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Abstract: Chagas disease (CD) is a global health concern, with no existing therapies to
prophylactically treat adults traveling to endemic countries or those who may already be
infected with Trypanosoma cruzi. The economic burden of Chagas cardiomyopathy and
heart failure, due to healthcare costs and lost productivity from premature deaths, provides
a strong rationale for investment in the development of immune therapies against CD.
Vaccine efficacy is proposed to depend heavily on the induction of a robust Th1 response
for the clearance of intracellular pathogens like T. cruzi. In this review, updated information
on the efforts for vaccine development against CD is provided.
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1. Introduction
Trypanosoma cruzi (T. cruzi or Tc) is a kinetoplastid parasite that is the causative agent

of Chagas disease (CD). T. cruzi is endemic in the Americas, ranging from southern United
States to Argentina, due to continuous transmission between triatomine vectors and wildlife
and domestic reservoir hosts. Acute blood parasitemia and non-specific somatic symp-
toms resolve into the subclinical (indeterminate) form of disease within 2–4 months after
infection. Decades later, infected individuals may advance to the chronic (determinate)
form of CD, involving cardiac, gastrointestinal, and neurological complications [1]. Though
under-reported and under-estimated, CD affects 6–8 million people and results in up to
12,000 deaths annually [2]. Approximately 71 million people are exposed to risk of infection
and ~28,000 new cases of T. cruzi infection occur every year [3]. Recent data suggest that CD
results in the loss of 0.7 million disability-adjusted life years [4] and an economic burden
of >USD 10 billion [5] per year on the American continent. Even after applying stringent
simulation parameters of a 1% infection risk and treatment efficacy of 25%, computational
modeling studies suggest that a vaccine against T. cruzi costing USD 20/dose would be
economically viable and provide net cost savings [5,6]. With an efficacy of >50% and infec-
tion risk of 20%, a vaccine costing even >USD 200 per dose is estimated to be economically
advantageous [5]. Furthermore, a safe, effective, and reliable vaccine would provide relief
from the costs and efforts associated with vector control to reduce parasite dissemination,
and the diagnosis and treatment of individuals that are infected in endemic countries.

Upon infection, T. cruzi employs a variety of strategies to evade or suppress immune
detection and disseminate through the bloodstream to establish active invasion and intra-
cellular replication in a variety of host tissues [7,8]. The host immune system still does
a great job in controlling the acute parasitemia, but low-grade tissue infection persists
and provides for consistent activation of inflammatory reactions and CD pathogenesis [1].
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Several questions as to how parasites persist at low levels remain unanswered: Is it that a
few parasites escape from the immune system by changing the dominant antigens on their
surface as is noted in T. brucei, or does the parasite adopt a different life-cycle stage that is
not noted in in vitro cultures and acute in vivo infection? Some studies have suggested that
the parasite persists in the gastro-intestinal tract [9] and adipose tissue [10,11] to support a
chronic inflammatory state. At least one study documented that a latent form of T. cruzi
amastigotes, such as that of Mycobacterium tuberculosis and Toxoplasma gondii, escaped from
immune detection and served as so-called persisters [12], though how it differentiated
into persister form was not studied. Nevertheless, the finding of low levels of circulating
parasites in chronically infected individuals provides strong evidence that T. cruzi does
come out of dormancy and hiding to maintain an active intracellular/infective life cycle, at
least intermittently. These studies provide a basis for recommending drug and immune
therapies for parasite control in the indeterminate stage of CD.

Pathogenesis of chronic Chagas disease is attributed to inflammatory immune-
mediated myocardial injury, autonomic nervous system derangements, and microvascular
disturbances, and has been discussed in several reviews [1,13]. Furthermore, it had been
documented that mitochondrial dysfunction of the respiratory chain results in increased
generation of reactive oxygen species (ROS) that predispose the heart to oxidative insult
during Tc infection and chronic disease [14,15]. The sustained occurrence of oxidative
adducts was noted in the myocardium of experimental models of CD and in the peripheral
blood of rodents and human Chagas subjects [16–18], which was exacerbated by inefficient
antioxidant capacity [19,20]. Other studies demonstrating ROS signaling of cytokines and
chemokines production in infected cardiomyocytes and murine hearts have provided a
potential mechanistic link between ROS generation and chronic inflammation in Chagas
cardiomyopathy [15,21]. Readers interested in further understanding the complexity of
Chagas disease pathogenesis and efforts toward vaccines, therapies, and drugs develop-
ment are also referred to excellent recent reviews [22–25].

