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Abstract: The polyamine pathway in Leishmania parasites has emerged as a promising
target for therapeutic intervention, yet the functions of polyamines in parasites remain
largely unexplored. Ornithine decarboxylase (ODC) and spermidine synthase (SPDSYN)
catalyze the sequential conversion of ornithine to putrescine and spermidine. We previ-
ously found that Leishmania donovani ∆odc and ∆spdsyn mutants exhibit markedly reduced
growth in vitro and diminished infectivity in mice, with the effect being most pronounced
in putrescine-depleted ∆odc mutants. Here, we report that, in polyamine-free media, ∆odc
mutants arrested proliferation and replication, while ∆spdsyn mutants showed a slow
growth and replication phenotype. Starved ∆odc parasites also exhibited a marked reduc-
tion in metabolism, which was not observed in the starved ∆spdsyn cells. In contrast, both
mutants displayed mitochondrial membrane hyperpolarization. Hallmarks of apoptosis,
specifically DNA fragmentation and membrane modifications, were observed in ∆odc
mutants incubated in polyamine-free media. These results show that putrescine deple-
tion had an immediate detrimental effect on cell growth, replication, and mitochondrial
metabolism and caused an apoptosis-like death phenotype. Our findings establish ODC
as the most promising therapeutic target within the polyamine biosynthetic pathway for
treating leishmaniasis.

Keywords: Leishmania; polyamines; apoptosis; replication; mitochondria; starvation;
ornithine decarboxylase; spermidine synthase

1. Introduction
Leishmaniasis, a neglected tropical disease, with over one billion people at risk for

infection living in endemic areas in nearly 90 countries across Africa, South-East Asia, the
Middle East, Europe, and Central and South America. Annually, approximately 1 million
new cases and 70,000 deaths are reported [1–4]. The risk of infection significantly increases
in impoverished communities, and recent outbreaks have been fueled by factors such as
human migration, civil unrest, and war [1,5–8]. Additionally, environmental issues like
deforestation, urbanization associated with poor sanitary conditions, overcrowding or lack
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of infrastructure, and climate change have contributed to the rising incidence of cases.
Moreover, leishmaniasis is now considered to be endemic in the United States [1,3,8–13].

Leishmania parasites have a dimorphic life cycle, existing as flagellated promastig-
otes in sand flies and non-flagellated amastigotes in mammals, primarily residing in
macrophages [2,4,10]. Leishmaniasis in humans, caused by over 20 different species of
Leishmania, manifests mainly as cutaneous and visceral forms. Cutaneous leishmaniasis
(CL) leads to ulcerative skin lesions, with estimates ranging from 600,000 to 1 million new
cases each year [3]. In contrast, visceral leishmaniasis (VL), caused by L. donovani and
L. infantum, is predominantly fatal if untreated and is the second leading cause of mortal-
ity among parasitic diseases. An estimated 50,000–90,000 new infections occur annually,
although underreporting remains significant [3]. VL affects internal organs and presents
symptoms such as fever and weight loss [2,3,7,10].

Currently, no vaccines exist to prevent leishmaniasis in humans, and treatment options are
limited, often with severe side effects and growing drug resistance complicating care [2,10,14–19].
Furthermore, the persistence of Leishmania parasites post-treatment has spurred ongoing research
into the mechanisms behind their resilience [20–23]. Together, the lack of ideal treatment options,
the absence of a vaccine, and the increasing incidence and spread of the disease underscore the
urgent need to identify new therapeutic targets.

Notably, polyamine biosynthesis has already been clinically validated as a treatment
target in the related pathogen Trypanosoma brucei gambiense [24–27]. These ubiquitous
and essential cations play a critical role in various cellular processes, including growth,
differentiation, and macromolecular synthesis [28–32]. A key inhibitor in this pathway,
D,L-α-difluoromethylornithine (DFMO, eflornithine) effectively targets ornithine decar-
boxylase (ODC), the enzyme responsible for synthesizing the polyamine putrescine. DFMO
has demonstrated remarkable success in treating African sleeping sickness caused by
Trypanosoma brucei gambiense [24,25,27]. DFMO is also active against Leishmania in vitro
and in murine and hamster infectivity models, and recent studies have highlighted the
importance of the polyamine biosynthetic pathway as a potential therapeutic target in
Leishmania [27,28,33–36].

The polyamine biosynthetic pathway in Leishmania consists of four enzymes: arginase (ARG),
ornithine decarboxylase (ODC), spermidine synthase (SPDSYN), and S-adenosylmethionine
decarboxylase (ADOMETDC) (Figure 1). ARG converts the essential amino acid arginine to
ornithine, which is directly channeled into polyamine biosynthesis. ODC then converts ornithine
to putrescine, and SPDSYN produces spermidine, a vital metabolite involved in the hypusination
and activation of eukaryotic translation initiation factor 5A (eIF5A) in both the parasite and
host [37–39]. Unique to trypanosomatids, spermidine conjugates with glutathione to form trypan-
othione, which is essential for redox balance and oxidative stress defense [40,41]. Trypanothione
synthetase/amidase (TRYS) catalyzes its synthesis and hydrolysis [42]. Unlike humans, Leishmania
neither produces spermine nor has a polyamine back-conversion pathway [43].

We previously generated gene deletion mutants for ODC (∆odc) and SPDSYN (∆spdsyn)
in L. donovani using targeted gene replacement strategies [43–46]. Characterization of these
mutants revealed that both enzymes are essential for polyamine biosynthesis, as the condi-
tionally lethal null mutants depend on supplementation with putrescine or spermidine for
growth. The ∆odc mutants exhibit profoundly reduced infectivity compared to wild-type
parasites, while the ∆spdsyn mutants show a less pronounced yet substantial decrease
in infectivity [44,45]. The inability of ∆odc mutants to establish infections suggests that
putrescine is unavailable to intracellular parasites, a hypothesis supported by the rapid
conversion of arginine to spermine in macrophages [47] and the typically low levels of
putrescine in differentiated mammalian cells [48,49]. Our findings, combined with evidence
that DFMO reduces infectivity in mice and hamsters [50–52], validate ODC as a potential
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therapeutic target in Leishmania. Notably, the structure of the leishmanial ODC features
a unique N-terminal extension not found in the human enzyme [53], and both computer
modeling and inhibitor studies demonstrate that the enzyme is a druggable target [53–59].
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Figure 1. Polyamine biosynthetic pathway in Leishmania parasites. The polyamine biosynthetic
pathway in Leishmania is depicted with gray arrows. This pathway illustrates the sequential conver-
sion of arginine to ornithine, putrescine, and spermidine, catalyzed by arginase (ARG), ornithine
decarboxylase (ODC), and spermidine synthase (SPDSYN), respectively. S-adenosylmethionine
decarboxylase (ADOMETDC) generates decarboxylated S-adenosylmethionine, which serves as the
aminopropyl donor for spermidine synthesis. The two polyamines produced in Leishmania, putrescine
and spermidine, are shown in uppercase. Unique to trypanosomatids is the reversible formation of
trypanothione, catalyzed by the bidirectional enzyme trypanothione synthetase/amidase (TRYS) in
Leishmania. The modification and activation of eukaryotic translation initiation factor 5A (eIF5A) by
deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH) occur in both Leishmania
parasites and the human host. White arrows indicate the spermine synthase (SPMSYN) reaction
and the simplified back-conversion pathway that is present in the mammalian host but absent
in Leishmania.

