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Abstract: The lung is a vital organ for the body as the main source of oxygen input.
Importantly, it is also an internal organ that has direct contact with the outside world. Innate
immunity is a vital protective system in various organs, whereas, in the case of the lung, it
helps maintain a healthy, functioning cellular and molecular environment and prevents
any overt damage caused by pathogens or other inflammatory processes. Disturbances
in lung innate immunity properties and processes, whether over-responsiveness of the
process triggered by innate immunity or lack of responses due to dysfunctions in the
immune cells that make up the innate immunity system of the lung, could be correlated to
various pathological conditions. In this review, we discuss globally how the components of
lung innate immunity are important not only for maintaining lung homeostasis but also
during the pathophysiology of notable lung diseases beyond acute pulmonary infections,
including chronic obstructive pulmonary disease (COPD), asthma, and pulmonary fibrosis.
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1. Introduction
As an organ continuously exposed to the outside, circulating air, the lung is constantly

exposed to various environmental pathogens and toxins. Beyond the obvious risk of
microorganism infection, this exposure could also lead to chronic lung diseases with dire
consequences [1–3]. Central to the pathophysiology of the diseases is the inflammatory
process governed by the immune cells of the body [4,5]. Importantly, the innate immune
system is the first line of defense against any perceived changes due to various pathological
triggers. The lung’s innate immune system, in particular, is highly complex, with multiple
cellular components that together orchestrate tissue response to stimuli [6]. Dysfunction
in this delicately balanced system has been linked to the development of not only acute
pulmonary infections but also various other chronic lung diseases, as reported in numerous
studies in recent years [7–9]. In this review, we will briefly discuss which cells compose the
lung’s innate immunity system, how they can work together in concert during pathological
insults, and what happens to them during various diseases.

2. Components of Lung Innate Immunity
As with any other organ, the lung has its own set of resident immune cells in addition

to the circulating cells that are ready to be called upon to act whenever any pathological
stimuli trigger the lung cells [6,10,11]. In this review, we will first focus on the physiological
role of the immune cells that make up the innate immunity of the lung, starting with
macrophages. As one of the most well-known immune cells, macrophages have been
widely studied in the lungs and other organs. The lung has its resident macrophages,
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divided broadly into alveolar macrophages (AMs) and interstitial macrophages (IM) [5,12].
AMs found adjacent to the alveolar airspace are considered cells that are functionally
adaptable to their microenvironment and differentiation states [13]. AMs are traditionally
thought of as anti-inflammatory, although recent evidence suggests that this could be
more complex [14]. Their major role is performing phagocytosis of particulate matter,
dying cells, and cellular debris, as their continuous exposure to environmental stimuli
would suggest [14,15]. This is important in limiting lung inflammation to avoid excessive
inflammatory responses to external stimuli, and, as such, under homeostatic conditions,
AMs are largely kept in a quiescent state [15]. AMs are mostly self-renewing and do not
rely on bone marrow for fresh populations [16]. Most AMs originate separately from the
circulating, common monocytes and/or precursor cells. A small subset of fresh AMs can
be recruited from the circulation, however, and over time gain the characteristics of AMs
already residing in the lung tissue [17]. AMs are important not only in phagocytosis but
also in maintaining the homeostasis of other cells in the tissue, including the epithelial
cells, dendritic cells (DC), and T-cells, among others. This is done by producing several
molecules such as TGF-β, interleukin-6 (IL-6), and RANTES, among other molecules [18].

The origin of lung interstitial macrophages (IM) that reside in the lung parenchyma,
on the other hand, is not completely known. It was previously thought that IMs are
macrophages that are in the interim state between those recruited from the circulation and
the resident AMs, but recent studies have shown how IMs are transcriptionally, ontogeni-
cally, and functionally different from AMs [19]. First, differing from AMs, IMs seem to
rely on the circulating cells to replenish themselves [11,19]. What complicates the matter
is that reports have suggested that there are multiple IMs with different functions and
locations. For example, peribronchial IMs express CD206 and MHCII and function during
the immunoregulation and wound-healing process. IMs without CD206 expression and
low CX3CR31 expression are instead involved in antigen presentation and interact with the
interstitium of the alveoli, in addition to being continually replenished by the circulating
monocytes, while another population is detected perivascularly [20]. One of the ways IMs
play a key role in immunoregulation is by secreting immunoregulatory cytokines such
as IL-10 [21]. Furthermore, they are capable of performing small particle phagocytosis
(to a lesser degree than AMs) and chemotaxis and have the ability to produce reactive
oxygen species. Lastly, the antigen-presenting capacity of IMs is superior to that of AMs
and promotes T-cell proliferation and Treg cell differentiation [22].