2. Immunity to T. cruzi Infection
The innate immune system is the first to actively elicit a defensive role, followed by the

adaptive immune response. It is well documented that T. cruzi evades complement path-
ways to survive in the mammalian host and establish persistent infection [26]. T. cruzi sur-
face glycoproteins (mucins), glycophospholipids, and other molecules stimulate the produc-
tion of cytokines (e.g., IFNγ, TNFα, IL1β, IL6), chemokines (e.g., MCP1, RANTES/CCL5,
IP10), and free radicals (e.g., superoxide, nitric oxide, peroxynitrite) in macrophages and
cardiomyocytes [27–29]; however, these responses are either delayed or occur at sub-par
level and fail to clear the parasite [30,31]. Studies in animal models of T. cruzi infection
suggest that release of IFNγ and IL12 by natural killer cells and macrophages is essential
for the stimulation of adaptive type 1 T cell response [32,33]. CD4+T cells produce Th1
cytokines (IFNγ, IL2) and assist in parasite control through amplification of the phagocytic
activity of macrophages, and stimulation of B cells and CD8+ T cells [34,35]. Antibodies
produced by B cells must promote opsonization, phagocytosis, and complement-mediated
killing of the parasite; and antibodies to the Galα(1,3)Galβ(1,4)GlcNAc epitope of surface
expressed mucin glycoproteins exhibit such anti-parasite activity [36]. Finally, Tc-specific
CD8+T cells, detected in infected mice and humans, contribute to Tc control by cytolysis of
infected cells and secretion of Th1 cytokines that induce trypanocidal activity [37].

Immunological studies in chronically infected mice and patients have yielded con-
flicting results. Some reports indicated that immune exhaustion of CD4+ and CD8+ T cells
contributes to parasite persistence [38], while others concluded that excessive production of
proinflammatory cytokines correlates with tissue damage and clinical disease in chronically
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infected patients [39]. Recently, it was proposed that antigen-presenting cells producing
IL27 contribute to a balanced proinflammatory/anti-inflammatory (IFNγ/IL10) response,
leading to reduced inflammatory infiltrate in the myocardium of chagasic mice [40]. Over-
all, it is safe to conclude from the current literature that an efficient protective response to
T. cruzi infection requires the combined activities of phagocytes, T helper cells, and cyto-
toxic T lymphocytes capable of rapidly killing the circulating and intracellular parasites.
A sub-par activation of any of these components can result in failure to clear the acute
infection and parasite-persistence-associated pathologic events, leading to cardiomyopathy
and heart failure in CD.

Based on the above discussed literature, an effective vaccine, whether given prophy-
lactically or therapeutically, is envisioned to: (1) target all parasite forms that circulate
in the bloodstream and replicate or hide in tissues, (2) recognize conserved antigens of
all clinically relevant parasite lineages and strains that are known to cause infection in
mammals, and (3) induce a long-lasting memory immune response that can be recalled to
rapidly control/eliminate T. cruzi infection.

3. Vaccine Development Against T. cruzi and Chagas Disease
Considering the complexity of the antigenic variability in T. cruzi populations that

leads to diverse immune responses, the goal of achieving sterilizing immunity in which
parasite infection and transmission is eliminated by a vaccine is noble and magnanimous
but lacks consideration for those that have the least resources and would be maximally
benefited by even a partially protective vaccine. Indeed, current efforts have led to the
development of candidate vaccines that elicit sufficient immune memory to reduce the
parasite load below a threshold level such that a vaccinated individual is protected from
chronic Chagas disease. It is highly likely that identification and testing of several can-
didate vaccines by individual investigators will lead to the selection of a panel of key
T. cruzi antigens that together will offer a multivalent, highly efficacious vaccine against
Chagas disease.