Although most research has focused on the promastigote stage, polyamines are clearly
essential for the amastigote stage of Leishmania. Both ODC and SPDSYN are expressed in
amastigotes [44,60], and gene deletion mutants exhibit significantly reduced infectivity [44,45].
Additionally, inhibitors targeting polyamine pathway enzymes are effective against intracellular
amastigotes both in vitro and in rodent infectivity models [28].

Alterations in polyamine metabolism have been observed in Leishmania strains that are
resistant to standard anti-leishmanial drugs, likely through their impact on trypanothione biosyn-
thesis, a key component of the parasite’s antioxidant defense [61–63]. Gene amplification or
increased ODC expression has been observed in antimony-resistant strains [61,64–66], while ele-
vated arginine, ornithine, and spermidine levels are associated with miltefosine resistance [67,68].
In contrast, reduced putrescine levels occur in pentamidine-resistant strains [69,70]. Combin-
ing anti-leishmanial drugs with polyamine pathway inhibitors has the potential to restore drug
sensitivity or prevent resistance development [28].
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Notable differences between the growth phenotypes of the ∆odc and ∆spdsyn mutants
were also observed in vitro [71]. In the ∆odc mutants, putrescine depletion leads to cell
rounding, immediate cessation of proliferation, and loss of viability, whereas putrescine-
rich ∆spdsyn mutants display an intermediate proliferation phenotype and can persist in a
quiescent-like state from five to six weeks before cell death occurs. Contrary to the long-
standing belief that putrescine’s sole function is as precursor for spermidine synthesis [43]
(Jiang et al., 1999), these findings suggest that it is also crucial for parasite growth and
infectivity. However, the functions of putrescine remain largely unexplored, highlighting
the need for further investigation into its role in cellular processes. The ∆odc and ∆spdsyn
mutants serve as ideal tools due to their distinct intracellular polyamine dynamics. Specifi-
cally, putrescine levels deplete rapidly in ∆odc mutants incubated in polyamine-free media,
while they accumulate in ∆spdsyn mutants under the same conditions [71]. In contrast,
spermidine levels remain low but stable in both cell lines [71].

In this study, we investigated the effects of polyamine withdrawal on cell growth,
metabolism, and death in L. donovani ∆odc and ∆spdsyn mutant cell lines. Our findings
demonstrate that ∆odc mutants exhibited rapid arrest in proliferation and replication,
alongside significant metabolism impairment, while ∆spdsyn mutants displayed a much
more moderate phenotype. Both mutants showed hyperpolarization of the mitochondrial
membrane, but only the ∆odc mutants displayed hallmarks of apoptosis, specifically DNA
fragmentation and membrane modifications. These results underscore the critical role of
putrescine in cellular function and highlight ODC as a promising therapeutic target in the
polyamine biosynthetic pathway for the treatment of leishmaniasis.

2. Materials and Methods
2.1. Materials

Dulbecco’s Modified Eagle Medium and chicken serum were procured from Thermo
Fisher Scientific (Waltham, MA, USA). Antibiotics, including hygromycin, neomycin, and
puromycin, were obtained from InvivoGen (San Diego, CA, USA). Resazurin was purchased
from VWR International (Radnor, PA, USA), putrescine, spermidine, and carbonyl cyanide
m-chlorophenyl hydrazone (CCCP) were sourced from MilliporeSigma (Burlington, MA,
USA), and 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl benzimidazolyl carbocyanine iodide (JC-1)
was bought from Cayman Chemical (Ann Arbor, MI, USA). The BrdU Cell Proliferation ELISA
Kit (colorimetric) was acquired from Abcam (Cambridge, UK) and the In Situ Cell Death
Detection Kit, Fluorescein, was purchased from Roche (Basel, Switzerland). Propidium iodide
(PI) was obtained from Cell Signaling Technology (Danvers, MA, USA), and FITC Annexin V
was purchased from BioLegend (San Diego, CA, USA).

2.2. Cell Lines and Culture Conditions

Promastigote parasites were cultured at 27 ◦C in a completely defined Dulbecco’s
Modified Eagle Medium optimized for Leishmania promastigotes. In this medium, fetal
bovine serum was substituted with chicken serum to prevent polyamine oxidase-mediated
toxicity (DME-L CS) [46,71,72]. All genetically modified parasites originated from the wild-
type (WT) LdBob strain of L. donovani [73], which was initially provided by Dr. Stephen
M. Beverley (Washington University, St. Louis, MO). The ∆odc and ∆spdsyn mutants
were previously created using targeted gene replacement methods [44,45] and contain
the hygromycin phosphotransferase and neomycin phosphotransferase drug resistance
genes (∆odc) or the hygromycin phosphotransferase and puromycin acetyltransferase drug
resistance genes (∆spdsyn). The ∆odc cell line was routinely grown in the presence of
100 µM putrescine, 50 µg/mL hygromycin, 20 µg/mL neomycin, and the ∆spdsyn cell line
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was cultured in 100 µM spermidine, 50 µg/mL hygromycin, 10 µg/mL puromycin, unless
otherwise specified.

2.3. Proliferation Assay

All three cell lines were washed three times in phosphate-buffered saline (PBS) to
remove any residual polyamines. Centrifugation steps were carried out at 1452 rela-
tive centrifugal force (RCF) for 10 min at room temperature. For the initial proliferation
curve comparing polyamine starvation among cell lines, wild-type cells were incubated
in polyamine-free media lacking both drugs and polyamine supplementation. The ∆odc
mutants were incubated in either polyamine-free media or media supplemented with
100 µM putrescine, while ∆spdsyn mutants were grown in polyamine-free media or media
supplemented with 100 µM spermidine. For the proliferation curve examining polyamine
supplementation in wild-type cells, parasites were incubated in polyamine-free media or
in media supplemented with 500 µM putrescine, or 500 µM spermidine, or a combination
of 500 µM putrescine and 500 µM spermidine. All cell lines were seeded at a density of
5 × 105 cells/mL on day 0, and their growth was monitored over a period of 11 days. Cell
counting was performed using a MacsQuant 10 flow cytometer (Miltenyi Biotec, Bergisch
Gladbach, Germany).

2.4. Replication Assay

Bromodeoxyuridine incorporation was measured using a BrdU Cell Proliferation
ELISA Kit (colorimetric) from Abcam. This assay was used to assess DNA replication in
wild-type parasites and in mutant cell lines that were supplemented with polyamines or
incubated in polyamine-free media.

Parasites were washed three times in PBS and resuspended at a density of 5× 106 cells/mL
in the following media conditions: wild-type, ∆odc, and ∆spdsyn parasites in polyamine-free
media; ∆odc mutants in media supplemented with 100 µM putrescine; and ∆spdsyn mu-
tants in media supplemented with 100 µM spermidine. After overnight incubation at 27 ◦C,
1 × 108 parasites were harvested, centrifuged, and seeded in triplicate at 1 × 106 cells/100 µL
in 96-well plates with fresh media corresponding to their initial conditions. Centrifugation
steps were carried out at 1452 RCF for 10 min at room temperature.