Beyond macrophages, other types of immune cells are also in play in lung innate
immunity system. For instance, while neutrophils were previously thought of as recruited
from the circulation, recent studies highlighted how neutrophils can reside in the lung
tissue even during normal conditions and regulate the status quo [23]. Compared to those
circulating, lung neutrophils differ in phenotypes and specific functions, with one report
mentioning its high production of interleukin (IL)-6 and low levels of tumor necrosis factor-
α (TNF-α) after stimulation [23]. In the lung, neutrophils are involved in the removal of
cellular debris while also being a major trigger of the acute lung inflammation process,
which can be pathogenic because it promotes further tissue damage [24]. In the later
stage, neutrophilic infiltration performs its tasks in the damaged parts of the tissue to
promote regeneration, which depending on the situation could be beneficial or damaging.
This process is mediated by, among others, neutrophil extracellular traps (NETs), matrix
metalloproteinase (MMP)-2, MMP-9, lipoxins, resolvins, and protectins [5,25].

Innate lymphoid cells (ILCs) are a diverse group of lymphoid cells resident in the
peripheral tissue (in this case the lung) that have similarities to T-cells, only without
the antigen-specific receptors [26]. They instead respond to locally secreted cytokines
by other components of innate immunity in the lung. The three ILC subtypes, named
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simply as ILC1, ILC2, and ILC3, are, respectively, similar to T-helper (Th) 1, T-helper 2,
and T-helper 17 cells [11,26]. Much like other resident immune cells, ILCs can also change
their phenotype and function to adapt to their environment, while being able to self-renew
in various settings [27]. Using the most abundant ILC subtypes of ILC2 as an example,
one study showed how in the two months after birth, only 5–10% of lung-resident ILC2s
were of embryonic origin, showing how ILCs can renew themselves de novo [28]. ILC1
expresses residency markers such as CD69 and CD103 and is relatively low in number in
the lung, but these cells are important to survey and control for any possible infection in
the lung [29]. They secrete interferon (IFN)-γ in response to interleukins 12, 15, and 18 to
boost other immune cells to eliminate potential pathogens [26,29]. ILC2, on the other hand,
is involved in the production of type 2 cytokines IL-4, IL-5, and IL-13 upon stimulation
by IL-25 or IL-33, among others [30]. These cytokines are known as important mediators
in allergic responses and during asthma [30]. ILC2s comprise the main population of
ILCs in the lung, and they express the surface markers IL-7Ra, CD25, ST2, and CD44,
among others [26]. Lastly, ILC3 expresses the retinoic acid receptor-related orphan receptor
γt transcription factor (RORγt) and is thought of as similar to T-helper 17/22 cells [31].
As the analogy suggests, ILC-3 secrete IL-17 and IL-22, both of which are key mediators
in lung immunity [11,32]. IL-18 and GATA3 are known to promote ILC-3 maintenance,
proliferation, and cytokine production [32].

Natural killer (NK) cells are part of the ILC-1 family due to similarities in transcription
factor requirements and IFN-γproduction, but they function as cytolytic cells instead and
can degranulate upon stimulation by infections [33]. The lung contains several distinct
populations of NK cells, which are mainly based on the expression levels of CD56, CD16,
and NKp46 [34]. The lung-resident NK cells have diminished CD56 levels with positive
CD16 phenotype and are negative for CD69 [34]. They have already differentiated and do
not elicit a high level of response to target cell stimulation [34]. Another study reported that
lung-resident NK cells are those with the expression of CD49a, CD69, and CD103, which
are more suggestive of tissue residency than the previous population might suggest [35].
Dendritic cells (DCs) are antigen-presenting cells that, in the lung, work to process inhaled
pathogens and migrate to lymph nodes [36]. There, they present the processed pathogen
peptides to T-cells [37]. While DCs mostly need to be replaced by fresh ones deriving from
the monocytes and the bone marrow, there are populations of DC precursors found in the
lung. The three known subsets of DCs are the two conventional DCs (cDCs), aptly named
cDC1 and cDC2, and the plasmacytoid DCs [38]. cDC-1 and cDC-2 are distinguished by the
expression of CD103 (positive in cDC1, negative in cDC2) and CD11b (negative in cDC1,
positive in cDC2) [5,39]. cDC-1s are adjacent to the airway epithelium while cDC2s are
mostly found in the lung interstitium, much like pDCs [5].