Over the last century, several candidate vaccines have been tested in small animals
with varying degree of success in controlling the T. cruzi infection and/or tissue damage.
Early efforts utilized whole parasites killed by various methods or sub-cellular fractions
of the parasite as a vaccine that generated a relevant immune response, evidenced by
control of acute challenge infection and survival from lethal infection [41]. Parasite strains
attenuated by repeat passage in culture (e.g., TCC) were also used as a vaccine and were
shown to provide protection from subsequent challenge with a virulent strain of Tc in
mice and dogs [42,43]. Researchers also promoted Trypanosoma rangeli, which shares
significant sequence homology with T. cruzi but does not cause disease in humans, as a
prophylactic vaccine [44,45]. However, our studies suggest that T. rangeli did not offer
significant protection from Tc infection when used by itself and did not enhance the
protective efficacy of a subunit DNA vaccine [46]. With the advancement of genetic
engineering technology, investigators have focused on knocking down virulence genes to
generate live Tc vaccines. Examples include the use of Tc deficient in calmodulin-ubiquitin
(TulCub8), calreticulin, Lyt1, gp72, dhfr-ts, Ech1/2, and other genes as a vaccine, which
offered immunity to parasitemia caused by wild-type strains in in-bred and out-bred mice
and hamsters [41]. A major limitation of whole organism vaccines is the generation of
large quantities of attenuated parasites, without a gain in virulence. Some researchers also
remain concerned that an attenuated live vaccine may cause parasitemia and disease in
immunocompromised individuals [47]. Overall, concerns about the use of live attenuated
vaccines may outweigh the benefits offered for the control of Chagas disease.



Pathogens 2025, 14, 124 4 of 13

3.1. Subunit Vaccine Candidates

Garg et al. utilized recombinant T. cruzi expressing a model antigen (chicken ovalbumin)
in different cellular compartments to demonstrate that GPI (glycosylphosphatidylinositol)-
anchored proteins expressed in the infective and intracellular stages of T. cruzi that are
released in host cell cytoplasm during parasite differentiation are the most likely source
of peptides for immune activation of B and T cells [48]. Equipped with this information,
investigators focused on identifying the abundantly expressed surface antigens of the large
families, e.g., trans-sialidases, mucin-associated surface proteins (MASP), and glycoprotein
63, as vaccine candidates. Indeed, members of the trans-sialidases superfamily (e.g., TSA1,
ASP1/2, ASP9, TS) were recognized by the antibodies and CD8+T lymphocytes in infected
mice and humans [49]. Other antigens, including complement regulatory protein (CRP),
cruzipain, Tc24, GP82, KMP11, LYT1, paraflagellar rod proteins (PFR), and TC52, were
also identified as potential vaccine candidates, because they were recognized by antibodies
and IFNγ-producing CD8+T cells in experimental models of Tc infection and Chagas
patients [50].

We performed a computational screening of the T. cruzi sequence database for can-
didate surface antigens and biological screening to select those that were recognized by
IgGs and type 1 CD8+T cells in infected mice, dogs, or humans [51,52]. Of the 11 antigens
thus selected, TcG1, TcG2, and TcG4 exhibited additional desirable features, as they were
(a) expressed in both infective and intracellular forms of T. cruzi, (b) released into host cell
cytoplasm during parasite differentiation, and (c) consisted of epitopes presented by the
MHC alleles of mice, dogs, and humans [51,52]. Notably, TcG2 and TcG4 were conserved in
five of the six T. cruzi lineages (80–96% homology) and thus relevant as vaccine candidates
for the control of diverse Tc isolates circulating in the Americas. Others have employed sub-
tractive proteomics for the selection of immunodominant epitopes and identified MASP1/2
as potential vaccine candidates [53].

3.2. Subunit Vaccines

Investigators have tested the prophylactic and therapeutic efficacy of single- and
multi-component candidate vaccines in various experimental models. In general, DNA im-
munization has been favored due to the ease of production and DNA stability, and because
antigen delivery by DNA vaccination was found to be efficient in eliciting antibodies, Th1
cytokines, and CD8+T cell responses to encoded antigens. In parallel studies, adjuvants
(e.g., IL12, GMCSF, CD40, HSP70, CpG-ODN, c-di-AMP) were tested to enhance the Th1
responses to defined antigen vaccines.

Initial studies focused on evaluating the vaccine efficacy of antigens of the large
families of surface proteins. Members of trans-sialidases family (e.g., ASP1, ASP2, TSA1, TS,
SAPA, TSf) have been tested as a DNA or protein vaccine (individually or in combination)
and offered a degree of immune resistance to T. cruzi infection that correlated with the
amount and type of antigen delivered with and without adjuvants (reviewed in [49]). Yet,
none of these experimental vaccines elicited sterile immunity, and they have not reached the
clinical trial phase. No protection was observed in mice immunized with genes encoding
members of the mucin family, though a KLH-conjugated synthetic peptide from the MASP
family did offer survival benefits from lethal infection in mice [54]. It can be surmised that
the shared epitopes expressed by members of the large families prevent robust activation of
the immune system against Tc, and a combination of epitopes from other conserved genes
would be more useful in stimulating immune effectors against diverse parasite strains.