Cells were then treated according to the manufacturer’s protocol. Briefly, 20 µL of
1× BrdU was added to each well, except the wild-type negative control wells, followed
by overnight incubation at 27 ◦C. Cells were fixed and incubated with an anti-BrdU
monoclonal detector antibody, followed by Peroxidase Goat Anti-Mouse IgG Conjugate
and TMB Peroxidase Substrate incubation. After adding the Stop Solution, absorbance was
measured at 450 nm using a BioTek Synergy H1 Multimode Reader (Agilent, Santa Clara,
CA, USA).

2.5. Metabolism Assay

Metabolic activity was determined by measuring the conversion of resazurin into the
fluorescent compound resorufin.

Parasites were washed three times in PBS before incubation in the appropriate media.
Centrifugation steps were carried out at 1452 RCF for 10 min at room temperature. Wild-
type cells were incubated in polyamine-free media. The ∆odc mutants were cultured
either in polyamine-free media or media supplemented with 100 µM putrescine, while the
∆spdsyn mutants were incubated in either polyamine-free media or media supplemented
with 100 µM spermidine. Wild-type parasites and mutant cells in supplemented media
were seeded at a concentration of 5 × 105 cells/mL on day 0. To ensure sufficient cell
material for the assay, ∆odc mutants in polyamine-free media were seeded at a higher
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concentration of 1 × 107 cells/mL, and ∆spdsyn mutants in polyamine-free media were
seeded at 2 × 106 cells/mL.

Resazurin fluorescence and cell numbers were measured on days 3 and 4 of starvation,
during the log phase of cell growth, when metabolic activity is expected to be optimal. Cells
(1 × 107) were harvested, centrifuged at 1452 RCF for 10 min at room temperature, and
resuspended in 1 mL of the same media. Cells were then counted in triplicate in a 96-well
plate with 100 µL samples per well using the MACSQuant flow cytometer. Following this,
10 µL of 44 µM resazurin was added to each well, and plates were incubated at 27 ◦C for
four hours. Resorufin fluorescence was measured at 554Ex–593Em nm using the BioTek
Synergy H1 Multimode Reader. Metabolic activity per cell was calculated by dividing the
resorufin fluorescence by the number of cells in each sample.

2.6. Assessment of Mitochondrial Membrane Potential

The mitochondrial membrane potential (∆Ψm) was assessed using the cationic dye
JC-1. This dye aggregates within mitochondria with an intact mitochondrial membrane
potential, emitting red fluorescence at 590 nm, whereas in cells with depolarized mitochon-
drial membranes, JC-1 remains cytosolic and monomeric, displaying green fluorescence at
530 nm.

Parasites were washed three times in PBS before incubation in the appropriate media.
Centrifugation steps were carried out at 1452 RCF for 10 min at room temperature. Wild-
type cells were incubated in polyamine-free media. The ∆odc mutants were cultured
either in polyamine-free media or media supplemented with 100 µM putrescine, while the
∆spdsyn mutants were incubated in either polyamine-free media or media supplemented
with 100 µM spermidine. Wild-type parasites and mutant cells in supplemented media
were seeded at a concentration of 3 × 105 cells/mL on day 0. To ensure sufficient cell
material for the assay, ∆odc mutants in polyamine-free media were seeded at a higher
concentration of 5 × 106 cells/mL, and ∆spdsyn mutants in polyamine-free media were
seeded at 1 × 106 cells/mL.

Samples were collected on days 3, 4, and 8, washed once with PBS supplemented
with 158 µg/mL glucose (PSG), and resuspended in 1 mL PSG. Centrifugation steps were
carried out at 6021.1 RCF for 5 min at room temperature. As a control, wild-type cells were
treated with the mitochondrial uncoupler CCCP at 75 µM for 10 min at 27 ◦C. All samples
were stained with 0.22 mM JC-1 (except an unstained wild-type control), incubated for
one hour at 27 ◦C, centrifuged, and resuspended in 500 µL PSG. Analysis was performed
on the MACSQuant flow cytometer using an excitation laser at 488 nm, 30 mW. Emission
signals were collected using the FITC B1 (525/50 nm) and PE B2 (585/40 nm) detectors to
capture green and red fluorescence, respectively. Flow cytometer data were analyzed using
FlowJoTM v10 (BD Life Sciences, Franklin Lakes, NJ, USA), and the 590:530 fluorescence
ratio was calculated for each data point.

2.7. DNA Fragmentation Assay

DNA fragmentation was assessed using the In Situ Cell Death Detection Kit (Roche),
which is based on the Terminal deoxynucleotidyl transferase (TdT) dUTP Nick End Labeling
(TUNEL) method and detects free 3′-hydroxyl ends generated by endonuclease degradation.

Parasites were washed three times in PBS before incubation in the appropriate media.
Centrifugation steps were carried out at 1452 RCF for 10 min at room temperature. Wild-
type cells were incubated in polyamine-free media. The ∆odc mutants were cultured
either in polyamine-free media or media supplemented with 100 µM putrescine, while the
∆spdsyn mutants were incubated in either polyamine-free media or media supplemented
with 100 µM spermidine. Wild-type parasites and mutant cells in supplemented media
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were seeded at a concentration of 5 × 105 cells/mL on day 0. To ensure sufficient cell
material for the assay, ∆odc mutants in polyamine-free media were seeded at a higher
concentration of 5 × 106 cells/mL, and ∆spdsyn mutants in polyamine-free media were
seeded at 1 × 106 cells/mL.

Samples were collected on days 4, 7, and 10 and processed according to the manufac-
turer’s instructions. Briefly, 1 mL cells were harvested and washed in PBS before being
fixed in a 2% paraformaldehyde (PFA) solution in PBS for 60 min. Centrifugation steps
were carried out at 6021.1 RCF for 5 min at room temperature. Following PFA removal,
cells were permeabilized with the kit’s permeabilization buffer, washed with PBS, and
incubated with the TUNEL reaction mixture for 1 h at 37 ◦C. After incubation, the cells were
washed again and analyzed using the MACSQuant flow cytometer. Single-channel trace
files generated from the flow cytometer were overlaid and analyzed in FlowJoTM v10 using
the “Compare population” function to determine Overton % positive cell populations.
Stained populations were compared with a mixed stock of unlabeled control cells.

2.8. Membrane Modifications Assay

Membrane modifications were evaluated using FITC-Annexin V (Biolegend) and PI
(Cell Signaling Technology) staining. Annexin V binds to phosphatidylserine exposed on
the outer leaflet of the plasma membrane during early apoptosis, while PI penetrates cells
with compromised membranes, marking late apoptotic or necrotic cells.

Parasites were washed three times in PBS before incubation in the appropriate media.
Centrifugation steps were carried out at 1452 RCF for 10 min at room temperature. Wild-
type cells were incubated in polyamine-free media. The ∆odc mutants were cultured
either in polyamine-free media or media supplemented with 100 µM putrescine, while the
∆spdsyn mutants were incubated in either polyamine-free media or media supplemented
with 100 µM spermidine. Samples were collected on days 3 or 4, 7, and 14. Approximately
600 µL of cell culture was harvested and washed twice with 1 mL of PBS before being
resuspended in 200 µL of Annexin V binding buffer (10 mM HEPES, 150 mM NaCl,
2.5 mM CaCl2 in H2O) containing 5 µL of 90 ug/mL Annexin V and 5 µL of 10 mg/mL
PI. Centrifugation steps were carried out at 6021.1 RCF for 5 min at room temperature.
The cells were then incubated at room temperature for 30 min, during which they were
protected from light and then analyzed using the MACSQuant flow cytometer. Appropriate
single-stained and unstained controls were prepared and treated identically.

