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Abstract: Multidrug (MDR) and extensive drug (XDR) resistance in Gram-negative bacteria
(GNB) emerges worldwide. Although bone and joint infections are mostly caused by
Gram-positive bacteria, mainly Staphylococci, MDR GNB substantially increase also as
a complication of hospitalization and previous antibiotic administration. This narrative
review analyzes the epidemiological trend, current experimental data, and clinical experi-
ence with available therapeutic options for the difficult to treat (DTR) GNB implicated in
bone and joint infections with or without orthopedic implants. The radical debridement
and removal of the implant is adequate therapy for most cases, along with prompt and
prolonged combined antimicrobial treatment by older and novel antibiotics. Current re-
search and clinical data suggest that fluoroquinolones well penetrate bone tissue and are
associated with improved outcomes in DTR GNB; if not available, carbapenems can be
used in cases of MDR GNB. For XDR GNB, colistin, fosfomycin, tigecycline, and novel
β-lactam/β-lactamase inhibitors can be initiated as combination schemas in intravenous
administration, along with local elution from impregnated spacers. However, current data
are scarce and large multicenter studies are mandatory in the field.
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1. Introduction
Antimicrobial resistance is an emerging issue globally. It is estimated that 4.95 × 106 deaths

are attributed to resistant pathogens, of which more than 100,000 are due to methicillin-
resistant Staphylococcus aureus (MRSA) and 50,000–100,000 are due to difficult to treat
(DTR) pathogens able to “escape” the effect of antibacterial drugs, such as Enterococcus
faecium, Klebsiella spp., Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter
spp., which are also responsible for more than 2/3 of healthcare-associated infections [1].
Resistant pathogens are divided into three main groups: multi-drug resistant (MDR) if non-
susceptible to at least one agent in ≥3 antimicrobial categories, extensively drug resistant
(XDR) if non-susceptible to at least one agent in all but ≤2 antimicrobial categories, and
pan drug resistant (PDR) if non-susceptible to all agents in all antimicrobial categories [2].
Prosthetic joint infections (PJIs) are an important complication in orthopedic surgery and
are associated with increased length of hospitalization, the need for revision arthroplasties,
higher healthcare cost, and mortality. Recent studies support that MDR pathogens play an
important role in osteoarticular (OA) bone and joint infections (BJIs), the majority of which
are attributed to Gram-positive bacteria (GPB), including resistant pathogens. As MDR
GNB’s rate in PJIs is increasing, it is important to design successful treatments, making
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effective antibiotic stewardship at the same time [3]. MDR range from 5 to 30%, depending
on the region and the site of infection [4–7]. Klebsiella pneumonia carbapenemases (KPCs) are
most commonly seen in North America, Asia, and Southern Europe, New Delhi metallo-
β-lactamase (NDM) predominates on the Indian subcontinent, the Middle East, and the
Balkans, and Imipenemase (IMP) is seen in Asia and Australia [8].

We sought to review the available evidence on emerging MDR GNB and summarize
laboratory and clinical data on antimicrobial options in BJIs. We performed a thorough
search by relevant key words in PubMed: “bone and joint infections” AND “multidrug
resistant” AND “Gram negative bacteria”. In addition, our search was specified by the
type of BJI (“osteomyelitis”, “septic arthritis”, “prosthetic joint infection”, “ fracture related
infection”, “ osteosynthesis”) by bacterial species and resistance mechanisms (e.g., ”Pseu-
domonas aeruginosa”, “Klebsiela KPC”, “carbapenem resistant Acinetobacter”, “Esherichia
coli”, “ Enterobacter spp.” “ ESBL”, “fluoroquinolone resistant”) and by the type of resistance
(“multidrug resistant”, “extensively drug resistant”, “difficult to treat”). Furthermore, some
additional data were also retrieved by the references of papers relevant to experimental,
epidemiological, and clinical data.

2. Epidemiology of Resistance of Gram-Negative Bacteria in Bone and
Joint Infections

The epidemiology of GNB in PJIs varies depending on the time of the infection’s onset.
In early PJI (within 3 months of prosthesis implantation), GNB, particularly Enterobac-
teriaceae, are more prevalent, representing 21.6% of cases. In late acute PJI (over a year
following surgery with symptoms lasting less than 4 weeks and a seeding from an obvious
source), the prevalence of Enterobacteriaceae is even higher at 28.8%. However, in delayed
PJI (3–12 months after implantation) and late chronic PJI (over a year following surgery
with symptoms lasting more than 4 weeks and no seeding from an obvious source), the
prevalence of Enterobacteriaceae drops significantly to 5.4% and 3.8%, respectively. Non-
fermenting GNB, such as Pseudomonas aeruginosa, have a low and consistent prevalence
across all time periods, ranging from 0% to 4% [9].