Subsequently, investigators used a variety of delivery vehicles to test the vaccine
efficacy of non-family proteins in experimental models. For example, oral delivery of
Salmonella-carrying cruzipain DNA (SCz) induced mucosal IgA response, while boosting
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oral SCz with recombinant cruzipain protein and CpG-ODN produced a strong systemic im-
mune response capable of controlling challenge infection and tissue damage [55]. Vaccines
based on PFR2/3 induced IgG2a response; however, only PFR2 conjugated with HSP70
induced IL12 and IFNγ expression and a degree of protection from Tc infection [56,57].
Immunization with Tc24, Tcb3, and LYT1 induced cytotoxic T cells; however, only LYT1
provided resistance to lethal infection in mice [58], thus suggesting that antigens recognized
by the host immune response after infection may not always be the best candidates for
vaccine development. Adenovirus 5 was used as a delivery vehicle by Brazilian scientists;
these studies showed that prophylactic Ad-ASP2/Ad-TS elicited robust type 1 cytokines
(TNFα, IFNγ) producing CD8+ effector T cell response and 100% survival from lethal
challenge infection in Balb/c and C57BL/6 mice [59,60]. The same group showed that
therapeutic Ad-ASP2/Ad-TS reprogrammed the immune response such that parasite-
persistence-associated oxidative/inflammatory stress, cardiac electrical alterations, and
cardiac tissue damage were significantly reduced in chronically infected mice [61]. Ad-
ASP2 itself was also found to enhance the inflammatory gene expression profile and
decrease amastigote nests in the tissues of mice infected at the time of immunization [62].
Galα(1,3)Galβ(1,4)GlcNAc has been developed as a vaccine candidate in conjugation with
human serum albumin with the aim of stimulating anti-α-Gal antibodies, which were
shown to provide up to 99.9% protection from tissue parasites in α1,3-galactosyltransferase
knockout mice, while non-vaccinated mice exhibited a high degree of tissue parasites,
necrotic myocytes, and extensive cardiac inflammation [63].

We have evaluated the protective efficacy of TcG1, TcG2, and TcG4 in mice and
dogs, delivering these antigens (individually or in combination) by homologous and
heterologous prime/boost approaches (e.g., DNA/DNA, DNA/protein, DNA/Modified
Vaccinia Ankara). In all cases, vaccine provided 80–95% protection from acute parasitemia
and chronic myocarditis in mice [46,64–66]. The overall extent of protection was primarily
associated with elicitation of Th1 cytokine response and CD8+T cell cytolytic activity,
while trypanolytic antibodies were not induced by these vaccine candidates. Further
studies showed that TcG1 was expendable, and only TcG2/TcG4-based nanovaccine that
utilized an antibiotic-free plasmid for delivery was sufficient to offer effective control
of infection and disease pathology after primary infection, as well as eliciting a potent
recall response potentially capable of controlling the repeat infection [67]. Importantly, the
TcG2- and TcG4-encoding nanovaccine-induced immune response to challenge infection
subsided after parasite control, and inflammatory infiltrate and oxidative damage were
decreased in the tissues of chronically infected, vaccinated mice [68]. As in mice, dogs
immunized with the three candidate antigens (TcG1, TcG2, TcG4) also showed significant
protection from challenge infection and acute myocarditis [69,70]. TcSP- and TcSSP4-
encoding DNA vaccines have also been found to induce anti-parasite IgG2- and IFNγ-
producing lymphocytic cell proliferation in dogs, leading to moderate control of tissue
parasites and electrocardiographic aberrations [71].

Building on these achievements, in recent studies, investigators have developed
chimeric antigens incorporating epitopes of multiple antigens in one vaccine. For example,
trivalent cruzipain-TS-ASP2 vaccine (Traspain) showed promising protection from Tc
infection in mice [72]. We have engineered a bivalent vaccine with or without a string of
adjuvants that exhibited prophylactic and therapeutic efficacy, evidenced by >97% control
of parasite and tissue damage (unpublished).

Congenital transmission of T. cruzi from infected mothers to their newborns has
emerged as a major cause of Chagas disease in humans [73]. Experts agree that seropositive
women of reproductive age should be treated with benznidazole to potentially prevent
congenital transmission [74], and there are no available drugs for the treatment of infected
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mothers during pregnancy. However, there is only one published report testing the efficacy
of a candidate vaccine in pregnant mice. Garg and coworkers found that Tc infection
resulted in delayed pregnancy, and pregnant female mice gave birth to pups with lower
survival rates, decreased birth weight, and slower growth [75]. TcG2- and TcG4-encoding
nanovaccine was found to be safe during pregnancy, and it modulated the maternal and
placental T cell immune response such that maternal and placental parasite burden was
reduced, and vaccine improved the placental integrity and birth/survival rate of newborns
of infected mothers [76].