Scatterplots generated using flow cytometry data were analyzed using FlowJoTM v10
with quadrant gating applied according to the manufacturer’s guidelines. Percentages
of cells within each quadrant were exported to GraphPad Prism v10 (GraphPad Prism,
Boston, MA, USA) for data analysis.

2.9. Data Visualization and Statistical Analysis

Data visualization and statistical analysis was conducted using GraphPad Prism v10.
Error bars in the graphs represent standard deviations. Statistical analysis was conducted
using ANOVA, and statistical comparisons between group means were considered signifi-
cant at p < 0.05.

3. Results
3.1. Extended Polyamine Starvation Exposes Distinct Growth Patterns in Parasites

A prior study demonstrated that ∆odc parasites do not proliferate in polyamine-free
media, while ∆spdsyn parasites exhibit only slow growth under these conditions over a
7-day period [71]. In the current study, we extended these observations to 11 days of
polyamine-free incubation to monitor the growth phenotype further and assess whether
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∆spdsyn mutants eventually achieve cell numbers comparable to wild-type or polyamine-
supplemented parasites.

During the first 7 days, all cell lines displayed growth trends consistent with previously
published observations [71] (Figure 2A). The ∆spdsyn mutants incubated in polyamine-
free media showed a maximum density of ~4 × 106 cells/mL—notably higher than the
∆odc mutants, but almost ten-fold lower than wild-type or supplemented cultures. After
reaching this plateau, ∆spdsyn mutants sustained this low maximum cell number without
further growth between days 4–11 (Figure 2B). In contrast, ∆odc mutants in polyamine-free
media showed no proliferation, maintaining a stable cell count around 3–5 × 105 cells/mL
throughout the 11-day experiment (Figure 2B).
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Figure 2. Proliferation of wild-type and mutant parasites in response to polyamine availability.
Parasite proliferation was monitored over 11 days using a flow cytometer. (A) Proliferation of wild-
type (WT) cells in polyamine-free media (dark blue circles), ∆odc mutants in media with 100 µM
putrescine (blue squares), ∆spdsyn mutants in media with 100 µM spermidine (green triangles), as
well as ∆odc (light blue triangles) and ∆spdsyn mutants (dark green diamonds) in polyamine-free
media. (B) Growth of the ∆odc (light blue triangles) and ∆spdsyn (dark green diamonds) mutants
grown in polyamine-free media is shown to allow for a better comparison of the cellular proliferation
rate between the two mutants. (C) Growth of wild-type parasites in polyamine-free media (dark
blue circles), in media supplemented with 500 µM putrescine (blue squares), 500 µM spermidine
(light blue triangles), or a combination of 500 µM putrescine and 500 µM spermidine (light green
triangles). Three experiments were conducted in technical triplicate (n = 3) for each experimental
design, as illustrated in panels (A–C). Consistent results were observed across all experiments, and
one representative experiment from each design is shown. The two other experiments for each design
are shown in Figure S1.

Both wild-type cells and mutants cultured in polyamine-supplemented media ex-
hibited similar growth patterns through logarithmic and stationary phases (Figure 2A).
By day 4 or 5, they peaked at approximately 3 × 107 cells/mL, followed by a gradual
decline likely due to general nutrient depletion and overgrowth. However, in week two,
notable differences emerged between the wild-type parasites and supplemented mutants
(Figure 2A). Wild-type cell counts decreased continuously from a peak of approximately
2.5 × 107 cells/mL to below 1 × 107 cells/mL by day 11 (~60% loss in cell density). In
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contrast, cell counts for the supplemented mutants dipped slightly, but stabilized around
2 × 107 cells/mL between days 7 to 11 (~20% loss in cell density).

Because previous research demonstrated higher intracellular polyamine levels in
supplemented ∆odc and ∆spdsyn mutants compared to wild-type parasites [71], we aimed
to investigate whether polyamine supplementation could stabilize cell concentration and
prolong survival, as observed in the supplemented mutants during week 2 (Figure 2A).
To examine this, wild-type parasites were incubated in media enriched with 500 µM
putrescine, 500 µM spermidine, or a combination of both (500 µM putrescine plus 500 µM
spermidine). The growth patterns of wild-type parasites were similar regardless of the
supplement conditions (Figure 2C) and did not show the distinct differences observed
between wild-type parasites and supplemented mutants in Figure 2A.

To summarize, we show that ∆spdsyn mutants achieved higher cell densities than
∆odc mutants, but plateaued at levels far below wild-type or supplemented cultures.
Supplemented mutant cells maintained stable counts through week two, while wild-type
cells declined, showing a distinct difference in growth dynamics.

3.2. Putrescine Is Essential for DNA Synthesis and Replication

To investigate whether polyamine depletion affects DNA replication and potentially
contributes to the growth arrest of ∆odc parasites, we measured BrdU incorporation as a
marker of DNA synthesis. Wild-type and supplemented mutant cells exhibited proficient
BrdU incorporation, with no significant differences between them (Figure 3). In contrast,
∆odc mutants grown in polyamine-free media showed virtually no BrdU incorporation,
which was comparable to the no-cell control and significantly less than that of ∆odc mutants
in 100 µM putrescine (p < 0.0001) (Figure 3). Although ∆spdsyn mutants in polyamine-free
media displayed some BrdU incorporation, it was significantly less than that of mutants
in 100 µM spermidine (p = 0.0242) (Figure 3). The lack of DNA synthesis in ∆odc mu-
tants and the limited DNA synthesis in ∆spdsyn mutants grown in polyamine-free media
corresponded to their respective growth phenotypes, as illustrated in Figure 2A,B.
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Figure 3. DNA synthesis in wild-type and mutant cell lines. DNA synthesis was assessed by
measuring BrdU incorporation. The optical density, representative of BrdU incorporation levels, is
displayed for wild-type cells (WT), ∆odc mutants supplemented with 100 µM putrescine, ∆spdsyn
mutants supplemented with 100 µM spermidine, and ∆odc and ∆spdsyn mutants incubated in
polyamine-free media. The experiment was performed twice in biological triplicate (n = 6). Statistical
significance is represented as follows: * p ≤ 0.05, and **** p ≤ 0.0001.
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3.3. Putrescine Depletion Reduces Metabolism

To investigate if polyamine deprivation reduces metabolic activity, the conversion of
resazurin to the fluorescent compound resorufin via intracellular reductases was measured.
Measurements were taken on days 3 and 4, when parasites underwent robust logarithmic
growth (Figure 2A). No statistically significant differences were observed between wild-
type cells and supplemented mutants (Figure 4). However, the results show a significant
reduction in metabolism in the ∆odc mutants incubated in polyamine-free media compared
to those incubated in 100 µM putrescine (p = 0.0023 for day 3, p = 0.0019 for day 4) as
well as to wild-type and ∆spdsyn parasites (Figure 4). In contrast, no significant difference
in resazurin conversion was observed in ∆spdsyn mutants incubated in polyamine-free
media compared to those grown in 100 µM spermidine (Figure 4). In summary, resazurin
conversion showed that wild-type cells, supplemented ∆odc mutants, and ∆spdsyn mutants
(in both polyamine-free and -supplemented media) exhibited similar metabolic activity
on days 3 and 4, while the metabolism was significantly reduced in ∆odc mutants under
polyamine deprivation.
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Figure 4. Metabolic activity of wild-type and mutant cell lines. Fluorescence units per cell, reflecting
the conversion of resazurin to resorufin as a measure of metabolic activity, are shown. Fluorescence
was measured in wild-type parasites (WT), ∆odc mutants incubated in either 100 µM putrescine-
supplemented or polyamine-free media, and ∆spdsyn mutants incubated in either 100 µM spermidine-
supplemented or polyamine-free media. The experiment was performed three times in technical
triplicate (n = 9). Statistical significance is represented as follows: ns (not significant) and ** p ≤ 0.01.

