Molecular Responses to the Zika Virus in Mosquitoes
Abstract
:1. Introduction
2. Vector Competence of Ae. aegypti and Ae. albopictus
3. Molecular Responses to ZIKV Infection
3.1. Antiviral Responses to ZIKV Infection
3.2. Gene Expression Changes during ZIKV Infection
3.3. Changes in miRNA and lincRNA Expression during ZIKV Infection
3.4. Microbiome Changes during ZIKV Infection
3.5. Additional ZIKV–Mosquito Interactions
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Lessler, J.; Chaisson, L.H.; Kucirka, L.M.; Bi, Q.; Grantz, K.; Salje, H.; Carcelen, A.C.; Ott, C.T.; Sheffield, J.S.; Ferguson, N.M.; et al. Assessing the global threat from Zika virus. Science 2016, 353, aaf8160. [Google Scholar] [CrossRef] [PubMed]
- Dick, G.W.; Kitchen, S.F.; Haddow, A.J. Zika virus. I. Isolations and serological specificity. Trans. R. Soc. Trop. Med. Hyg. 1952, 46, 509–520. [Google Scholar] [CrossRef]
- Kokernot, R.H.; Casaca, V.M.; Weinbren, M.P.; McIntosh, B.M. Survey for antibodies against arthropod-borne viruses in the sera of indigenous residents of Angola. Trans. R. Soc. Trop. Med. Hyg. 1965, 59, 563–570. [Google Scholar] [CrossRef]
- Macnamara, F.N. Zika virus: A report on three cases of human infection during an epidemic of jaundice in Nigeria. Trans. R. Soc. Trop. Med. Hyg. 1954, 48, 139–145. [Google Scholar] [CrossRef]
- Dick, G.W. Epidemiological notes on some viruses isolated in Uganda; Yellow fever, Rift Valley fever, Bwamba fever, West Nile, Mengo, Semliki forest, Bunyamwera, Ntaya, Uganda S and Zika viruses. Trans. R. Soc. Trop. Med. Hyg. 1953, 47, 13–48. [Google Scholar] [CrossRef]
- Smithburn, K.C. Neutralizing antibodies against arthropod-borne viruses in the sera of long-time residents of Malaya and Borneo. Am. J. Hyg. 1954, 59, 157–163. [Google Scholar] [PubMed]
- Smithburn, K.C.; Kerr, J.A.; Gatne, P.B. Neutralizing antibodies against certain viruses in the sera of residents of India. J. Immunol. 1954, 72, 248–257. [Google Scholar] [PubMed]
- Fagbami, A.H. Zika virus infections in Nigeria: Virological and seroepidemiological investigations in Oyo State. J. Hyg. (Lond.) 1979, 83, 213–219. [Google Scholar] [CrossRef] [PubMed]
- McCrae, A.W.; Kirya, B.G. Yellow fever and Zika virus epizootics and enzootics in Uganda. Trans. R. Soc. Trop. Med. Hyg. 1982, 76, 552–562. [Google Scholar] [CrossRef]
- Marchette, N.J.; Garcia, R.; Rudnick, A. Isolation of Zika virus from Aedes aegypti mosquitoes in Malaysia. Am. J. Trop. Med. Hyg. 1969, 18, 411–415. [Google Scholar] [CrossRef] [PubMed]
- Olson, J.G.; Ksiazek, T.G.; Suhandiman; Triwibowo. Zika virus, a cause of fever in Central Java, Indonesia. Trans. R. Soc. Trop. Med. Hyg. 1981, 75, 389–393. [Google Scholar] [CrossRef]
- Duffy, M.R.; Chen, T.H.; Hancock, W.T.; Powers, A.M.; Kool, J.L.; Lanciotti, R.S.; Pretrick, M.; Marfel, M.; Holzbauer, S.; Dubray, C.; et al. Zika virus outbreak on Yap Island, Federated States of Micronesia. N. Engl. J. Med. 2009, 360, 2536–2543. [Google Scholar] [CrossRef] [PubMed]
- Lanciotti, R.S.; Kosoy, O.L.; Laven, J.J.; Velez, J.O.; Lambert, A.J.; Johnson, A.J.; Stanfield, S.M.; Duffy, M.R. Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg. Infect. Dis. 2008, 14, 1232–1239. [Google Scholar] [CrossRef] [PubMed]
- Kwong, J.C.; Druce, J.D.; Leder, K. Zika virus infection acquired during brief travel to Indonesia. Am. J. Trop. Med. Hyg. 2013, 89, 516–517. [Google Scholar] [CrossRef] [PubMed]