Finally, beyond these cell types, mast cells (MCs), basophils, and eosinophils are also
important innate immunity responders, especially during allergic inflammation [40]. MCs
originate from the bone marrow and reside in lung tissues to survive for months. During
an allergy, once an individual has been exposed to enough of the allergen to develop
the antigen-specific IgE that is bound to FcεRI (the high-affinity IgE receptor), allergen
re-exposure will cause the crosslinking and aggregation of the neighboring FcεRI-bound
IgE [41]. This will trigger MCs to immediately release mediators of the allergic reactions,
including histamine, serotonin, prostaglandin, leukotriene, and protease [42]. MCs can also
release inflammatory cytokines and chemokines after activation [42]. Another cell type
similar to MCs is the basophils. They also express the high-affinity receptor FcεRI and
can release similar mediators such as histamine and other cytokines, although basophils
have a relatively shorter lifespan than MCs [43]. T-cell-derived IL-33 is known to promote
basophil development [44]. Lastly, the lesser-known eosinophils have been associated
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with the pathogenesis of asthma and they are known to be accumulated during allergic
asthma to mediate efferocytosis and apoptosis, but the molecular details regarding their
role in the lung remain to be elucidated [45]. Together, these different immune cell types
not only orchestrate the lung response to external stimuli but also preserve the necessary
molecular balance needed for the lung cells to maintain themselves. Disturbance in this
delicate system, as will be discussed later, is detrimental to limiting the pathogenic process
in various acute and/or chronic inflammatory diseases in the lung. On the other hand,
pathological conditions can also drive these immune cells to dysfunction. We will further
discuss this phenomenon in the context of each pulmonary disease.

3. The Role of Innate Immunity During Lung Diseases
3.1. Lung Infections

Infections by pathogenic microorganisms are the most obvious condition in which
the lung’s innate immunity system plays its role [8]. As briefly touched on in the previous
section, multiple layers of processes involving most, if not all, of the innate immune cellular
component are in play to limit the infection, whether viral, bacterial, or helminthic [11].
Moreover, any functional or molecular changes due to genetic changes or variations in the
innate immune cells could also contribute to the difference in how the immune system
responds to infections.

Starting with the macrophages, the role of AMs during infections is to induce effec-
tive defense mechanisms against said pathogens. Studies have shown that when, among
others, Mycobacterium tuberculosis, Streptococcus pneumoniae, and L. pneumophila infect the
lung, they will activate AMs to produce cytokines and chemokines such as IL-1α, IL-1β,
IL-6, TNF-α, type 1 interferon (IFN-α/IFN-β), TGF-β, and prostaglandin-E2 [10,14]. In
addition, the expression of macrophage receptors with collagenous structure (MARCO)
in AMs helps them in phagocytic clearing of said pathogens, and expressional reduction
or mutation in the MARCO gene is associated with reduced AM phagocytosis capacity
and increased inflammation [46]. H101Q heterozygous variation in the MARCO gene is
also associated with sepsis from lung infections [47]. Genetic variations in genes encoding
the cytokines, such as the IL-6, IL-1α, IL-1β, or the interferon type 1 gene, have also been
related to increased severity of various viral infections, such as RSV or influenza [48].
Furthermore, the phagocytosis process of apoptotic cells by AMs can also prevent intracel-
lular contents that might be inflammatory and induce additional damage to surrounding
tissue [49]. AMs are also known to release small, cationic anti-microbial peptides such as
beta-defensins [50]. In humans, beta-defensin 2 is most abundantly expressed in the lung
and reacts to specific components in both gram-negative and gram-positive bacteria as
its attractant [51]. Additionally, beta-defensin 2 is reported to be effective against various
microbiomes, such as Staphylococcus aureus, E. coli, and Klebsiella pneumoniae, among oth-
ers [52]. Lastly, beta-defensins can also act as an immune enhancer and chemotactic factor
for other immune cells [52].