3.4. Polyamine Depletion Affects Mitochondrial Membrane Potential

To assess whether the mitochondrial potential is compromised in polyamine-starved
mutant cell lines, we employed JC-1, a commonly used dye for evaluating mitochondrial
membrane potentials. JC-1 selectively accumulates and aggregates in mitochondria, shifting
its emission color from green to red as the membrane potential increases. A higher red-
to-green fluorescence ratio (590:530) indicates a healthy or hyperpolarized mitochondrial
membrane potential, whereas a lower ratio signifies depolarization.

We validated our method using CCCP, a known mitochondrial uncoupler. As expected,
CCCP treatment caused a shift from red to green fluorescence, resulting in ~60% lower
aggregate-to-monomer ratio in wild-type cells (Figure 5). Throughout the experiment, the
aggregate-to-monomer ratios of the ∆odc and ∆spdsyn mutants in media supplemented
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with putrescine or spermidine, respectively, remained similar to that of wild-type parasites,
with minor but insignificant variability observed (Figure 5).

Pathogens 2025, 14, x FOR PEER REVIEW 12 of 25

Figure 5. Mitochondrial membrane potential in wild-type and mutant parasites as monitored by JC-

1 aggregate-to-monomer ratios. Wild-type parasites (WT), ∆odc mutants cultured in either 100 μM 

putrescine-supplemented or polyamine-free media, and ∆spdsyn mutants cultured in either 100 μM 

spermidine-supplemented or polyamine-free media were analyzed after 3, 4, and 8 days. The 

590:530 fluorescence ratio was calculated for each data point as the aggregate-to-monomer ratio. 

The wild-type aggregate-to-monomer ratio was set to 1 as a baseline, allowing for the ratios of other 

cell lines and conditions to be normalized relative to this reference. The experiment was performed 

four times (n = 4). Statistical significance is represented as follows: ns (not significant), *p ≤ 0.05, **p 

≤ 0.01, ***p ≤ 0.001, and ****p ≤ 0.0001.

3.5. Putrescine Depletion Triggers DNA Fragmentation

Because mitochondrial dysfunction can be a sign of apoptosis, we investigated if 

DNA fragmentation, a hallmark of apoptosis, occurred in the polyamine-starved cell lines. 

A TUNEL assay was used to detect free hydroxyl ends produced during DNA degrada-

tion by endonucleases.

Wild-type cells showed no DNA degradation on day 4 or 7, but exhibited DNA degra-
dation on day 10 when they experienced general nutrient deprivation (Figure 6). Some 

degradation was also observed by day 10 in the supplemented ∆odc mutants but surpris-

ingly minimal DNA degradation was seen in the supplemented ∆spdsyn parasites. Nota-
bly, on day 10, the percentage of DNA degradation in wild-type parasites was signifi-

cantly higher compared to that of supplemented ∆spdsyn mutants (p = 0.003).

DNA fragmentation was markedly increased in ∆odc mutants incubated in polyam-

ine-free media throughout the entire incubation period (Figure 6). In comparison to ∆odc 

mutants supplemented with polyamines, the difference was highly significant, with p < 

0.0001 observed on days 4, 7, and 10. In contrast, ∆spdsyn mutants exhibited only a slight 

statistically insignificant increase in DNA degradation compared to their counterparts in-

cubated in spermidine-supplemented media.

To summarize, ∆odc mutants incubated in polyamine-free media exhibited consist-

ently high levels of DNA fragmentation throughout the experiment, strikingly exceeding 

those observed in their supplemented counterparts. Remarkably, the ∆spdsyn mutants 

supplemented with spermidine demonstrated minimal DNA fragmentation, even at day 

Figure 5. Mitochondrial membrane potential in wild-type and mutant parasites as monitored by JC-1
aggregate-to-monomer ratios. Wild-type parasites (WT), ∆odc mutants cultured in either 100 µM
putrescine-supplemented or polyamine-free media, and ∆spdsyn mutants cultured in either 100 µM
spermidine-supplemented or polyamine-free media were analyzed after 3, 4, and 8 days. The
590:530 fluorescence ratio was calculated for each data point as the aggregate-to-monomer ratio. The
wild-type aggregate-to-monomer ratio was set to 1 as a baseline, allowing for the ratios of other
cell lines and conditions to be normalized relative to this reference. The experiment was performed
four times (n = 4). Statistical significance is represented as follows: ns (not significant), * p ≤ 0.05,
** p ≤ 0.01, *** p ≤ 0.001, and **** p ≤ 0.0001.

In contrast, the ∆odc parasites incubated in polyamine-free media showed an increased
aggregate-to-monomer ratio compared to those supplemented with putrescine (Figure 5).
Although the ratios were similar between the two groups on day 3, a significant difference
appeared on day 4 (p = 0.0038) and became even more pronounced by day 8 (p ≤ 0.0001).
A comparable increase in aggregate-to-monomer ratio was observed in ∆spdsyn mutants
in polyamine-free media relative to those in spermidine-supplemented media across all
sample days (p = 0.0020 on day 3, p = 0.0138 on day 4, and p = 0.0008 on day 8). The
observed elevated aggregate-to-monomer ratio in polyamine-starved ∆odc and ∆spdsyn
mutants indicates hyperpolarized mitochondrial membranes.

Overall, these results suggest that both mutant cell lines exhibited altered mitochon-
drial membrane potential in polyamine-free conditions compared to wild-type and supple-
mented mutants.

3.5. Putrescine Depletion Triggers DNA Fragmentation

Because mitochondrial dysfunction can be a sign of apoptosis, we investigated if DNA
fragmentation, a hallmark of apoptosis, occurred in the polyamine-starved cell lines. A
TUNEL assay was used to detect free hydroxyl ends produced during DNA degradation
by endonucleases.

Wild-type cells showed no DNA degradation on day 4 or 7, but exhibited DNA degra-
dation on day 10 when they experienced general nutrient deprivation (Figure 6). Some
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degradation was also observed by day 10 in the supplemented ∆odc mutants but surpris-
ingly minimal DNA degradation was seen in the supplemented ∆spdsyn parasites. Notably,
on day 10, the percentage of DNA degradation in wild-type parasites was significantly
higher compared to that of supplemented ∆spdsyn mutants (p = 0.003).
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Figure 6. Percentage of cells with DNA fragmentation assessed by flow cytometry and TUNEL
analysis. Wild-type parasites (WT), ∆odc mutants cultured in either 100 µM putrescine-supplemented
or polyamine-free media, and ∆spdsyn mutants cultured in either 100 µM spermidine-supplemented
or polyamine-free media were analyzed. Each cell line was analyzed after 4, 7, and 10 days. The
experiment was performed four times (n = 4). Statistical significance is represented as follows: ns
(not significant) and **** p ≤ 0.0001.