- Buathong, R.; Hermann, L.; Thaisomboonsuk, B.; Rutvisuttinunt, W.; Klungthong, C.; Chinnawirotpisan, P.; Manasatienkij, W.; Nisalak, A.; Fernandez, S.; Yoon, I.K.; et al. Detection of Zika Virus Infection in Thailand, 2012–2014. Am. J. Trop. Med. Hyg. 2015, 93, 380–383. [Google Scholar] [CrossRef] [PubMed]
- Musso, D.; Nilles, E.J.; Cao-Lormeau, V.M. Rapid spread of emerging Zika virus in the Pacific area. Clin. Microbiol. Infect. 2014, 20, O595–O596. [Google Scholar] [CrossRef] [PubMed]
- Hancock, W.T.; Marfel, M.; Bel, M. Zika virus, French Polynesia, South Pacific, 2013. Emerg. Infect. Dis. 2014, 20, 1960. [Google Scholar] [CrossRef] [PubMed]
- Cao-Lormeau, V.M.; Roche, C.; Teissier, A.; Robin, E.; Berry, A.L.; Mallet, H.P.; Sall, A.A.; Musso, D. Zika virus, French polynesia, South pacific, 2013. Emerg. Infect. Dis. 2014, 20, 1085–1086. [Google Scholar] [CrossRef] [PubMed]
- Campos, G.S.; Bandeira, A.C.; Sardi, S.I. Zika Virus Outbreak, Bahia, Brazil. Emerg. Infect. Dis. 2015, 21, 1885–1886. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Zika virus outbreaks in the Americas. Wkly. Epidemiol. Rec. 2015, 90, 609–610. [Google Scholar]
- Schuler-Faccini, L.; Ribeiro, E.M.; Feitosa, I.M.L.; Horovitz, D.D.G.; Cavalcanti, D.P.; Pessoa, A.; Doriqui, M.J.R.; Neri, J.I.; Neto, J.M.D.; Wanderley, H.Y.C.; et al. Possible Association between Zika Virus Infection and Microcephaly—Brazil, 2015. MMWR Morb. Mortal. Wkly. Rep. 2016, 65, 59–62. [Google Scholar] [CrossRef] [PubMed]
- WHO 2016. Available online: http://www.who.int/mediacentre/news/statements/2016/emergency-committee-zika-microcephaly/en/ (accessed on 20 February 2018).
- Cauchemez, S.; Besnard, M.; Bompard, P.; Dub, T.; Guillemette-Artur, P.; Eyrolle-Guignot, D.; Salje, H.; Van Kerkhove, M.D.; Abadie, V.; Garel, C.; et al. Association between Zika virus and microcephaly in French Polynesia, 2013-15: A retrospective study. Lancet 2016, 387, 2125–2132. [Google Scholar] [CrossRef]
- Fauci, A.S.; Morens, D.M. Zika Virus in the Americas—Yet Another Arbovirus Threat. N. Engl. J. Med. 2016, 374, 601–604. [Google Scholar] [CrossRef] [PubMed]
- Likos, A.; Griffin, I.; Bingham, A.M.; Stanek, D.; Fischer, M.; White, S.; Hamilton, J.; Eisenstein, L.; Atrubin, D.; Mulay, P.; et al. Local Mosquito-Borne Transmission of Zika Virus—Miami-Dade and Broward Counties, Florida, June-August 2016. MMWR Morb. Mortal. Wkly. Rep. 2016, 65, 1032–1038. [Google Scholar] [CrossRef] [PubMed]
- Haddow, A.D.; Schuh, A.J.; Yasuda, C.Y.; Kasper, M.R.; Heang, V.; Huy, R.; Guzman, H.; Tesh, R.B.; Weaver, S.C. Genetic characterization of Zika virus strains: Geographic expansion of the Asian lineage. PLoS Negl. Trop. Dis. 2012, 6, e1477. [Google Scholar] [CrossRef] [PubMed]
- Faria, N.R.; Azevedo, R.; Kraemer, M.U.G.; Souza, R.; Cunha, M.S.; Hill, S.C.; Theze, J.; Bonsall, M.B.; Bowden, T.A.; Rissanen, I.; et al. Zika virus in the Americas: Early epidemiological and genetic findings. Science 2016, 352, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Cugola, F.R.; Fernandes, I.R.; Russo, F.B.; Freitas, B.C.; Dias, J.L.; Guimaraes, K.P.; Benazzato, C.; Almeida, N.; Pignatari, G.C.; Romero, S.; et al. The Brazilian Zika virus strain causes birth defects in experimental models. Nature 2016, 534, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Musso, D.; Gubler, D.J. Zika Virus. Clin. Microbiol. Rev. 2016, 29, 487–524. [Google Scholar] [CrossRef] [PubMed]
