic

Sludge Blanket
laboratory reactor [93]

Optic microscopy

Ascaris lumbricoides
Toxocara spp.

Hymenoloepis nana
Enterobious vermicularis

Peru

Raw and treated
wastewater [94] Microscopy

Ascaris lumbricoides
Trichostrongylus spp.

Enterobius vermicularis
Ancylostoma duodenale

Necator americanus
Taenia spp.

Hymenolepis nana
Dicrocoelium dendriticum

Iran

In the treatment plants, activated sludge
or stabilisation pond treatment was used.

A modified Bailenger’s method
was used.

Faecal sludge or fresh
wastewater
samples [95]

Microscopy

Ascaris sp.
Trichuris sp.
hookworm

Hymenolepis nana
Hymenolepis diminuta

Aspiculuris sp.
Heterakis spumosa

Trichosomoides crassicauda
Calodium hepaticum

Capilaria hepatica

India

Faecal sludge was collected from
desludging trucks, and fresh sewage was

collected from an apartment complex
and a shared toilet.
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Table 1. Cont.

Sample Type Used Method Detected Parasites Country Comments

Raw, decanted, treated
wastewater [96] Microscopy

Giardia lamblia
Entamoeba histolytica

Entamoeba coli
Strongles sp.

Ancylostoma sp.
Enterobius vermicularis

Ascaris sp.
Tichuris trichiura

Capliaria sp.
Fasciola hepatica

Taenias sp.
Hymenolepis nana

Hymenolepis diminuta

Morocco

The treatment plants used anaerobic
lagoons, infiltration–percolation, and,

additionally, UV radiation in one of the
treatment plants.

Bailenger’s method was used for the
parasitological analysis.

Sewage sludge [97] Microscopy

Ascaris sp.
Capillaria sp.

Enterobius vermicularis
Fasciola hepatica
Hymenolepis sp.

Taenia sp.
Toxocara sp.
Trichuris sp.

Brazil

The activated sludge treatment method
was used in the sewage treatment plants.

The average precision of the method
used in the tested samples was 26.3%.

Sewage sludge [98] Microscopy
Toxocara sp.
Ascaris sp.

Trichuris sp.
Poland

The treatment plants used
mechanical–biological wastewater

treatment.
The method used to analyse parasites
involved the use of polyelectrolytes.

A viability assessment was performed
after the incubation of the eggs in a moist

chamber at a temperature of
approximately 27 ◦C.

Wastewater, sludge,
and

excreta processed at
the laboratory [99]

Digital imaging
system for identifying

and quantifying
selected parasites

Ascaris lumbricoides
Taenia saginata
Toxocara canis

Trichuris trichiura
Hymenolepis nana

Hymenolepis diminuta
Schistosoma mansoni

Three versions of the system were
developed to increase the specificity and
sensitivity of the method.The system was

adapted to detect parasite eggs,
not larvae.

Tap water, secondary
treated and raw
wastewater, and

sludge samples [100]

Real-time PCR Ancylostoma caninum Australia The performed real-time PCR was
directed against Ancylostoma caninum.

Raw wastewater,
human faeces, and

soil [101]
PMA-qPCR Necator americanus

Ascaris lumbricoides Australia The samples containing viable eggs were
human faeces and soil samples.

Sludge [102] Microscopy

Toxocara canis
Trichuris vulpis
Trichuris suis
Ascaris suum

Hymenolepis diminuta

Eggs were added daily to the research
samples, which were added to laboratory

aerobic and anaerobic
bench-top digestors.

During the experiment, the eggs’
viability was checked after applying

various factors.

Human faeces [103] Multiplex quantitative
PCR

Ancylostoma duodenale
Ascaris lumbricoides

Taenia saginata
Philippines

The first PCR reaction performed was
specific for Ascaris lumbricoides,

Ancylostoma duodenale, Necator americanus,
and Taenia spp. Samples positive for

Taenia spp. were subjected to a specific
reaction for Taenia solium and

Taenia saginata.
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Table 1. Cont.