In comparison, the role of IMs is less known, but several studies have suggested that it
could work similarly to AMs in different pathogens. Recent studies have highlighted its im-
portance in various viral and bacterial infections, including after SARS-CoV-2 infection [53].
SARS-CoV-2 was shown to predominantly infect activated interstitial macrophages (IMs)
using the cell transcriptomic capability to form RNA bodies and eliciting pro-fibrotic and
inflammatory cytokine release from the host, such as IL-6, CXCL (C-X-C motif chemokine
ligand)-10, SPP1, and TGF-β, among others [53]. Others have reported how IMs and
not AMs mediate the efferocytosis of alveolar type II epithelial cells (AT2 cells) influenza
infection [54]. Notably, the BCG (bacille Calmette–Guérin) vaccination could boost the non-
specific protective effects of monocyte-derived immune cells from various non-tuberculosis
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microbial infections through the increase in IFN-γ, TNF-α, and IL-1β productions via a
NOD-2-dependent pathway [55]. Not only in bacterial infections, BCG vaccinations also
offer similar non-specific enhancement in macrophages, either monocyte-derived or the
resident AMs, responses after viral infections, either via direct enhancement of cytokine
productions or via a gut–lung axis that modulates the intestinal microbiome, which affects
the circulating lung metabolites [56,57]. Nonetheless, the role of IMs and how it differs
from AMs needs to be explored more in future studies.

During infections, the role of neutrophils is to help trigger the acute inflammatory
response and trigger the removal of endogenous and exogenous debris [58]. Due to their
nature, neutrophils can be viewed as pathogenic because when activated, they will cause
more damage in the early stages of inflammation, which is attributable to the release of the
pro-inflammatory cytokines and chemokines such as TNF-α, IFN-γ, IL-8, CCL (C-C motif
chemokine ligand)-2, and CCL-7 [59]. Other peptides released by neutrophils include the
neutrophil peptides cathelicidin LL-37 and lipocalin 2, both of which are microbicidal [60].
Significantly, LL-37 is also important to various immunomodulating mechanisms beyond
the anti-microbial activity, including the stabilization of NETs against bacterial nucleases,
supporting the differentiation of Th17, or work as a chemoattractant for other immune
cells, among other functions [61,62]. The trigger to the acute inflammatory response by
neutrophils is the binding of the antigen or various pro-inflammatory cytokines or peptides
(e.g., lipocalin-2) to specific receptors such as the toll-like receptors (TLR) family, which
will start the release of multiple mediators and induce the recruitment of neutrophils to
the injury site, which in the case of the lung is the alveolar space [24,59,63]. For example,
P. aeruginosa, lipopolysaccharide (LPS), and β-glucans can induce the recruitment of neu-
trophils to trigger the acute inflammatory process [24]. Importantly, genetic variations in
single nucleotide polymorphisms (SNPs) in some of the TLR (e.g., TLR2, TLR3, TLR4, and
TLR8) genes are reported to alter the severity of infections such as RSV [48,64]. SNP in the
IL-8 encoding gene is also associated with more severe symptoms of RSV [65].

In the case of ILCs, several lines of evidence point to the diversity of the role this
cell has depending on its subtype. For example, ILC1s can be activated and secrete IFN-
γ and TNF-α after infection with the H1N1 influenza virus as early as three days after
infection [26,66]. In line with that result, another study showed how ILC1 depletion in T-cell
deficient mice caused a titer increase of Sendai virus in the lung after infection [29]. ILC2s,
on the other hand, receive signals from infected epithelial cells and can swiftly release
several cytokines, including the aforementioned IL-4, IL-5, and IL-13, in addition to TGF-β
and amphiregulin, among other cytokines [67]. Lastly, ILC3s are vital in lung infections
and also due to their capability to produce IL-17 and IL-22 [68]. Both of these molecules
are important in the clearance and protection from bacterial and viral infections, such as
S. pneumoniae and M. tuberculosis [68,69]. Further, the reduction in epithelial regeneration
capability in influenza-infected IL-22 knockout mice could be restored by transferring ILC3
cells into the mice or treating it with recombinant IL-22 [26]. Again, genetic variations in the
form of SNPs in the IL-4 and/or IL-13-encoding gene have been correlated with increased
RSV severity [48,70,71].

Another producer of the vital cytokine IFN-γ in the lung during infection is the NK
cells. As they are one of the first lines of defense against pathogens, the ability to secrete
a protective cytokine such as IFN-γ is vital in limiting disease severity [72]. Variations
in the gene encoding IFN-γ (IFNG) through SNPs are more frequently found in patients
with pulmonary infections, such as those with COVID-19 infections [73]. NK cells can
also produce IL-21 and IL-22 to enhance local immune responses by other immune cells,
such as the circulating monocytes or the resident macrophages [74]. True to their name,
NK cells are also important in pathogen clearance in harmony with macrophages, and
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also in the direct killing of pathogens [75]. In the case of DCs, as their main role is to
process the pathogens and introduce them to T-cells, DC subsets contribute to the control
of microorganism infection burden [76]. Some studies have indicated how the number
of pDCs increased following infections [77]. One example is the increased number of
pDCs in the lung after Klebsiella pneumonia infection, which subsequently corresponds with
increased antigen-specific CD4+ T-cell responses [78]. Another example is how Pasteurella
multocida infection can trigger DC maturation and IL-12 production that can induce naïve
T-cell maturation [79]. The changes in innate immunity during lung infections are shown
in Figure 1.
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3.2. COPD