Resistant GNB, such as those producing extended-spectrum beta-lactamases (ESBLs) or
carbapenem-resistant Enterobacteriaceae (CRE), can complicate the treatment of PJIs. These
resistant strains are often associated with healthcare settings and can be more challenging
to treat due to limited antibiotic options. In a multicenter cohort study by Benito et al., it
was shown that most infections are caused by Staphylococci, although the rate of infection
by GNB and fungi increased from 2003 to 2012, as did the proportion of MDR infections,
mainly due to the increase in resistant GNB. Multidrug-resistant GNB increased from 5.3%
in 2003–2004 to 8.2% in 2011–2012 (p = 0.032); specifically, there was an increase over time
in the proportion of MDR Escherichia coli (the proportion doubled from 2% in 2003–2004 to
4.3% in 2011–2012; p = 0.061), Klebsiella pneumoniae (0% in 2003–2004 to 1.1% in 2011–2012;
p = 0.051), Pseudomonas aeruginosa (0.7% in 2003–2004 to 1.8% in 2011–2012; p = 0.044), and
Morganella morganii (0% in 2003–2004 to 0.8% in 2011–2012; p = 0.025) [10].

When compared with patients infected with other organism(s), patients infected with
Pseudomonas, MRSA, and Proteus had significantly decreased infection-free rates. Infec-
tion with methicillin-sensitive Staphylococcus aureus (MSSA), coagulase-negative Staphy-
lococcus, MRSA, Pseudomonas, Peptostreptococcus, Klebsiella, Candida, Diphtheroids,
Propionibacterium acnes, and Proteus spp. was associated with 1.13–2.58 additional surgeries,
whereas MSSA, coagulase-negative Staphylococcus, Proteus, MRSA, Enterococcus, Pseu-
domonas, Klebsiella, beta-hemolytic Streptococcus, and Diphtheroids were associated with
8.56–24.54 additional days in hospital for infection. Although fewer, Gram-negatives had
a greater risk for complications even compared to MRSA; patients with Pseudomonas and
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Proteus were at greater risk for extensive hospitalization, multiple surgical procedures, and
treatment failure of hip PJI [11].

Although no significant association between antibiotic resistance and biofilm forma-
tion was shown, MDR and XDR isolates were found to be greater biofilm formers than
non-MDR isolates and their ability to form biofilm differed among species, with Pseu-
domonas aeruginosa being the strongest biofilm producer [12]. XDR GNB and comorbidities
were independently associated with MDR GNB PJI treatment failure [13]. The predisposing
factors for MDR GNB-associated PJIs include revision arthroplasties, previous orthopedic
infections, postoperative hematomas, and early infections.

In the largest multicenter international cohort (2000–2015) of MDR/XDR GNB, 131 pa-
tients with PJI were included. The patients were elderly (mean age 73), with comorbidities
(58.8%). MDR (n = 108) and XDR (n = 23) were assessed. The most common pathogens
were Escherichia coli (33.6%), Pseudomonas aeruginosa (25.2%), Klebsiella pneumoniae (21.4%),
and Enterobacter cloacae (17.6%). Pseudomonas aeruginosa predominated in XDR cases (50%).
Isolates were identified as carbapenem resistant (n = 12), fluoroquinolone resistant (n = 63),
and ESBL producers (n = 94) [14]. Moreover, 57 cases of osteosynthesis-associated infection
(OAI) by MDR/XDR GNB were revealed. Those patients had a history of trauma (87.7%)
or tumor resection (7%). Pathogens included Escherichia coli ESBL producer (n = 16), Pseu-
domonas aeruginosa (n = 14), Enterobacter spp. (n = 9), Acinetobacter spp. (n = 5), Klebsiella spp.
(n = 7), Proteus mirabilis (n = 3), Serratia marcescens (n = 2), and Stenotrophomonas maltophilia
(n = 1). XDR accounted for 50% and 40% of Pseudomonas aeruginosa and Acinetobacter spp.
strains, respectively [15]. A very recent multicenter national study of 44 patients with BJI by
fluoroquinolone-resistant GNB revealed that Enterobacteriaceae were responsible for 61%
and Pseudomonas spp. for 39% of cases, with an overall rate of MDR/XDR GNB infections
of 61% [16].

Resistant GNB as causative pathogens in bone and joint infections have also been re-
ported among young children (under 4 years old), underscoring the importance of careful
consideration when choosing empirical treatment [17]. Epidemiological surveillance of mul-
tidrug resistance in BJIs is mandatory both for Gram-positive and Gram-negative bacteria.

3. Potent Antibiotics in BJIs by MDR/XDR
BJIs with or without an orthopedic device are characterized by the formation of

biofilm. As genetically defined pathogens, both GPB and GNB are able to induce biofilm
formation on the surface of the implant, but also intraosseously. A variety of in vitro and
in vivo models have been developed to better identify and depict the role of biofilm in
BJIs [18,19]. The low concentration of oxygen and nutrients in the biofilm environment
leads to heterogeneous phenotypic changes in the bacteria, with antimicrobial tolerance
being of paramount importance [20]. In this narrative review, we will shortly present
antimicrobials designated to combat MDR and XDR GNB in patients with BJIs. B-lactams
demonstrated reduced concentrations in bone compared to plasma whilst fluoroquinolones
sufficiently penetrate to bone tissue [21]. Table 1 summarized the mode of action and
antimicrobial spectrum along with the limitations of use of currently available antibiotics
against MDR/XDR GNB in BJIs (Table 1).
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Table 1. Highlights of antibiotics for multidrug-resistant (MDR) Gram-negative bacteria (GNB).