DNA fragmentation was markedly increased in ∆odc mutants incubated in polyamine-
free media throughout the entire incubation period (Figure 6). In comparison to ∆odc mu-
tants supplemented with polyamines, the difference was highly significant, with p < 0.0001
observed on days 4, 7, and 10. In contrast, ∆spdsyn mutants exhibited only a slight statisti-
cally insignificant increase in DNA degradation compared to their counterparts incubated
in spermidine-supplemented media.

To summarize, ∆odc mutants incubated in polyamine-free media exhibited consis-
tently high levels of DNA fragmentation throughout the experiment, strikingly exceeding
those observed in their supplemented counterparts. Remarkably, the ∆spdsyn mutants
supplemented with spermidine demonstrated minimal DNA fragmentation, even at day
10—a time point by which substantial DNA degradation was evident across all other cell
lines and conditions.

3.6. Polyamine Deprivation Causes Membrane Modifications

We used Annexin V and PI staining in flow cytometry to differentiate live, apop-
totic, necrotic, and late apoptotic/necrotic cells based on membrane integrity and phos-
phatidylserine (PS) exposure. Wild-type cells, ∆odc mutants (with or without putrescine
supplementation), and ∆spdsyn mutants (with or without spermidine supplementation)
were incubated for 14 days, with samples analyzed on day 3 or 4, day 7, and day 14.
On day 3 or 4, less than 2% of cells were Annexin V-positive and PI-negative, indicating
minimal apoptosis (Figure 7, Table 1). By day 7, the percentage of apoptotic cells remained
low (below 3%) in wild-type cells, putrescine-supplemented ∆odc mutants, and ∆spdsyn
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mutants, regardless of spermidine supplementation. In contrast, ∆odc mutants grown in
polyamine-free media showed a significantly (p = 0.0064) higher rate of apoptosis at 6.62%,
compared to 1.19% in putrescine-supplemented ∆odc mutants. This difference was even
more profound by day 14 (p < 0.0001), with ∆odc mutants grown in polyamine-free media
exhibiting 33.43% apoptotic cells, compared to a low percentage of 0.29% in supplemented
∆odc mutants. A more modest but statistically significant (p = 0.0278) increase in apoptosis
was observed in ∆spdsyn mutants incubated in polyamine-free media, 6.52%, compared to
those with spermidine supplementation, where apoptosis remained at 0.58%.
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Day 3–4

WT 0.25 ± 0.09 96.78 ± 1.85 1.56 ± 0.62 1.43 ± 1.31

Δodc + put. 0.4 ± 0.16 97.48 ± 0.49 1.26 ± 0.64 0.9 ± 0.28

Δodc 1.82 ± 1.87 88.28 ± 9.81 6.73 ± 7.61 3.19 ± 2.39

Δspdsyn + spd. 0.26 ± 0.14 97.8 ± 0.64 1 ± 0.21 0.96 ± 0.59

Δspdsyn 0.47 ± 0.23 96.13 ± 0.34 2.03 ± 0.73 1.38 ± 0.91

Day 7

WT 1.52 ± 1.08 77.1 ± 12.09 16.21 ± 10.54 5.19 ± 1.7

Δodc + put. 1.19 ± 0.63 68.73 ± 16.09 19.34 ± 9.03 10.79 ± 7.84

Δodc 6.62 ± 3.82 74.6 ± 6.03 13.13 ± 3.05 5.69 ± 1.84

Δspdsyn + spd. 1.55 ± 1.28 68.13 ± 15.75 24.7 ± 12.79 5.67 ± 3.94

Δspdsyn 2.64 ± 1.32 82.23 ± 8.03 9.88 ± 7.82 5.27 ± 2.39

Day 14

WT 0.26 ± 0.17 0.19 ± 0.23 87.23 ± 7.64 12.33 ± 7.57

Δodc + put. 0.29 ± 0.2 4.39 ± 6.09 78.53 ± 13.96 16.75 ± 9.29

Δodc 33.43 ± 3.42 15.68 ± 5.97 37.1 ± 11.8 13.75 ± 6.78

Δspdsyn + spd. 0.58 ± 0.7 9.93 ± 13.91 79.3 ± 12.42 10.19 ± 2.51

Figure 7. Percent of apoptotic cells as assessed by Annexin V and propidium iodide (PI) staining. The
percentage of parasites that stained positive for Annexin V (indicating early apoptosis) and negative
for PI (indicating membrane integrity) is shown. Wild-type parasites (WT), ∆odc mutants in either
100 µM putrescine-supplemented or polyamine-free media, and ∆spdsyn mutants in either 100 µM
spermidine-supplemented or polyamine-free media were analyzed. Samples were collected on days
3 or 4, 7, and 14 of the experiment. The experiment was performed four times (n = 4). Statistical
significance is represented as follows: ns (not significant), * p ≤ 0.05, and **** p ≤ 0.0001.

Analysis of Annexin V-negative PI-negative cells, indicating live parasites, revealed a
notably high percentage of live cells, 72.73%, in ∆spdsyn mutants incubated in polyamine-
free media at day 14 (Table 1). In contrast, wild-type cells and ∆spdsyn and ∆odc mutants
grown with polyamine supplementation showed less than 10% in live cells, with ∆odc
mutants incubated in polyamine-free media displaying 15.68% in PI-negative cells.

Collectively, flow cytometry analysis using Annexin V and PI staining showed that
∆odc mutants incubated in polyamine-free media had significantly higher levels of apopto-
sis over time compared to mutants with polyamine supplementation. In addition, ∆spdsyn
mutants in polyamine-free media displayed a much higher percentage of live cells at day 14
than wild-type cells and supplemented mutants.



Pathogens 2025, 14, 137 14 of 23

Table 1. Percentage of parent cell population in each gated quadrant of Annexin V/propidium iodide
(PI) double staining.

Day Cell Line Apoptotic
(AnnexinV+/PI−)

Live
(AnnexinV−/PI−)

Late
Apoptosis/Necrotic
(AnnexinV+/PI+)

Necrotic
(AnnexinV−/PI+)

Day 3–4

WT 0.25 ± 0.09 96.78 ± 1.85 1.56 ± 0.62 1.43 ± 1.31
∆odc + put. 0.4 ± 0.16 97.48 ± 0.49 1.26 ± 0.64 0.9 ± 0.28

∆odc 1.82 ± 1.87 88.28 ± 9.81 6.73 ± 7.61 3.19 ± 2.39
∆spdsyn + spd. 0.26 ± 0.14 97.8 ± 0.64 1 ± 0.21 0.96 ± 0.59

∆spdsyn 0.47 ± 0.23 96.13 ± 0.34 2.03 ± 0.73 1.38 ± 0.91

Day 7

WT 1.52 ± 1.08 77.1 ± 12.09 16.21 ± 10.54 5.19 ± 1.7
∆odc + put. 1.19 ± 0.63 68.73 ± 16.09 19.34 ± 9.03 10.79 ± 7.84

∆odc 6.62 ± 3.82 74.6 ± 6.03 13.13 ± 3.05 5.69 ± 1.84
∆spdsyn + spd. 1.55 ± 1.28 68.13 ± 15.75 24.7 ± 12.79 5.67 ± 3.94

∆spdsyn 2.64 ± 1.32 82.23 ± 8.03 9.88 ± 7.82 5.27 ± 2.39

Day 14

WT 0.26 ± 0.17 0.19 ± 0.23 87.23 ± 7.64 12.33 ± 7.57
∆odc + put. 0.29 ± 0.2 4.39 ± 6.09 78.53 ± 13.96 16.75 ± 9.29

∆odc 33.43 ± 3.42 15.68 ± 5.97 37.1 ± 11.8 13.75 ± 6.78
∆spdsyn + spd. 0.58 ± 0.7 9.93 ± 13.91 79.3 ± 12.42 10.19 ± 2.51

∆spdsyn 6.52 ± 2.18 72.73 ± 20.88 13.34 ± 13.06 7.45 ± 5.83

Values are presented with standard deviation (n = 4). Bolded are the highest percentages within each cell line and
condition on every sample day.