In the case of chronic lung diseases such as COPD, the innate immune cells are im-
portant not only during acute exacerbations due to infections but also contribute greatly
to the adverse airway remodeling that can be seen in the lung. During COPD progres-
sion, damage-associated molecular patterns (DAMP) could be triggered by the mixture of
pathogen infiltration and dissolution, impaired immune cell functions, microenvironmental
changes, and any other insult or injury to the airway [80]. Triggering DAMPs will result
in the pattern recognition receptors (PRR), such as the aforementioned TLRs, nucleotide-
binding oligomerization domain receptors (NOD-like receptors or NLRs), C-type lectin
receptors, retinoic acid-inducible gene 1(RIG-1)-like receptors (RLRs) and cytosolic DNA
receptors, to recruit and activate the innate immune cells [81,82]. During COPD, immune
cell PRRs, such as those in the neutrophils, are overexpressed, and as a result, the number of
recruited, activated immune cells increases, which becomes an important prognostic factor
for COPD progression and severity [80]. For instance, neutrophil count and chemoattrac-
tant levels are regarded as markers of COPD progression and exacerbation [83]. Another
example is how the total number of macrophages is also increased in COPD patients [84].
These macrophages are large in size, produce lower levels of pro-inflammatory cytokines
(e.g., TNF-α, IL-1β, and IL-6), and are less capable of phagocytosis [85]. One study high-
lighted how AM populations in the COPD lung exhibited reduced phagocytic capacity, and
how this correlates with impairment in pathogen clearance ability and reduced FEV1% [86].

https://BioRender.com/a87c229
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A subset of the macrophages found in COPD patients exhibit continuous pro-inflammatory
effects instead; this is shown by its capability to produce higher levels of pro-inflammatory
cytokines and MMPs while enhancing extracellular matrix deposition in the airway and
lung, thereby contributing greatly to the airway remodeling seen in COPD [87]. This
alternatively activated macrophage phenotype is also true for IMs; one study highlighted
how IMs in the peribronchial area of COPD patients are positive for iNOS, arginase I,
and YMV [88].

The plasticity of ILCs is clearly shown during COPD, where the abundant ILC2 can
transition in mass numbers into an ILC1-like state by the molecules IL-12 and IL-18, or by
cigarette smoke and bacterial infections [89]. Clinically, this increase in ILC1-like cells is
correlated with reduced lung function and disease severity, indicating the potential role
of ILC1-like cells in COPD pathology [90]. IL-17 derived from ILC3 is instead needed for
survival from infections that commonly occur in COPD, such as Pseudomonas aeruginosa [91].
NK cells may also contribute to the chronic inflammatory state found in COPD through their
production of pro-inflammatory cytokines and increased cytotoxic capability [92]. NK cells
are increased not only in the tissue but also in the sputum and bronchoalveolar fluid lavage
of COPD patients [93]. Further, NK cells isolated from COPD patient airways were found to
be highly cytotoxic to the lung epithelial cells compared to those that were isolated from the
blood, which is mediated by IL-15 through the communications of NK cells with DCs [94].
This could also be attributed to the possibility that NK cells in the lungs of COPD patients
are already activated, marked by the increase in granzyme B and perforin expression [95].
In the clinical setting, the increased presence of NK cells is inversely correlated with FEV1%
and FEV1/FVC, showing how NK cells could affect the chronic progression of COPD [96].
Lastly, because DCs are important as antigen presenters, they increase in number during
COPD, where long-term reduced protection and continuous exposure to harmful pathogens
and particles happen [97]. However, this pathogenic condition also impairs DC maturation,
thereby limiting its actual role as an antigen-presenting cell. Instead, immature DCs
accumulate in the airways of COPD patients in a larger number than normal, and these
immature DCs secrete CCL3 and CXCL2, both of which promote neutrophil recruitment to
the site [98]. Clinically, this is proven by the correlation between immature DC numbers
and FEV1 value, indicating how immature DCs also play a role in COPD progression [98].
The changes in innate immunity during COPD are shown in Figure 2.
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3.3. Asthma