- Epelboin, Y.; Talaga, S.; Epelboin, L.; Dusfour, I. Zika virus: An updated review of competent or naturally infected mosquitoes. PLoS Negl. Trop. Dis. 2017, 11, e0005933. [Google Scholar] [CrossRef] [PubMed]
- Calvez, E.; Guillaumot, L.; Millet, L.; Marie, J.; Bossin, H.; Rama, V.; Faamoe, A.; Kilama, S.; Teurlai, M.; Mathieu-Daude, F.; et al. Genetic Diversity and Phylogeny of Aedes aegypti, the Main Arbovirus Vector in the Pacific. PLoS Negl. Trop. Dis. 2016, 10, e0004374. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, M.U.; Sinka, M.E.; Duda, K.A.; Mylne, A.Q.; Shearer, F.M.; Barker, C.M.; Moore, C.G.; Carvalho, R.G.; Coelho, G.E.; Van Bortel, W.; et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife 2015, 4, e08347. [Google Scholar] [CrossRef] [PubMed]
- Ding, F.; Fu, J.; Jiang, D.; Hao, M.; Lin, G. Mapping the spatial distribution of Aedes aegypti and Aedes albopictus. Acta Trop. 2018, 178, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Bearcroft, W.G. Zika virus infection experimentally induced in a human volunteer. Trans. R. Soc. Trop. Med. Hyg. 1956, 50, 442–448. [Google Scholar] [CrossRef]
- Grard, G.; Caron, M.; Mombo, I.M.; Nkoghe, D.; Mboui Ondo, S.; Jiolle, D.; Fontenille, D.; Paupy, C.; Leroy, E.M. Zika virus in Gabon (Central Africa)—2007: A new threat from Aedes albopictus? PLoS Negl. Trop. Dis. 2014, 8, e2681. [Google Scholar] [CrossRef] [PubMed]
- Mulyatno, K.C.; Kotaki, T.; Yotopranoto, S.; Rohmah, E.A.; Churotin, S.; Sucipto, T.H.; Amarullah, I.H.; Wardhani, P.; Soegijanto, S.; Kameoka, M. Detection and Serotyping of Dengue Viruses in Aedes aegypti and Aedes albopictus (Diptera: Culicidae) Collected in Surabaya, Indonesia from 2008 to 2015. Jpn. J. Infect. Dis. 2018, 71, 58–61. [Google Scholar] [CrossRef] [PubMed]
- Effler, P.V.; Pang, L.; Kitsutani, P.; Vorndam, V.; Nakata, M.; Ayers, T.; Elm, J.; Tom, T.; Reiter, P.; Rigau-Perez, J.G.; et al. Dengue fever, Hawaii, 2001–2002. Emerg. Infect. Dis. 2005, 11, 742–749. [Google Scholar] [CrossRef] [PubMed]
- Vorou, R. Zika virus, vectors, reservoirs, amplifying hosts, and their potential to spread worldwide: What we know and what we should investigate urgently. Int. J. Infect. Dis. 2016, 48, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Lourenco-de-Oliveira, R.; Marques, J.T.; Sreenu, V.B.; Atyame Nten, C.; Aguiar, E.; Varjak, M.; Kohl, A.; Failloux, A.B. Culex quinquefasciatus mosquitoes do not support replication of Zika virus. J. Gen. Virol. 2018, 99, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Van den Hurk, A.F.; Hall-Mendelin, S.; Jansen, C.C.; Higgs, S. Zika virus and Culex quinquefasciatus mosquitoes: A tenuous link. Lancet Infect. Dis 2017, 17, 1014–1016. [Google Scholar] [CrossRef]
- Fernandes, R.S.; Campos, S.S.; Ribeiro, P.S.; Raphael, L.M.; Bonaldo, M.C.; Lourenco-de-Oliveira, R. Culex quinquefasciatus from areas with the highest incidence of microcephaly associated with Zika virus infections in the Northeast Region of Brazil are refractory to the virus. Mem. Inst. Oswaldo Cruz 2017, 112, 577–579. [Google Scholar] [CrossRef] [PubMed]