4. Discussion
Although recent studies have underscored the critical nature of polyamines in Leishma-

nia parasites [28,36,44,74–76], their specific functions remain largely unexplored. Putrescine
has emerged as a critical metabolite that has essential functions beyond its role as precursor
for spermidine formation [71,77]. L. donovani polyamine pathway mutants provide valuable
tools to investigate the roles of putrescine, since, under polyamine-free conditions, residual
spermidine levels remain comparably low in both lines, while putrescine depletes rapidly
in ∆odc mutants and accumulates in ∆spdsyn mutants [71].

Our findings suggest that putrescine depletion has a direct impact on growth, replica-
tion, metabolism, and type of cell death. The depletion of putrescine in the ∆odc mutants
incubated in polyamine-free media led to an immediate cessation of proliferation and DNA
replication upon polyamine withdrawal, while ∆spdsyn mutants grown in polyamine-free
media presented a less severe growth and replication impairment (Figures 2 and 3). No-
tably, ∆odc mutants exhibited a substantial metabolic decline, unlike the ∆spdsyn mutants
(Figure 4), suggesting a more critical role for putrescine in cellular metabolism. Although
both mutants showed a hyperpolarization of the mitochondrial membrane potential in
polyamine-free media (Figure 5), only the ∆odc cells exhibited a significant increase in the
apoptosis-like indicators, DNA fragmentation and Annexin V staining (Figures 6 and 7).

Cell growth data over 11 days (Figure 2A) insinuate that the elevated polyamine
levels present in the supplemented ∆odc and ∆spdsyn mutants (Figure 8) [71] may provide
protection and bolster cell survival during stress conditions. Our results show that in
the second week of incubation, the supplemented ∆odc and ∆spdsyn mutants had slightly
higher cell numbers compared to wild-type parasites, suggesting greater resilience under
nutrient-depleted conditions. This trend was further supported by the absence of PI staining
(Table 1), which indicated that, by day 14, only 0.19% of wild-type cells remained viable,
whereas 4.39% and 9.93% of the supplemented ∆odc and ∆spdsyn mutants, respectively,
were still alive. However, adding polyamines (either 500 µM putrescine, 500 µM spermidine,
or both) to the media did not increase the cell numbers of wild-type parasites (Figure 2C).
This might indicate that wild-type parasites, which can synthesize adequate polyamines for
their growth and survival, do not readily import additional polyamines. While Leishmania
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parasites possess polyamine transporters [78–81], and the polyamine pathway mutants
rely on these transport systems for survival (Figure 2) [43–46,71], little is known about the
regulation of polyamine transport. An alternative explanation for the enhanced resilience
in the supplemented mutants could be other cellular or metabolic adaptations that occurred
due to gene deletion events.
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Figure 8. Model of cellular impairments due to putrescine depletion over time. Putrescine depletion
in ∆odc mutants led to profound cellular health impairments. DNA replication and cell proliferation
ceased immediately upon polyamine withdrawal. By day 3, mitochondrial dysfunction was evident,
marked by a decrease in reductive capacity and mitochondrial membrane hyperpolarization. DNA
fragmentation was observed on day 4, and membrane modifications began on day 7 and progressively
worsened, ultimately leading to an apoptosis-like cell death. Created in BioRender. Johnston, J. (2024)
https://BioRender.com/q18x404 (accessed on 17 December 2024).

Previous studies have shown that ∆spdsyn parasites can enter a quiescent-like state
and survive for up to six weeks in polyamine-free media [71]. Our findings support these
observations, as we found that a substantial proportion of ∆spdsyn parasites remained
viable even after prolonged incubation in polyamine-free media, as indicated by lack of
PI staining (Table 1). Specifically, after 14 days, 72.73% of the cells were alive, a much
higher percentage than observed in wild-type parasites, spermidine-supplemented ∆spdsyn
mutants, or in ∆odc parasites, regardless of putrescine supplementation.

The persistence or quiescence of Leishmania and related parasites has gained attention
due to its links to treatment failure, relapse, and chronic disease [20–23,82–84]. Understand-
ing quiescence mechanisms could lead to better treatment paradigms and reduced relapse
rates. Both supplemented ∆odc and ∆spdsyn mutants and ∆spdsyn mutants incubated in
polyamine-free media exhibited persistence-like traits, characterized by stable cell numbers
(Figure 2) and/or higher percentages of viable cells (Table 1). These traits were associated
with significantly elevated putrescine levels, but variable spermidine pools [71]. Specifically,
supplemented ∆odc mutants show roughly twice the putrescine levels of wild-type cells,
but similar spermidine levels. In contrast, supplemented ∆spdsyn mutants have about three
times as much putrescine and twice as much spermidine as wild-type parasites. Meanwhile,
∆spdsyn parasites incubated in polyamine-free media display reduced spermidine levels,
but their putrescine content is five times higher than that of wild-type parasites. Taken
together, these findings suggest that elevated putrescine levels may play a role in promoting
parasite persistence. In contrast, the ∆odc mutants in polyamine-free media, which do not
persist in culture, exhibit undetectable levels of putrescine.

https://BioRender.com/q18x404
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The ability of mutant parasites to proliferate in polyamine-free media (Figure 2)
closely aligned with their replication profile (Figure 3). The ∆odc mutants were unable to
synthesize DNA and showed no cell growth, while the ∆spdsyn mutants exhibited limited
DNA replication and low levels of proliferation. These findings suggest that putrescine is
important for DNA synthesis. Because DNA replication is required for cell division, this
impairment alone could account for the growth deficit observed in the putrescine-depleted
∆odc mutants (Figure 2).

To evaluate metabolic activity in the mutant cell lines, we used resazurin assays,
which measure the reduction in resazurin to the fluorescent compound resorufin by cellular
dehydrogenases in the presence of NADH or NADPH [85,86]. This reaction serves as an
indirect indicator of mitochondrial health, as the majority of NADH is typically produced
in mitochondria through energy-generating pathways such as the TCA cycle and oxidative
phosphorylation [87,88]. The ∆odc parasites cultured in polyamine-free media exhibited
significantly reduced metabolic activity compared to wild-type parasites and supplemented
∆odc mutants (Figure 4). In contrast, ∆spdsyn parasites showed metabolic activity compa-
rable to wild-type parasites, regardless of polyamine supplementation (Figure 4). These
findings suggest that reduced spermidine levels in ∆spdsyn mutants do not compromise
cellular and mitochondrial metabolisms. However, maintaining intracellular levels of
putrescine appears to be important for metabolic activity, overall cell health, and potentially
mitochondrial function.