So far, most investigators have devoted efforts to testing the efficacy of their selected
candidate vaccines against 1–2 T. cruzi isolates or strains of interest in in-bred experimental
mouse models that could be established in their laboratories. Considering the diverse
geographic and genetic complexity of T. cruzi isolates of different lineages, the next phase of
studies in vaccine development should address if the candidate vaccine is effective against
multiple T. cruzi isolates of clinical importance in out-bred animal models or naturally
infected animals. It is hoped that candidate antigens that are highly conserved among
different parasite lineages and expressed in all life cycle stages of the parasite will be
successful in offering broad-range immunity to T. cruzi infection.

3.3. Therapeutic Vaccines Against CD

The overall basis for therapeutic vaccines is to enhance multiple immune effector
mechanisms to prevent/reduce the parasite’s persistence. A therapeutic DNA vaccine en-
coding Tc52, TSA1, and Tc24 enhanced the number of CD4+ and CD8+ T cells and decreased
the parasitemia and mortality in acutely infected mice [77] but failed to arrest cardiomy-
opathy in chronically infected dogs [78]. Others showed that ASP2- and TS-encoding
therapeutic DNA vaccine was not effective in limiting parasitemia or mortality [79] and
TSA1 DNA vaccine enhanced myocarditis [80] in infected mice. Subsequently, Tc24 protein
was encapsulated in poly(lactic-co-glycolic acid) nanoparticles (with and without E6020
adjuvant), and this vaccine was found to enhance the splenic type 1 CD8+T cell response,
such that tissue parasites were reduced when given to mice during acute infection with
a highly lethal T. cruzi H1 strain, leading to parasite clearance in 60% of chronically in-
fected mice [81,82]. At least one report has recently documented the safety and efficacy of
TSA1/Tc24-based therapeutic DNA vaccine in controlling cardiac alterations in a small
group of experimentally infected macaques [83].

Considering the limited success of therapeutic vaccines, and the fact that repeat
challenge with Tc continued to boost the immune responses but did not provide protection
from cardiac damage in mice [84], it is proposed that immune therapy against parasite
persistence should be adjuvanted with other agents to prevent cardiac damage. Towards
this goal, it was found that treatment with benznidazole during the indeterminate phase
(when most seropositive patients are identified) controlled the parasite persistence, but
did not avert cardiac remodeling and deterioration of ventricular contractility in infected
mice and rats. When an antioxidant (phenyl-alpha-tert-butyl nitrone) was added to a
benznidazole treatment regimen, mitochondrial function and left ventricular contractile
activity were improved in Chagas hearts [85,86]. Likewise, a therapeutic TcG2/TcG4-based
DNA vaccine offered better control of the oxidative damage caused by mitochondrial
deficiencies of electron transport chain in glutathione-peroxidase-overexpressing mice,
while progressive cardiac damage was noted in wildtype mice after TG2/TcG4 therapeutic
vaccine [87]. Thus, it is safe to surmise that therapeutic vaccines designed to achieve a rapid
stimulation of humoral and cytotoxic immunity to attack persistent parasites, along with
adjunct therapies capable of controlling the onset of oxidative insult and mitochondrial
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deficiencies, would prove to be maximally beneficial in preserving cardiac structure and
function in Chagas disease.

4. Future Opportunities and Challenges
Research efforts have led to the identification of several candidate antigens that exhibit

promising prophylactic and therapeutic efficacy as a single-component, multi-component,
or chimeric vaccine in experimental models of T. cruzi infection and Chagas disease. None
of the current vaccines offer sterilizing immunity and efforts toward improving vaccine
immunogenicity have continued. A recent presentation by Dr. SMR Teixiera and colleagues
at the 2024 Brazilian Society of Protozoology meeting deserves mention here: The authors
found that TcTS with trans-sialidase enzymatic activity is highly immunogenic but offers
low protective efficacy as a vaccine candidate. Further studies using TS deletion mutants
led to the findings that the C-terminal repeats known as SAPA (shed acute phase antigen)
domain serve as a negative modulator of TS-induced immune response and instead offer
virulence to the parasite. Armed with this knowledge, the authors are testing the efficacy
of SAPA-deficient TS as mRNA and protein vaccines encapsulated in lipid nanoparticles,
and hope that this novel vaccine will be highly protective against Chagas disease. Others
reported that incorporation of low-dose benznidazole enhanced the therapeutic efficacy
of a bivalent recombinant protein vaccine (TSA1/Tc24) in controlling cardiac fibrosis in
chronically infected mice [88]. This study is particularly important because benznidazole
itself exhibits lower effectiveness in the chronic phase, likely due to its limited reach to
the niches where the parasite hides or its lower effectiveness against the dormant state
parasite [89]. Thus, anti-parasite drugs (both old and new) adjuvanted with a vaccine offer
a promising approach for controlling Chagas disease.