Antibiotic Mechanism of Action Spectrum of Activity of
Antibiotics for MDR GNB Limitations

Carbapenems
(e.g., meropenem,

imipenem–cilastatin,
ertapenem)

Inhibit bacterial cell wall synthesis
by binding to PBPs ESBL

No activity against
carbapenemases,

DTR A. baumannii,
DTR P. aeruginosa

Ertapenem is inactive against
P. aeruginosa

Meropenem–
vaborbactam

Inhibits bacterial cell wall synthesis;
vaborbactam

inhibits KPC-producing
β-lactamases

ESBL 1,
KPC

No activity against MBL- or
OXA-type

carbapenemases,
DTR P. aeruginosa,
DTR A. baumannii

Imipenem–
cilastatin–

relebactam

Inhibits bacterial cell wall synthesis;
relebactam

inhibits KPC

ESBL 1,
KPC,

Relebactam may slightly
enhance the activity of

imipenem against
OXA–carbapenemases,

DTR P. aeruginosa

No activity against MBL

Ceftolozane–
tazobactam

Inhibits bacterial cell wall synthesis;
tazobactam

inhibits β-lactamases

ESBL,
DTR P. aeruginosa

No activity against
carbapenemases,

DTR A. baumannii,
AmpC β-lactamases

Ceftazidime–
avibactam

Inhibits bacterial cell wall synthesis;
avibactam inhibits β-lactamases,

including KPC and OXA-48
carbapenemase

ESBL,
KPC,

AmpC β-lactamases,
OXA-48 carbapenemase,

DTR P. aeruginosa

No activity against MBL
High resistance rates in

A. baumannii

Cefiderocol
Siderophore cephalosporin: actively

transported into bacteria via iron
transport systems

ESBL,
KPC,
MBL,

AmpC β-lactamases,
OXA-48 carbapenemase,

DTR P. aeruginosa,
DTR A. baumannii

Fosfomycin Inhibits bacterial cell wall synthesis
by targeting MurA enzyme

ESBL,
CRE (all classes of
carbapenemases,
including MBL),

DTR P. aeruginosa

Its use as monotherapy is
generally not recommended

Colistin

Disrupts bacterial cell
membrane integrity by binding to

LPS and
phospholipids in the outer
membrane of GNB bacteria

ESBL,
CRE (all classes of
carbapenemases,
including MBL),

DTR P. aeruginosa,
DTR A. baumannii

It is recommended to be used
in combination with one or
more additional agents to

which the pathogen displays a
susceptible MIC

Tigecycline
Inhibits protein synthesis by
binding to the bacterial 30S

ribosomal subunit

ESBL,
CRE (all classes of
carbapenemases,
including MBL),

DTR A. baumannii

It is not effective against
P. aeruginosa

PBPs: penicillin-binding proteins; DTR: difficult to treat; KPCs: Klebsiella pneumoniae carbapenemases; ESBLs:
extended-spectrum beta-lactamases; MBLs: metallo-β-lactamases; CRE: carbapenem-resistant Enterobacteri-
aceae; LPSs: lipopolysaccharides; GNB: Gram-negative bacteria; MIC: minimal inhibitory concentration. 1 The
established therapeutic option for severe infections due to ESBL is a carbapenem without a β-lactamase inhibitor.
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3.1. Carbapenems

Carbapenems, a subclass of β-lactam antibiotics, act as inhibitors of the pepti-
dase domain of penicillin-binding proteins (PBPs) and are resistant to hydrolysis by
β-lactamases [22]. They possess the broadest spectrum of activity among β-lactam antibi-
otics and are the antibiotics of choice for treating ESBL [23]. However, it is noteworthy
that ertapenem is inactive against Pseudomonas aeruginosa in contrast to meropenem and
imipenem–cilastatin, which demonstrate antipseudomonal efficacy [22].

In the context of BJIs, carbapenems exhibit promising pharmacokinetic properties.
Pharmacokinetic studies evaluating the penetration of antibiotics into bone and joint tissues
indicated that carbapenems achieve good penetration into these compartments [17,21].
Moreover, an in vitro study showed that the combination of the continuous infusion of
meropenem with colistin maximized the anti-biofilm effect [24]. Similarly, in an in vivo
Pk/Pd model, imipenem and colistin showed anti-biofilm activity [25]. However, in
experimental osteomyelitis, meropenem was not effective in carbapenem-resistant strains
of Klebsiella pneumoniae, even when co-administered with colistin [26].

3.2. Meropenem–Vaborbactam

Meropenem–vaborbactam is a combination that involves a broad spectrum car-
bapenem and a novel β-lactamase inhibitor. Approved in 2017 for the treatment of com-
plicated urinary tract infections, it demonstrated non-inferiority compared to piperacillin–
tazobactam. Vaborbactam is a novel β-lactamase inhibitor that protects meropenem against
carbapenemases such as KPC. However, this combination is ineffective against metallo-
β-lactamases (MBLs) or OXA-type carbapenemases. Additionally, it does not provide
activity against Pseudomonas aeruginosa and Acinetobacter baumannii strains already resistant
to meropenem [27].