The correlation between asthma development and innate immunity system dysfunc-
tion has been reported in various studies over the years. Early genomic studies indicated
that polymorphism in several genes related to PRRs, such as TLRs or NODs, is related
to asthma, while a larger genome-wide association study (GWAS) additionally identified
IL-33, ST2, and TSLP (thymic stromal lymphoprotein) as being important in asthma [99].
These are some of the genes expressing proteins related to the innate immunity system and
underline its connection with asthma. Recent evidence suggests neutrophilic inflammation
can be found in one out of five asthmatic lungs, a condition also termed neutrophilic
asthma [100]. What confuses matters is that in the particular subset of patients with higher
neutrophils, glucocorticoid usage is associated with prolonged neutrophil survival and
subsequently persistent increase during asthma [100]. While the role of neutrophils in
asthma is unclear, the increased presence and activity of neutrophils in asthma have been
related to the presence of bacterial or viral infections which leads to the release of neu-
trophil elastase and subsequently NETs [101]. NETs, including extracellular DNA (eDNA),
and a high number of eDNA in sputum have been associated with poorer asthma control
and mucus hypersecretion in patients [102]. Further, TSLP-TLR3 signaling could also
trigger naïve T-cell conversion to Th-17 cells, which will recruit more neutrophils to the site
of injury [103].

Macrophages are another type of immune cell with a surprisingly high correlation
with asthma. In the case of AMs, it is natural to think that AMs could have a protective role
in asthma development. However, asthmatic AMs have been shown to differ greatly in
functions compared to non-asthmatic AMs concerning their role. While asthmatic AMs
produce a greater number of anti-inflammatory IL-10, which corticosteroids can amplify,
asthmatic AMs can also produce pro-inflammatory effects that drive the progression of
asthma [104]. For instance, AMs are among the facilitators of neutrophil recruitment to
the airspace, while allergen-sensitized AMs can also induce eosinophilic inflammation in
otherwise healthy lungs of mice [105]. IMs are another source of IL-10, and as with the
IL-10 secreted by AMs, they are also important in alleviating asthma development. IL-10 in
asthma works by limiting Th2 allergic inflammation and neutrophilic inflammation [21].
IMs can also separately suppress neutrophil NETosis and inflammation through reduced
Th17 activation [106].

ILCs, through their function in expressing interleukins, also play a role in asthma
pathology. ILC2s in the lung can control eosinophil accumulation, activation, and sur-
vival through IL-13 secretion, which is key in allergic asthma [26,107]. In an allergic
asthma mouse model, an increased ILC2 number could be observed, which leads to in-
creased IL-5 and IL-13 and worsens allergic inflammation and airway hyperreactivity [107].
This increase in ILC2s, IL-5, and IL-13 can also be observed in the sputum of asthmatic
patients [108]. ILC2s can also respond to IL-33 stimulation and produce inflammatory
cytokines [44]. ILC3s can also induce inflammatory responses in asthma. ILC3s secret-
ing IL-17 have been reported to induce airway hyperresponsiveness in allergic asthma
and obesity-related asthma [31,109]. Further, ILC3s are also increased in the sputum and
bronchoalveolar lavage of asthmatic patients, while ILC3s signature genes are also highly
expressed in human asthmatic patient samples [110].

In asthmatic patients, NK cells are more cytolytic with higher levels of the cytolytic
protein granzyme A [111]. NK cells can also cause allergic sensitization, type-2 immune
response, and airway hyperresponsiveness [112]. The activation of NK cells can also atten-
uate eosinophilic inflammation [113]. In asthma, NK cells are highly activated when there
are coinciding bacterial or viral infections and augment the exacerbation reaction, although
other reports have also stated how they can prevent further inflammatory reactions to infec-
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tions [113]. DC populations, such as cDC2 that express CD11b, are also an important part of
asthma pathogenesis, as they are the population that introduces the allergens to the T-cells
and generates robust Th2 and Th17 after an allergen challenge [39]. The pDCs are another
DC subtype that can contribute to the immunosuppression of allergen response by upregu-
lating PD-L1 in the T-cells [114]. However, other studies have stated that pDCs are also able
to potentiate Th2 response, much like cDCs, and accelerate allergen-induced asthma [115].