Development of the next generation of vaccines will likely involve efforts focused on
enhancing the in vivo stability of vaccines, such that prolonged antigen presentation and
immune memory is achieved. For example, delivery of DNA vaccines encapsulated in
cationic liposomes [90] and biopolymers [91], which protect DNA from nucleases, could
enhance the stability and expression of antigens carried by DNA vaccines. Liposomes
have also been utilized to co-deliver adjuvant such as poly I:C RNA or CpG-ODN to
enhance the immunogenicity of DNA and mRNA vaccines [90] and can be designed to
carry such adjuvants for DNA vaccines against T. cruzi. Other platforms for immunogenic
vaccine delivery have also been developed. For example, the assembly of candidate
antigens in virus-like particles (VLPs) could enhance antigen presentation and innate and
adaptive immunity [92]. T4 bacteriophage can also provide an excellent platform for
generating nanoparticle subunit vaccine [93]. The technological knowledge gained from
the development of VLP- and T4-phage-based vaccines for high-risk viruses and bacteria
could potentially be employed for generating such vaccines for pathogenic parasites. Oral
vaccines using tobacco plant for antigen expression exhibited immunologic protection from
malaria, toxoplasmosis, and other parasitic diseases [94], and offer a promising perspective
for developing cost-effective plant-based vaccines to continue the fight against Chagas
disease. Testing the safety and efficacy of candidate vaccines during pregnancy, with the
aim of decreasing the impact of congenital Chagas disease, is also urgently needed.

Investigators also need to ensure that the subunit vaccine (along with the delivery
vehicle) is safe, elicits recall immune response to protect against repeat infection from
the same or different clinically relevant parasite isolates, and is efficacious in reducing
the cardiac damage caused by chronic infection in multiple hosts (e.g., mice, dogs, non-
human primates). Vaccines that can be delivered orally or via skin patches and stored
long-term at room temperature will likely have a better chance of reaching the marketplace.
Alternatively, one can envision incorporating Tc-specific antigenic epitopes into vaccines
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for SARS-CoV2 or other high-risk infectious agents to facilitate the vaccination against
Chagas disease.

Demonstrating the long-term effectiveness of the current and new anti-parasite vac-
cines and drugs against a variety of parasite strains of different lineages remains a serious
challenge. Such studies are extremely expensive and cannot be carried out with limited
availability of resources. Furthermore, T. cruzi has a large, diploid genome, in which coding
sequence may undergo recombination events to further contribute to antigenic complexity,
challenging the development of new vaccines and therapies.

A general challenge for testing the prophylactic efficacy of candidate vaccines in
humans is the low incidence rate of disease development over decades. Clinical studies
testing the therapeutic efficacy of candidate vaccines in already infected individuals are
more feasible; however, the recruitment and long-term follow up required to monitor
parasite clearance, immunity, and protection from chronic cardiomyopathy remains a major
obstacle. The response to treatment in an infected individual is measured by achievement
of negative serology, which can take decades. Some investigators have conducted seminal
studies identifying new surrogate markers that can offer a robust readout of vaccine efficacy
in the short term and potentially be used in clinical trials testing new drugs and vaccines
against CD [95,96].

Finally, it is hoped that the most advanced drugs and vaccines will receive strong
support from the academic–private–government partnership and overcome the barriers
of costs associated with vaccine testing and production for a neglected tropical disease.
Joint collaborative efforts will lead to the development of vaccines that address the anti-
genic variance of diverse T. cruzi lineages circulating in different parts of the Americas,
elicit broad and long-lasting immunity to all clinically relevant parasite strains, and offer
protection from infection. While testing and developing a vaccine for humans, a vaccine
for veterinary use would offer a promising approach to prevent parasite transmission in
domestic reservoirs and indirectly protect humans from T. cruzi infection.
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