Sample Type Used Method Detected Parasites Country Comments

Influent wastewater
samples [104] Droplet digital PCR Cryptosporidium parvum

Optimisation of the ddPCR was
performed, and the limit of detection for

Cryptosporidium parvum using this
method was determined to be

0.07 copies/µL (1.32 copies in a
20 µL reaction).

A comparison of DNA isolation methods
from Cryptosporidium parvum oocysts was

conducted, revealing differences.

Influent wastewater
[105]

ILLUMINA
sequencing

Entamoeba moshkovskii
Entamoeba coli

Entamoeba dispar
Entamoeba hartmanni
Entamoeba histolytica

Endolimax nana
Iodamoeba bütschlii

Blastocystis sp.
Entamoeba histolytica

Sweden

Dewatered and
thickened primary

sludge [106]
Microscopy

Ascaris lombricoide
Ancylostome duodenale

Trichuris trichiura
Capilaria spp.

Hymenolepis nana
Taenia saginata

Morocco
The viability of Ascaris eggs was tested
during the co-composting of dewatered
primary sludge with date palm waste.

Wastewater before
treatment [41]

Nested PCR
Real-time PCR

LAMP (loop-mediated
isothermal

amplification)

Echinococcus multilocularis China

Using these methods, it was possible to
detect Echinococcus multilocularis DNA in

samples containing 20 eggs/L.
The effectiveness of all the methods used

in the study for detecting Echinococcus
multilocularis was confirmed.

Stool [107]
Modified

Ziehl–Neelsen stain
and Giemsa stain

Cryptosporidium parvum
Blastocystis hominis

Isospora
Cyclospora caytenensis
Entamoeba histolytica

Giardia lamblia
A. lumbricoides

Taenia sp.
Entrobious vermicularis

Hymenolepis nana
Strongyloides stercoralis

Egypt

Molecular techniques are also used to detect parasites in wastewater and sewage
sludge. Compared to microscopy-based methods, PCR offers a higher specificity and sensi-
tivity, thus facilitating parasite species identification in wastewater and sewage sludge [14].
For instance, in 2015, a quantitative PCR (qPCR) method was developed to detect A. can-
inum eggs in wastewater, with a detection limit of 500 fg gDNA [100]. In 2017, a study
using the qPCR method assessed the prevalence of intestinal parasitic protozoa (Cryp-
tosporidium spp., Giardia intestinalis, Entamoeba histolytica, Entamoeba dispar, Dientamoeba
fragilis) in Swedish wastewater [49]. In 2020, a study detected the presence of intestinal
parasitic protozoa and nematodes in wastewater samples from Spain using qPCR for
Cryptosporidium spp., Giardia duodenalis, and Entamoeba spp., while nematode eggs were
detected using optical microscopy [54]. The limitation of PCR and qPCR methods is their
inability to distinguish between live and dead parasite eggs. This issue can be addressed
by using the DNA intercalating dye propidium monoazide (PMA) in combination with
PCR and qPCR methods. During photoactivation, PMA penetrates dead eggs, forming a
stable DNA-PMA complex that prevents DNA amplification during PCR. In 2016, a study
described the PMA-qPCR method, confirming its suitability for selectively detecting live
helminth eggs in environmental samples, including wastewater. However, this method
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also has limitations similar to the viability staining methods, as it depends on the structural
integrity of live and dead parasite eggs. False results may occur when assessing recently
inactivated eggs, as they require 12 h of incubation to become permeable. Factors such as
dye concentration, light exposure, and incubation time also influence this method’s effec-
tiveness [101,108]. Many of the methods indicate the viability of eggs without considering
their invasiveness. These two statements are not synonymous, and the use of conditions
such as low temperatures and the aerobic and anaerobic digestion of sewage sludge may
result in the eggs being viable but their invasiveness being reduced [102].