Asthma is identical to the increase in MCs numbers, which has been proven correct
when looking at the airway of asthmatic patients, even when they are only mildly asth-
matic [116]. This is especially true in patients with IL-13 gene signature in their epithelium,
where MCs could be easily found and are correlated with high levels of Th2 [117]. MCs
will degranulate to a higher degree during fatal asthma, and this degranulation contributes
greatly to the augmented response of the airway that leads to exacerbation. The role of
eosinophils, meanwhile, has only recently been elucidated in asthma, so much so that
there is a specific subset of asthma highlighted by eosinophilic inflammation (termed
eosinophilic asthma) [118–120]. First, they produce IL-5, and IL-5 is found in asthmatic
patients’ bronchoalveolar lavage fluids [120,121]. Recently, many have reported that IL-5
deletion leads to airway eosinophilia because of IL-5’s ability to control the eosinophil
recruitment, maturation, activation, and inhibition of apoptosis [119,121]. This is especially
important for the eosinophilic asthma subtype, and several IL-5 targeting drugs are cur-
rently being studied for use in severe asthma and eosinophilic asthma patients [119,122].
Beyond IL-5, several other factors are known to be able to mediate eosinophil activation,
including the crosslinking of FcαRI and FcγRII with IgA and IgG, the integrin VLA-4 bind-
ing to VCAM-1 (vascular cell adhesion molecule-1), IL-25, and IL-33, among others [123].
Eosinophils in asthma contribute to the occurrence of airway hyperresponsiveness, tissue
damage, and airway remodeling through their secreted factors, including TGF-β, and IL-13,
leukotrienes, and eosinophil peroxidase (EPO), while also triggering mast cell degranula-
tion via major basic protein and EPO [123]. Still, more studies are warranted to confirm the
role of eosinophils in asthma in the future. Figure 3 summarized the changes seen in innate
immunity during asthma.
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3.4. Pulmonary Fibrosis

Lung fibrosis is another pathological condition where the innate immune system plays
a role, and the various components of innate immune cells have been implicated in its
pathogenesis. Again, DAMPs and PRRs are central to the promotion of fibrotic remodeling
of the lung, where the release of the DAMPs caused by pro-fibrotic triggers leads to the ac-
tivation of immune cells and subsequent release of cytokines and inflammasome [124,125].
Not only as the trigger, this inflammasome could also be attributed to the progression of
fibrosis, where continuous activation of the inflammasome by the stiffened lung and contin-
ued mechanosensing by the cells promote an uninterrupted fibrotic process [124,126,127].
This fibrotic process is promoted by the various innate immune cells residing in the lung
and recruited from the circulation.

Neutrophils in the bronchoalveolar lavage fluid of idiopathic pulmonary fibrosis (IPF)
patients correlate with poorer prognosis and worse clinical outcomes [128]. This neutrophil
accumulation is attributable to the increase in IL-8 secreted by the colony-forming cells [129].
Augmented neutrophil degranulation and release of the neutrophil elastase are also related
to fibrogenesis, where mice deficient in neutrophil elastase have reduced fibrosis levels [130].
NETosis is another mechanism by which neutrophils could contribute to fibrogenesis, where
NETs could induce damage to the lung tissue and force fibrotic remodeling [131]. Besides
neutrophils, macrophages have been extensively studied in their relation to pulmonary
fibrogenesis. AMs have been strongly related to fibrogenesis in the lung in recent years,
and several studies highlighted how they can be alternatively activated by arginase 1,
among others, and drive fibrogenesis [132]. AMs from IPF patients are more readily able to
secrete pro-inflammatory cytokines and their ability to crosstalk with lung fibroblasts and
control ECM production is reduced, thereby promoting fibrogenesis [133]. There is also
a subset of SiglecF-positive AMs that is initially lost after bleomycin-induced pulmonary
fibrosis induction in mice, while later an increase in SiglecF-low AMs numbers can be seen
during the fibrotic phase [17]. This expansion of the AM population in the latter stages of
fibrogenesis can also be seen in human lung samples and single-cell RNA sequencing of
patient tissues [134]. IMs derived from migrated monocytes also appear to be important
in fibrogenesis, where depletion of IMs that express repair-associated genes can promote
increased fibrosis [135].