3.3. Imipenem–Cilastatin–Relebactam

Imipenem–cilastatin–relebactam is a combination of a broad spectrum carbapenem
and a novel β-lactamase inhibitor. Approved in 2019, relebactam enhances the activity
of imipenem–cilastatin against AmpC and KPC-producing Enterobacteriaceae as well as
Pseudomonas aeruginosa [27]. However, this combination is not effective against MBL [27].
Relebactam may provide a modest enhancement to the activity of imipenem against OXA-
type CRE [28]. It does not provide activity against Acinetobacter baumannii strains already
resistant to imipenem–cilastatin [27].

Although specific data on the penetration of β-lactamase inhibitors into bones and
joints are limited, these inhibitors are believed to share similar pharmacokinetic profiles
with the β-lactam antibiotics they accompany [29].

3.4. Ceftolozane–Tazobactam

Ceftolozane–tazobactam is a relatively recent combination of a fifth-generation
cephalosporin and a β-lactamase inhibitor, approved in 2014. Ceftolozane is a new
cephalosporin and its combination with tazobactam broadens its activity against ESBL-E
and MDR Pseudomonas aeruginosa [27]. It is approved for treating adults with complicated
intra-abdominal infections, complicated urinary tract infections including pyelonephritis,
hospital acquired bacterial pneumonia, and ventilator-associated bacterial pneumonia [27].

Post-marketing studies, however, have suggested efficacy against bone and joint
infections. In an in vitro pharmacodynamic biofilm model, monotherapy with ceftolozane–
tazobactam showed limited anti-biofilm activity against susceptible MDR Pseudomonas
aeruginosa strains, raising considerations about its effectiveness against Pseudomonas aerug-
inosa biofilm [30]. The combination of ceftolozane–tazobactam with colistin showed en-



Pathogens 2025, 14, 130 6 of 17

hanced activity in an in vitro pharmacodynamic biofilm model with a meropenem-resistant
Pseudomonas aeruginosa strain [30].

3.5. Ceftazidime–Avibactam

Ceftazidime–avibactam is a relatively recent combination of a third-generation
cephalosporin plus β-lactamase inhibitor, approved in 2015. It is indicated to treat adults
with complicated intra-abdominal infections, complicated urinary tract infections including
pyelonephritis, hospital-acquired bacterial pneumonia, and ventilator-associated bacterial
pneumonia. Ceftazidime is effective against GNB, including Pseudomonas aeruginosa. The
combination of ceftazidime–avibactam has shown activity against some DTR P. aeruginosa
isolates but the resistance rates exceed 50% in Acinetobacter baumannii [28]. When com-
bined with the novel β-lactamase inhibitor, avibactam, the drug regains activity against
several β-lactamases, such as ESBL-E and KPC, as well as OXA-48, but it lacks activity
against MBL [27].

In an experimental rabbit model of osteomyelitis caused by OXA-48-/ESBL-producing
Escherichia coli, ceftazidime–avibactam (CAZ-AVI) significantly reduced bacterial counts
compared to controls such as monotherapy, although no difference in bone sterilization
was observed. However, when CAZ-AVI was used in combination with colistin (91%) or
fosfomycin (100%) or gentamicin (100%), bone sterilization was achieved [31]. In another
rabbit model of osteomyelitis by the Carbapenemase-producing Klebsiella pneumonia
(CPKP) strain, the best efficacy in the eradication of infection was demonstrated by the
combination of CAZ-AVI with gentamicin [32].

3.6. Cefiderocol

Cefiderocol is an injectable siderophore cephalosporin, approved in 2019, with a
unique mechanism that enables it to be actively transported across the outer membrane of
Gram-negative bacteria via ferric iron transport systems [33]. Its siderophore-like property
also provides enhanced stability against β-lactamases. Cefiderocol demonstrates broad cov-
erage of GNB, including Acinetobacter baumannii, Pseudomonas aeruginosa, Stenotrophomonas
maltophilia, and resistant Enterobacterales, with activity against all four Ambler class
β-lactamases (A, B, C, and D) [34]. It has been approved for treating infections caused by
aerobic GNB in adults with limited treatment options.

In an in vitro study, the anti-biofilm activity of cefiderocol alone and in combination
with imipenem against Pseudomonas aeruginosa strains was evaluated. Cefiderocol and
imipenem alone showed poor anti-biofilm activity, but their combination exhibited en-
hanced anti-biofilm activity [35]. A pharmacokinetic study of XDR Pseudomonas aeruginosa
bacteremia, and presumed osteomyelitis treated with cefiderocol, demonstrated that cefide-
rocol concentrations in bone and skin/subcutaneous tissue were sufficient for adequate
drug penetration in these compartments, and the patient fully recovered [36].