Multiplex-based PCR approaches allow for the rapid and simultaneous amplification
of multiple parasitic species in a single sample. A multiplex quantitative (qPCR) test has
been described for detecting helminths such as A. lumbricoides, N. americanus, Ancylostoma
spp., T. saginata, and Taenia solium in faeces [103]. A nested multiplex PCR test for detecting
T. canis, T. cati, and A. suum has also been developed, although it was designed to detect
these parasites in meat and offal. The detection limit of this test was 10 fg of genomic
DNA for T. canis, 1 fg for T. cati, and 100 fg for A. suum [82]. PCR-based methods are
sufficiently specific, sensitive, and efficient for assessing the presence of parasite eggs in
wastewater and sewage sludge. However, these analyses require professional equipment
and trained personnel. In many endemic countries, access to such resources is limited,
potentially leading to unreliable results. In 2020, the RPA-LF (recombinase polymerase
amplification combined with lateral flow strips) test was developed to detect helminth eggs.
This test was created as a rapid, sensitive, highly specific, and cost-effective alternative to
PCR. Additionally, the equipment required for this method is portable, which allows the
analysis to be performed directly at wastewater treatment plants. This method can detect
2 fg of gDNA, indicating its potential to detect even a single helminth egg in a sample.
Using a multiplex approach, a single lateral flow strip successfully detected eggs of two
different helminth species [109]. A method utilising digital droplet PCR (ddPCR) has also
been described for detecting parasitic protozoa in wastewater, showing high sensitivity,
with a detection limit of 1.32 copies per 20 µL reaction volume for C. parvum [104].

Several studies have used the next-generation sequencing (NGS) technique to assess
wastewater composition, which may further facilitate the detection of helminths in sewage.
In 2019, a study used NGS to identify eukaryotic microorganisms in wastewater samples
from four Australian wastewater treatment plants at different treatment stages, detecting
human intestinal parasites [110]. In 2020, NGS based on amplicon sequencing was used to
detect and differentiate intestinal parasitic protists in wastewater samples from Swedish
treatment plants, identifying species such as Blastocystis sp., Entamoeba moshkovskii, E.
histolytica, E. dispar, Entamoeba hartmanni, Endolimax nana, and Iodamoeba bütschlii [105]. In
2022, a study evaluated the entire wastewater microbiome using shotgun metagenomic
and metatranscriptomic sequencing of wastewater samples from Switzerland [111].

5. Viability vs. Infectivity
The viability of a parasite egg is its ability to survive and to develop further. Viability

can be influenced by environmental factors such as temperature [112], pH, dryness, egg
developmental stage, and parasite species [113]. Specific environmental conditions can
render eggs non-viable, making it crucial to have methods for the assessment of eggs’
viability. For testing the viability of oncospheres after egg hatching, trypan blue staining
can be used. In this method, live oncospheres do not change colour, whereas dead ones
exhibit a colour change under a microscope [114]. Another staining technique used to
determine egg viability involved the LIVE/DEAD BacLight Bacterial Viability Kit, type
7007 (Molecular Probes, Invitrogen, Eugene, OR, USA). In these studies, live eggs of Toxocara
spp., Ascaris spp., and Trichuris spp. were stained green or green-blue, while dead cells
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appeared red [115]. Other dyes used for viability assessment include methylene blue [116]
and eosin solution [117].

In addition to staining methods, microscopic observation methods are also used to
determine eggs’ viability. For samples containing A. suum eggs, a 1% sodium hypochlorite
solution was added, and the samples were observed under a microscope. Live eggs were
identified by the presence of internal structures (two or more defined cells) or motile
larvae [118]. Some studies combine microscopic observation with dye application, such as
trypan blue, to monitor egg hatching [113]. Microscopic observation can also focus solely
on the larval stage of parasites obtained after prior egg hatching [119]. Additionally, worm
viability studies using microscopy allow one to assess the movement of worms. Before
determining non-viability in samples where no movement is observed, the worms are
exposed to light and/or shaken vigorously [120]. It is important to consider the varied
sensitivity of tests. For example, differences in the sensitivity of certain tests (among others,
SYTO-9 assays and the mouse infectivity assay) used to study the inactivation of protozoan
cysts after ozone treatment were observed [121].