A critical role of putrescine in mitochondrial function and integrity in Leishmania para-
sites has previously been reported. The ODC inhibitor 1, 4-diamino-2-butanone reduces
intracellular polyamine levels and causes structural and functional mitochondrial damage
in both Leishmania and the related parasite Trypanosoma cruzi [58,89]. Notably, trypanoso-
matid parasites, like Leishmania, are especially vulnerable to mitochondrial dysfunction
because they have only a single mitochondrion per cell, making this organelle critical for
parasite survival and a potential target for therapeutic intervention [90,91].

To further investigate whether putrescine depletion in ∆odc mutants impacts mito-
chondrial function, we assessed mitochondrial membrane potential using JC-1, a cationic
membrane-permeable dye commonly employed for this purpose [92–95]. Both mutant
cell lines exhibited an altered mitochondrial membrane potential under polyamine-free
conditions compared to wild-type and supplemented mutants, with a higher aggregate-
to-monomer ratio indicative of hyperpolarization (Figure 5). While mitochondrial depo-
larization is often linked to dysfunction, as it disrupts ion gradients and ATP production,
hyperpolarization can also signal stress and contribute to cell death. A recent publication
reported that hypericin, whose main mechanism of action is the inhibition of SPDSYN,
induces mitochondrial membrane hyperpolarization and cell death in L. donovani [76]. Mi-
tochondrial hyperpolarization, induced by the inhibition of F0-F1 ATP synthase or complex
I, has been shown to cause increased reactive oxygen species production and programmed
cell death in Leishmania parasites [96–98].

Reduced metabolic activity was observed exclusively in putrescine-depleted ∆odc
mutants, but not in ∆spdsyn mutants, when both were incubated in polyamine-free media
(Figure 4). In contrast, mitochondrial hyperpolarization was observed in both mutant
cell lines under these conditions (Figure 5). This observation suggests that mitochondrial
hyperpolarization is likely driven by the low spermidine levels shared by both mutants.
Spermidine may play an important role in sustaining mitochondrial membrane poten-
tial through electron transport chain activity, while putrescine appears to be critical for
maintaining cellular reducing power, potentially through its influence on NAD(P)H levels
and/or NAD(P)H dehydrogenase activity.
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In mammalian cells, spermidine has been shown to directly enhance mitochondrial
health by improving mitochondrial respiration, membrane potential, and ATP produc-
tion [99–102]. Additionally, spermidine-mediated hypusination of eIF5A plays a crucial role
in maintaining mitochondrial function, as lower levels of hypusinated eIF5A are associated
with reduced oxygen consumption and ATP generation [103–105]. While it is unknown
to what extent these mechanisms occur in Leishmania parasites, the low spermidine levels
in the mutant cell lines likely lead to reduced eIF5A hypusination, which may in turn
contribute to the impairment of mitochondrial health and respiration in a similar manner
to mammalian cells.

Because mitochondrial dysfunction can lead to an apoptosis-like phenotype [98,106–108],
we examined other hallmarks of apoptosis. DNA fragmentation and membrane modifications,
driven by endonuclease-mediated cleavage of chromosomal DNA and the externalization
of phospholipids such as phosphatidylserine, are central features of apoptosis, and both of
these mechanisms have been previously described in Leishmania parasites [109–112]. While
phosphatidylserine itself has been reported to be absent in Leishmania parasites, similar
phospholipids appear to perform an analogous role, as Annexin V staining—used to de-
tect phosphatidylserine externalization—has been observed in numerous studies of these
organisms [110–113].

DNA fragmentation was detected within the first week of incubating ∆odc mutants in
polyamine-free media (Figure 6), followed by membrane modifications observed during the
second week of putrescine starvation (Figure 7). These findings suggest that putrescine de-
pletion induced an apoptosis-like death phenotype. While both ∆odc and ∆spdsyn mutants
incubated in polyamine-free media underwent mitochondrial hyperpolarization (Figure 5),
the apoptosis phenotype was only observed in the ∆odc mutants, perhaps indicating that
the elevated putrescine levels in the ∆spdsyn mutants protected the cells from undergoing
programmed cell death. Similarly, supplemented ∆spdsyn mutants demonstrated signifi-
cantly lower levels of DNA fragmentation after 10 days of incubation compared to other
cell lines and conditions (Figure 6). This protective effect may have been due to the elevated
intracellular polyamine levels.

The concept of programmed cell death in single-cell protozoan parasites like Leishmania
remains intriguing and controversial, given that a single-celled organism may not seem
to require such a process [109,110,112,114]. Current hypotheses include the idea that
apoptosis may benefit the population as a whole by avoiding hyperparasitism or the
immune response in the host [109,110,114–116]. Although Leishmania lacks classic apoptotic
proteins, and signaling pathways have not been identified, the parasite shows evidence of
apoptosis-like characteristics, including mitochondrial dysfunction, DNA fragmentation,
membrane modifications, cell shrinkage, and rounding [109–112,114]. This insinuates
that apoptosis in Leishmania and other protozoan parasites may represent a rudimentary
or primitive evolutionary precursor to the more complex forms of cell death observed
in multicellular organisms [109,116,117]. Nonetheless, further research into Leishmania
apoptosis holds promise for uncovering novel targets for drug development and therapeutic
intervention [109,110]. The ∆odc cell line, in particular, may serve as a valuable tool for
exploring the molecular mechanisms underlying programmed cell death. Notably, most
prior studies have focused on apoptosis induced by drugs, whereas gene deletion mutants
like ∆odc, which exhibit intrinsic apoptotic features, could provide a more precise and
controlled model for understanding these processes.

The limitations of the studies presented here include uncertainty about whether the
observed effects are directly linked to putrescine depletion or occur as a result of cellular
stress induced by putrescine starvation. Additionally, there was some inherent variability
across cell lines and conditions, particularly in the DNA fragmentation and membrane
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modification assays. This variability may result from polyamine-starved parasites forming a
heterogeneous population, with individual cells exhibiting distinct responses. Furthermore,
these studies were conducted in the promastigote stage, highlighting the need for future
research in the medically relevant amastigote stage.

5. Conclusions
Our findings, combined with previously published observations [71], provide a better

understanding of the functions of putrescine. A key insight is that putrescine depletion
triggers both early and late cellular changes (Figure 8). Early changes, observed within
the first two days of starvation, include growth arrest, cessation of DNA replication, and
morphological alterations, followed by reduced metabolism, mitochondrial dysfunction,
and DNA fragmentation. By the second week of starvation, membrane modifications,
another hallmark of an apoptosis-like cell death, emerged. Notably, these effects are
specific to putrescine depletion and are not observed with general nutrient starvation.
Together, these findings highlight the essential roles of putrescine in DNA replication,
cellular proliferation, and metabolism. Moreover, they offer a plausible explanation for
the more pronounced effects of the ∆odc gene deletion on in vivo infectivity compared
to deletions in other polyamine pathway enzymes [44,45,77]. In conclusion, our studies
support the idea that the polyamine biosynthetic pathway in Leishmania is a promising
therapeutic target, with ODC standing out as a key target for therapeutic development.
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