3.7. Fosfomycin

Fosfomycin is a broad spectrum antibiotic that inhibits bacterial cell wall synthesis by
targeting the enzyme UDP-N-Acetylglucosamine Enolpyruvyl Transferase (MurA). It is
effective against both GPB and GNB, including MDR and XDR Enterobacteriaceae and Pseu-
domonas aeruginosa [37]. However, its use in monotherapy is generally not recommended
due to the rapid emergence of resistance and its reduced efficacy in the presence of a high
bacterial inoculum, a characteristic of some bone and joint infections [37,38].

Experimental studies of bone and joint infections have demonstrated that fosfomycin
monotherapy is more effective than tigecycline, gentamicin, and colistin monotherapy
against ESBL-producing Escherichia coli. Nevertheless, its combination with other antibi-
otics has yielded superior results. In vitro findings highlight the promising potential of
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fosfomycin in combination with carbapenems for treating ESBL/CRE and Pseudomonas
aeruginosa [38]. The in vitro synergism of fosfomycin with colistin significantly reduced
bacterial biofilm by Klebsiella pneumoniae and Pseudomonas aeruginosa [39].

3.8. Colistin

Polymyxins consist of polymyxins A–E, with polymyxin B and polymyxin E (colistin)
being the two commercially available forms [40]. Colistin acts by binding lipopolysaccha-
rides (LPSs) and phospholipids in the outer membrane of GNB, disrupting the membrane,
leading to the leakage of intracellular contents, and causing bacterial death [40]. Its spec-
trum of activity is against aerobic GNB, including MDR pathogens such as Enterobacte-
riaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii [41]. For invasive infections
caused by CRE, colistin is recommended to be used in combination with one or more
additional agents to which the pathogen displays a susceptible MIC [41]. Colistin is active
in fewer metabolic cells in the deeper layer of the biofilm structure. High doses might be
necessary in order to combat the hetero-resistance of Pseudomonas and Enterobacteriaceae.
The combination with other potent antibiotics (e.g., fosfomycin, β-lactam, aminoglycoside)
increased success rates (up to 80%) both experimentally and clinically [20]. An experimental
model of osteomyelitis due to KPC demonstrated treatment failure with colistin monother-
apy in both in vivo and in vitro studies but effectiveness with combinations [42]. All
relevant experimental data support the combination of colistin with various antimicrobials
(i.e., carbapenems, CAZ-AVI, ceftolozan–tazobactam, fosfomycin) [24,25,30,32,39].

3.9. Tigecycline

Tigecycline is a bacteriostatic antibiotic that inhibits protein synthesis and belongs
to the tetracycline class. It exhibits board spectrum activity against GPB and GNB, in-
cluding MDR Enterobacterales and Acinetobacter baumannii. However, it is not effective
against Pseudomonas aeruginosa [43]. Tigecycline is approved by the US Food and Drug
Administration (FDA) and by the European Medicines Agency (EMA) for the treatment
of complicated intra-abdominal infections and complicated skin and soft tissue infections,
and in the case of the FDA, community-acquired pneumonia [44]. An in vivo experimental
model of foreign body infection comparing tigecycline, colistin, and fosfomycin revealed
that combinations of those agents maximized the eradication of infection without bacterial
regrowth [45].

The scarcity of experimental and pre-clinical data on the effectiveness of older and
novel antimicrobials in BJIs raises considerations regarding their true potency in difficult
to treat MDR GNB. Most BJIs are caused by Gram-positive bacteria with more available
research data.

4. Clinical Data on Antimicrobial Treatment of BJIs by MDR GNB
Clinical data from large epidemiological studies exclusively on MDR/XDR GNB bone

and joint infections with and without orthopedic implants are scarce. Moreover, random-
ized controlled studies comparing antibiotics for those infections are lacking. Therefore,
our experience is based on some cohort studies or case series or well-documented case
reports. Overall, the treatment of BJIs by MDR/XDR GNB is based on experts’ opinion and
the off-label use of all available susceptible antibiotics.

Regarding antimicrobial treatment, multiple schemes have been proposed based on
pathogens’ susceptibility and antibiotics’ availability. Treatment was mainly given intra-
venously for prolonged periods of time. Treatment was individualized and highly varied
among studies. In the past, a combination of ceftazidime (3 g/day) plus ciprofloxacin
(1.5 g/day) for 6 weeks followed by ciprofloxacin (1.5 g/day orally) for 6 months was an
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adequate successful treatment for Pseudomonas aeruginosa PJI and other orthopedic device-
related infection. However, only 14 patients were eligible for analysis [46]. Another study
including 24 patients reported a good outcome with the combination of cefepime plus
fluoroquinolone for pseudomonal BJI [47]. Fluoroquinolones were evaluated as a prompt
treatment—both intravenously and orally—for BJI by GNB because of their good bioavail-
ability and sufficient penetration to the bone tissue. Osteomyelitis by Enterobacter cloacae
producing ESBL and Amp-C was successfully treated by ciprofloxacin with or without
surgical debridement [48]. Resistance to fluoroquinolones emerges as a major restriction
in the treatment of BJIs by GNB; fluoroquinolones were independently associated with
treatment success in a large cohort of 242 patients with PJIs caused by GNB (19% resis-
tant to ciprofloxacin). Ciprofloxacin treatment exhibited an independent protective effect
(adjusted hazard ratio (aHR) 0.23; 95% CI, 0.13–0.40; p < 0.001) with 79% success even in
patients treated with DAIR [49]. This result was corroborated by another study including
34 patients with GNB PJIs treated with DAIR [50]. Therefore, there is enough evidence
supporting the use of fluoroquinoline as a cornerstone of antimicrobial treatment in BJIs by
GNB. However, another study comprising 76 surgically treated patients with PJI by GNB
did not demonstrate differences in the outcome with or without fluoroquinolones. The
low failure rate (21%) observed in patients not receiving fluoroquinolones was attributed
to the standardized attitude of maintaining intravenous β-lactams throughout treatment
duration (median = 90 days) [51]. Therefore, it is questionable if the continuous infusion of
β-lactams can counterpoise the lack of fluoroquinolones from the therapeutic quiver.