Parasites’ infectivity is their ability to infect a host. It is important to note that viability
is not necessarily linked with high invasiveness. For example, eggs lose their infectivity
with extended egg storage time [122]. The use of therapeutic agents is another factor
influencing infectivity. For instance, larvae treated with ivermectin and albendazole were
not infective to mice [123]. Egg infectivity can be determined by administering them to
animals and then collecting and observing samples from these animals using an appropriate
method [118,123]. However, these methods are very time-consuming [118] and require
the cost of maintaining the animals used in the study, making them unsuitable for routine
sewage examination. Due to those limitations, the development of new methods to assess
the potential of helminth eggs to infect the host could be a reasonable solution.

By determining the parameters that cause a loss of viability, we can identify ways
to eliminate eggs. Egg inactivation often involves using a specific combination of several
parameters (pH, temperature, dryness) [113]. Environmental conditions can also affect
eggs’ viability. For example, temperature, salinity, and light influence Anisakis simplex eggs’
hatching ability and hatched larvae survival [124]. In contrast, the activity of Taenia spp. is
influenced by factors such as UV light, temperature, and lime [53]. Factors that inactivated
Pseudocapillaria tomentosa eggs included UV light, chlorine, or dehydration [125]. The
elimination of parasite eggs from wastewater and sewage sludge is also important. Sludge
dewatering on drying beds results in the elimination of A. duodenale eggs from the sludge.
Similarly, the co-composting of the primary sludge with date palm waste for 60 days
resulted in the elimination of Ascaris spp. eggs with 98% effectiveness [106]. The impact of
using urea to inactivate Ascaris spp. eggs has also been investigated [126]. Moreover, the
use of the aerobic and anaerobic fermentation of sewage sludge reduced egg invasiveness
even though they were viable [102]. Applying appropriate conditions during wastewater
and sludge treatment can significantly reduce the viability or invasiveness of eggs. Factors
that may affect the eggs’ viability during wastewater treatment include exposure time, the
use of ammonia [127], and lime (pH/temperature) [128]. Specific temperature, pH, and
dryness conditions affected the activity of A. lumbricoides, A. suum, T. canis, T. trichiura,
H. nana, and T. solium [113]. The application of lime [129] and ammonia [127] resulted in
the reduced viability of A. suum, but the use of disinfectants did not alter the infectivity
of E. multilocularis eggs [91]. However, the application of Daphnia pulicaria affected the
viability and infectivity of two protozoa species (Giardia lamblia, Cryptosporidium parvum)
cysts [130]. Additionally, C. parvum exhibited decreased viability and infectivity following
ozonation [121].
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6. Conclusions
Parasites are a global health burden, especially in tropical regions and low-income

countries. They are a problem in wastewater management and the reuse of sludge as
fertiliser and for other purposes. Although some existing legal regulations prohibit the use
of sludge containing parasite eggs as fertiliser, the presence of eggs may not always pose a
danger due to the loss of their infectivity. Nonetheless, to ensure the effective management
of wastewater treatment byproducts such as sewage sludge, it is essential to establish
appropriate standards for monitoring the presence of parasites and assessing their infective
potential. Developing such standards would improve the reproducibility, quality, and
accuracy of results across various laboratories. Another avenue for improving wastewater
diagnostics is to assess not only the presence of the eggs but also the invasiveness of the
eggs. Implementing such an approach could lead to increased sensitivity and changes in
restrictions on using sewage sludge as fertiliser when eggs are present but show no viability.
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