While they are abundant in the lungs and their ability to respond to antigens and
pathogens via IL-13 is known, not much has been reported on the role of ILCs in pulmonary
fibrosis. ILC2 increase has been identified in the lungs of IPF patients, and its activation via
IFN-γ signaling reduction has been related to spontaneous pulmonary fibrosis in mice [136].
Moreover, CD-45-deficient mice showed a substantial increase in ILC2s, which leads to a
worse fibrotic phenotype [108]. On the other hand, NK cell dysfunction could also affect
tissue fibrogenesis, where in IPF patients there is a reduction in the proportion and activity
of NK cells [137]. This has been attributed to changes in the microenvironment of the lung.
Thus, it is clear that NK cells are important in preventing further remodeling during lung
fibrosis. Lastly, the DC population is important in actually promoting fibrosis through its
capability to induce myofibroblast differentiation, a major source of collagen and other
ECM production [138]. The pDCs are the main culprit for this phenomenon, and this is
achieved through the secretion of CXCL4 by pDCs [139]. This is supported in another study,
where deletion or inhibition of CXCL4 has been shown to reduce lung fibrosis [140]. CXCL4
can also promote the differentiation of monocytes into pro-inflammatory and pro-fibrotic
DCs, potentiating the overt fibrogenesis driven by DCs, highlighting CXCL4 as a potential
therapeutic target for lung fibrosis [139]. A schematic figure summarizing the role of innate
immune cells in pulmonary fibrosis is shown in Figure 4.
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3.5. Therapeutic Strategies in Modulating Innate Immunity of the Lung

As discussed in the previous section, lung diseases are often accompanied by func-
tional and/or molecular changes in the components of the innate immunity system, as also
summarized in Figure 5. This opens up the possibility of targeting said alterations to correct
the imbalance in the disease-controlling inflammatory process commonly found across
lung diseases. First, modulating the acute response of innate immunity through various
means has been extensively studied and reviewed. One method to achieve this is by using
TLR agonist drugs, to prime the initiation of the inflammatory cascade by TLR activation
through PAMPs to properly activate the immune responses and prevent overt infections.
This has been mainly investigated pre-clinically in various bacterial (e.g., P. aeruginosa) or
viral (e.g., influenza) infections [141,142]. Of note, different TLR isoforms are being targeted
in different infections, for example, agonists to TLRs 2 and 6, which are not associated with
antiviral immunity, are more potent for treating viral infections [141,143].

Targeting the cytokines produced by innate immune cells is another way of controlling
excessive inflammation. For instance, anti-TNF-α was initially tried in asthma and COPD,
but antagonizing TNF-α instead caused the occurrence of anti-TNF-α-related lung diseases,
such as interstitial lung diseases [144,145]. In contrast, the anti-IL-6 agent tocilizumab is
rather successful as a drug, and it is widely used for several diseases, such as rheumatoid
arthritis or juvenile idiopathic arthritis. In lung diseases, IL-6 has been used for COVID-19
infections and is also approved for systemic sclerosis-associated interstitial lung disease
(SSc-ILD). At the same time, it is still being investigated in other conditions such as severe
asthma [146–148]. Anti-IL-13 agents, such as lebrikizumab or tralokinumab, are also being
investigated for asthma, in addition to COPD, due to their involvement in mediating T-cell
responses after their release from ILCs and in mediating airway hypersensitivity [149,150].
Besides those mentioned, many different agents targeting various cytokines or other me-
diators of inflammation are continuously being investigated, such as those targeting the
inflammasome NLRP3 [151,152].

https://BioRender.com/y19r764
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Beyond preventing excessive inflammatory processes initiated by innate immunity,
optimizing the functions of innate immunity cells is another way to treat lung diseases
related to innate immunity. Interestingly, vitamin D has been reported as an important
immunomodulator that can help increase the potency of innate immune cells against
infections. A meta-analysis of 25 trials reported how vitamin D supplementation could
improve protection against acute respiratory infections [153]. Innate immune cells are
among the targets for active vitamin D because vitamin D receptors can be found in almost
all of the immune cells, including neutrophils, macrophages, and DCs. Vitamin D can
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induce an increase in chemotaxis and phagocytic ability of macrophages, while it helps
DCs induce T-cell polarization to a Th2 phenotype [154]. Vitamin D is also known as an
antimicrobial through its capability to induce antimicrobial peptides such as cathelicidins
or beta-defensins [154]. Lastly, deficiency in vitamin D not only increases the risk of acute
infections but also increases the risk of chronic lung disease occurrence [155,156].

4. Conclusions
It is clear that the lung immune system, in particular the innate immune cells discussed

in this review, plays a major role in various lung diseases through its capabilities to
modulate acute and chronic inflammatory actions in the tissue. Still, many questions
remain on the intricacies of the immune cells’ work during different conditions and the
interactions between innate immune cells in the lung during pathological conditions. Future
studies in this particular field are warranted to progress our understanding regarding the
innate immune system in the lung and how we can effectively modulate this system as a
therapeutic strategy.
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