In a series of 34 patients (68% by XDR Pseudomonas aeruginosa), the continuous use of b-
lactams in combination with colistin was more effective than monotherapy; however, over-
all success was attained only in 50% of cases [52]. Of notice, colistin methanesulphonate was
administered at a total daily dose of 6 million units and the dose of the antipseudomonal
b-lactam was chosen upon the lowest MIC in order to achieve a target drug concentration
at and above the MICs of the pathogen [52]. This is a well-documented clinical study on
the benefits of combination treatment over monotherapy for XDR Pseudomonas aeruginosa
BJI. Few data support that antimicrobial combination seems to be effective even in cases of
implant retention following debridement [10]. In a cohort of 44 patients with BJI by GNB
resistant to fluoroquinolones, colistin plus intravenous beta-lactam were introduced for
a median of 28 days, followed by intravenous beta-lactam alone for 19 days (IQR 5–35).
The overall cure rate in a 24-month follow-up was 82% (95% CI 68–90%) and 80% (95% CI
55–93%) in patients with implant retention [16]. However, the prolonged use of colistin
raised concerns for its toxicity. In a multicenter cohort of 19 patients treated for BJI by
MDR/XDR GNB, the prolonged administration of colistin (median 81 days) led to a rate of
73% of successful outcome whilst renal insufficiency was restored in all patients after the
end of treatment [53]. The in vitro synergy of colistin with other antibiotics had successfully
guided antimicrobial treatment in a patient with polymicrobial XDR GNB PJI [54]. However,
the emergence of resistance to the drug has been described under treatment for KPC BJI [55].
In the largest multicenter international cohort of patients with PJIs by MDR/XDR GNB,
colistin methanesulphonate was administered mostly in patients with XDR PJI (69.5%)
compared with MDR PJI (11.1%) at a daily dose that ranged from 2 × 106 IU to 9 × 106

IU adjusted to renal function [14]. Treatment success was more evident in MDR (66.7%)
than XDR (39.1%) cases despite the use of colistin in the last ones (p = 0.018). Neither
the total length of treatment (median 74.3 days) nor the use of combined antibiotics has
influenced the outcome of patients. DAIR was independently related with treatment failure
in that study. Non-DAIR procedures demonstrated an independent favorable impact on
successful outcomes (OR = 0.23, 95% CI 0.10–0.53; p = 0.001). The superiority of non-DAIR
surgical procedures remained unchangeable by the time of infection onset (early/late), type
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of resistance (MDR/XDR), and antimicrobial treatment (colistin versus non-colistin) [14].
Despite limitations, this large study confers to the current knowledge on the utility of
colistin in those DTR infections. In accordance, a smaller study of 25 patients with either
PJI or osteosynthesis-related infection demonstrated that implant retention was success-
ful only in 33% vs. 100% in cases of implant removal [56]. Treating Gram-negative PJIs
with debridement was associated with a lower 2-year cumulative probability of success
than treating Gram-positive PJIs with debridement (27% vs. 47%; p = 0.002) [57]. In a
large multicenter study including only patients with osteosynthesis-associated infections
(OAIs), the type of antimicrobials and the type of resistance (MDR vs. XDR) did not affect
the outcome of patients. Meropenem was given in the case of MDR GNB susceptible to
carbapenems and colistin in the case of XDR GNB. Only an age > 60 years (HR of 3.875;
95% CI of 1.540–9.752; p = 0.004) and multiple surgeries for OAI (HR of 2.822; 95% CI of
1.144–6.963; p = 0.024) were associated with treatment failure [15]. The main advantage
of this study is the focus only on long bone osteosynthesis infection instead of mixing up
patients with PJI and fracture-related infections (FRIs) as they largely differ in terms of
pathogenicity and outcome.

Tigecycline alone or in combination with colistin or aminoglycoside was administered
in two cases of osteomyelitis caused by KPC. The survival rate was low due to multidisci-
plinary health complications [58]. Oliveira et al. conducted a retrospective study comparing
tigecycline and colistin as monotherapy in patients with carbapenem-resistant Acinetobacter
baumannii complex osteomyelitis. Tigecycline demonstrated a better safety profile than
colistin, with no significant difference in clinical outcomes at a 12-month follow-up. Favor-
able outcomes were observed in 38.7% of tigecycline-treated patients compared to 44.1%
of those treated with colistin [59]. Vila et al. also documented three cases of Acinetobacter
baumannii prosthetic joint infections successfully treated with high maintenance doses of
tigecycline, achieving favorable outcomes [60]. However, relevant data are fragmentary,
based only on small case series.

Fosfomycin is a portent antibiotic both against GNB and GPB. Recently, it has proven
to be effective in a large cohort of patients (including 17% of patients with BJI) with DTR
MDR Pseudomonas aeruginosa and Klebsiella spp. infections. Fosfomycin was susceptible
even in the presence of resistance of the novel b-lactams (i.e., CAZ-AVI and ceftolozane–
tazobactam). A combination of fosfomycin with any other potent antibiotic led to 100%
treatment success in patients with BJIs [61]. A patient with MDR Pseudomonas aeruginosa
osteomyelitis was successfully treated with the combination of intravenous fosfomycin
and ceftolozane–tazobactam followed by meropenem [62]. Treatment was successful in
limb-threatening osteomyelitis due to XDR Pseudomonas aeruginosa with aggressive surgical
debridement and a combination of intravenous fosfomycin and colistin [63]. Despite
current knowledge regarding the efficacy of fosfomycin in MDR GNB, the data usually
comprise mixed-up patients with various infections whilst solely BJIs by MDR/XDR GNB
include case reports.

Data on the use of novel β-lactams for BJIs by MDR GNB are provided only by spo-
radic case reports and small case series. Seven patients with osteomyelitis were included
in the EZTEAM real-world study, which evaluated the administration of CAZ-AVI in
516 patients [64]. CAZ-AVI was successfully given for 6 weeks in combination with either
colistin, fosfomycin, or amikacin in three patients with complicated osteomyelitis [65]. In a
multicenter retrospective study, 9.8% (4 out of 41) of patients with BJIs by GNB—mainly
Pseudomonas aeruginosa—treated with CAZ-AVI presented with a 100% clinical cure rate [66].
CAZ-AVI was also successfully given for various time intervals in patients with knee PJIs
and without significant, non-reversible adverse events [67]. Two cases of orthopedic im-
plant infection by KPC and MBL producers were treated with a combination of aztreonam
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in a continuous infusion of 3 g per 12 h, twice a day for 12 weeks, CAZ-AVI in a continuous
infusion of 3 g/0.75 g per 12 h, twice a day for 12 weeks, and fosfomycin 3 g/8 h at a
discontinuous infusion for the first 4 weeks post-surgically [68]. Additional case reports de-
scribe the bone and joint infections caused by NDM-producing Klebsiella pneumonia [69] and
MBL-producing Pseudomonas aeruginosa [70], both successfully treated with the combination
of CAZ-AVI and aztreonam and the combination of CAZ-AVI, aztreonam, and amikacin,
respectively. CAZ-AVI for 6 weeks was effective in cases of vertebral osteomyelitis by XDR
GNB [71–73].

Another novel b-lactam, ceftolozane–tazobactam (C/T) was effective in patients with
BJI by XDR Pseudomonas aeruginosa BJI as outpatient parenteral antimicrobial treatment
(OPAT) via continuous infusion through elastomeric pumps [74]. In an observational study,
Rempenault et al. reported a 60% successful treatment of bone and joint infections (3 out of
5 patients). All cases involved at least one MDR Pseudomonas aeruginosa infection and 60%
were polymicrobial [75]. In a multicenter retrospective study, patients who received C/T as
OPAT were assessed. Among them, 27% (n = 34) had BJIs, treated successfully in 72.7% of
cases [76].

In a retrospective case series analyzing the use of meropenem–vaborbactam for CRE
infections, five out of fifteen patients (33.3%) were treated for BJIs. Among those with CRE-
related BJIs, three patients (60.0%) showed a positive clinical outcome [77]. Few BJI cases
were included in another real-world study with CRE infections treated by meropenem–
vaborbactam [78]. Clinical data on meropenem–vaborbactam in BJIs are scarce.

Imipenem–cilastatin–relebactam showed favorable outcomes in patients with various
infections, including bone infections, caused by KPC-producing Klebsiella pneumoniae and
DTR Pseudomonas aeruginosa, treated with imipenem–cilastatin–relebatatm [79]. However,
relevant data for BJIs are lacking. Recently, the first patient with vertebral spondylitis by
XDR Enterobactercloacae was successfully treated with the prolonged infusion of imipenem–
cilastatin–relebactam, followed by meropenem–varbobactam [29]. Another novel b-lactam,
cefiderocol, was successfully initiated as a last-resort treatment in two patients with BJI by
XDR Acinetobacter spp. [80,81]. The 8-week combination of cefiderocol with trimethoprim–
sulfamethoxazole (TMP/SMX) was proven to be successful in the treatment of knee PJIs
complicated by MDR Stenotrophomonas maltophilia [82]. In a case of osteomyelitis caused by
NDM-producing Pseudomonas aeruginosa, cefiderocol was given as OPAT treatment with
success [83]. The long-term compassionate use of cefiderocol for 14 weeks was proven
safe and effective in an infant with BJI and an adult with cranial osteomyelitis by XDR
Pseudomonas aeruginosa [84,85]. In a multicenter study, cefiderocol demonstrated similar
efficacy to the best available treatment for infections caused by carbapenem-resistant GNB.
However, a higher number of deaths were reported in the cefiderocol group, particularly
among patients with Acinetobacter spp. infections [86].

Overall, robust relevant data of any of the novel b-lactams against MDR/XDR GNB in
BJIs do not exist for the time being.

Similarly, data are very scarce regarding local antibiotic elution in cases of BJIs by
MDR/XDR GNB. Two patients were successfully treated by colistin-impregnated cement
along with intravenous colistin [87,88]. Another patient who underwent two-stage revision
for a hip PJI caused by MDR Serratia marcescens was treated with systemic meropenem
along with local elution of the impregnated drug [89]. Colistin-impregnated cement along
with intravenous administration of the drug was successfully given in a patient with CRAB
(Carbapenem-resistant Acinetobacter baumannii) [90]. A case of XDR GNB BJI treated by
impregnated cement with cefiderocol along with intravenous administration was proven
to be effective [82]. Promising results from a pre-adapted bacteriophage with meropenem
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and colistin, followed by CAZ-AVI administration, were reported in a 30 year old bombing
victim with a fracture-related PDR Klebsiella pneumonia infection [91].

Overall, novel antibacterials can be a partner in DTR GNB in the absence of other
susceptible compounds or in combination with older antibiotics such as colistin, tigecycline,
and fosfomycin. Although very limited, current data support the combination treatment
over monotherapy.

5. Discussion
GNB along with antimicrobial resistance are emerging worldwide [1,10]. Few antimi-

crobial options are available in our armamentarium against MDR/XDR GNB BJI. Most
cases are due to Escherichia coli, ESBL producers, and DTR Pseudomonas aeruginosa. How-
ever, the global emergence of carbapenem-resistant Klebsiella pneumoniae, Enterobacter spp.,
and Acinetobacter spp. raises important concerns about antimicrobial therapeutic options.
Pre-clinical and clinical data on BJI by MDR/XDR GNB are relatively scarce, mostly based
on observational retrospective or prospectively performed analyses [92]. There is a lack of
randomized controlled trials directly comparing different treatment regimens and treatment
duration. Radical debridement and implant removal are the optimal therapy options in
patients with orthopedic implant infection by DTR pathogens. This option is supported by
the largest multicenter studies on PJI and osteosynthesis-related infections by MDR/XDR
GNB [14,15]. For DTR GNB, we summarized the current opinion on the use of last-resort
antibiotics, including older ones (i.e., colistin, tigecycline, fosfomycin) and newer ones
(i.e., ceftazidmie–avibactam, ceftolozane–tazobactam, meropenem–varobactam, imipenem–
cilastatin–relebactam, and cefiderocol). In an attempt to optimize antimicrobial treatment,
the use of the continuous infusion of β-lactams in combination with colistin or other potent
drugs was suggested and seems to be efficacious. However, therapeutic drug monitoring is
mandatory in order to achieve maximum doses for the maximum time above the pathogens’
MIC values [16,51,52]. Older antibiotics such as fosfomycin, tigecycline, and colistin along
with newer ones such as novel β-lactam/β-lactamase inhibitors are an effective option in
MDR and DTR GNB [93]. Fosfomycin is a safe and promising agent in combating both
GPB and GNB in bone and joint infections, however only in combination with other potent
antibiotics whilst the appropriate dosing is not established [94]. Colistin is a significant
compound in XDR GNB BJI for susceptibility reasons, bactericidal properties, and biofilm
combating results. However, the risk of adverse events often leading to the discontinuation
of the drug is not negligible [20]. Few data exist for tigecycline but if susceptible, it seems
that it is effective for DTR BJI at the highest possible dose, in particular in combination with
other antibiotics; however, it has intrinsic resistance for Pseudomonas aeruginosa. Regarding
novel β-lactam and β-lactam/β-lactamase inhibitors, relevant data are scarce based on
case reports, small case series, and very few experimental data. However, these antibiotics
can be used as a last resort of treatment in cases of desperate XDR BJI always after prompt
surgical treatment. We would recommend that novel antimicrobials would be better being
introduced in combination with older potent drugs (colistin, fosfomycin, or tigecycline)
based on a susceptibility test, the co-existence of GPB, and the drug safety profile adjusted
to each patient. Compliance with longer than usual treatment duration and continuous
clinical and laboratory monitoring for drugs’ adverse events is mandatory both for older
and newer antibiotics. The preparation of homemade local drug elution systems for DTR
GNB should be based on the collaboration of surgeons with clinical microbiologists and
infectious disease specialists. Local treatment should be always combined with intravenous
antibiotic administration. More clinical and laboratory research should be provided in the
field in order to ensure optimized drug delivery into bones and joints and increase the
rates of clinical cure. Large multicenter prospective clinical trials are mandatory. For the
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time being, in general, the antimicrobial treatment for DTR GNB in BJIs could follow the
published guidelines for all MDR/XDR GNB [95].
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