- Guedes, D.R.; Paiva, M.H.; Donato, M.M.; Barbosa, P.P.; Krokovsky, L.; Rocha, S.; Saraiva, K.; Crespo, M.M.; Rezende, T.M.; Wallau, G.L.; et al. Zika virus replication in the mosquito Culex quinquefasciatus in Brazil. Emerg. Microbes Infect. 2017, 6, e69. [Google Scholar] [CrossRef] [PubMed]
- Franz, A.W.; Kantor, A.M.; Passarelli, A.L.; Clem, R.J. Tissue Barriers to Arbovirus Infection in Mosquitoes. Viruses 2015, 7, 3741–3767. [Google Scholar] [PubMed]
- Uraki, R.; Hastings, A.K.; Gloria-Soria, A.; Powell, J.R.; Fikrig, E. Altered vector competence in an experimental mosquito-mouse transmission model of Zika infection. PLoS Negl. Trop. Dis. 2018, 12, e0006350. [Google Scholar] [CrossRef] [PubMed]
- Gloria-Soria, A.; Ayala, D.; Bheecarry, A.; Calderon-Arguedas, O.; Chadee, D.D.; Chiappero, M.; Coetzee, M.; Elahee, K.B.; Fernandez-Salas, I.; Kamal, H.A.; et al. Global genetic diversity of Aedes aegypti. Mol. Ecol. 2016, 25, 5377–5395. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, T.L.; Rasic, G.; Zhang, D.; Zheng, X.; Xi, Z.; Hoffmann, A.A. Genome-wide SNPs reveal the drivers of gene flow in an urban population of the Asian Tiger Mosquito, Aedes albopictus. PLoS Negl. Trop. Dis. 2017, 11, e0006009. [Google Scholar] [CrossRef] [PubMed]
- Sherpa, S.; Rioux, D.; Pougnet-Lagarde, C.; Despres, L. Genetic diversity and distribution differ between long-established and recently introduced populations in the invasive mosquito Aedes albopictus. Infect. Genet. Evol. 2018, 58, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Kotsakiozi, P.; Richardson, J.B.; Pichler, V.; Favia, G.; Martins, A.J.; Urbanelli, S.; Armbruster, P.A.; Caccone, A. Population genomics of the Asian tiger mosquito, Aedes albopictus: Insights into the recent worldwide invasion. Ecol. Evol. 2017, 7, 10143–10157. [Google Scholar] [PubMed]
- Sim, S.; Jupatanakul, N.; Ramirez, J.L.; Kang, S.; Romero-Vivas, C.M.; Mohammed, H.; Dimopoulos, G. Transcriptomic profiling of diverse Aedes aegypti strains reveals increased basal-level immune activation in dengue virus-refractory populations and identifies novel virus-vector molecular interactions. PLoS Negl. Trop. Dis. 2013, 7, e2295. [Google Scholar] [CrossRef] [PubMed]
- Li, M.I.; Wong, P.S.; Ng, L.C.; Tan, C.H. Oral susceptibility of Singapore Aedes (Stegomyia) aegypti (Linnaeus) to Zika virus. PLoS Negl. Trop. Dis. 2012, 6, e1792. [Google Scholar] [CrossRef] [PubMed]
- Wong, P.S.; Li, M.Z.; Chong, C.S.; Ng, L.C.; Tan, C.H. Aedes (Stegomyia) albopictus (Skuse): A potential vector of Zika virus in Singapore. PLoS Negl. Trop. Dis. 2013, 7, e2348. [Google Scholar] [CrossRef] [PubMed]
- Diagne, C.T.; Diallo, D.; Faye, O.; Ba, Y.; Faye, O.; Gaye, A.; Dia, I.; Faye, O.; Weaver, S.C.; Sall, A.A.; et al. Potential of selected Senegalese Aedes spp. mosquitoes (Diptera: Culicidae) to transmit Zika virus. BMC Infect. Dis. 2015, 15, 492. [Google Scholar] [CrossRef] [PubMed]
- Chouin-Carneiro, T.; Vega-Rua, A.; Vazeille, M.; Yebakima, A.; Girod, R.; Goindin, D.; Dupont-Rouzeyrol, M.; Lourenco-de-Oliveira, R.; Failloux, A.B. Differential Susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika Virus. PLoS Negl. Trop. Dis. 2016, 10, e0004543. [Google Scholar] [CrossRef] [PubMed]
- Di Luca, M.; Severini, F.; Toma, L.; Boccolini, D.; Romi, R.; Remoli, M.E.; Sabbatucci, M.; Rizzo, C.; Venturi, G.; Rezza, G.; et al. Experimental studies of susceptibility of Italian Aedes albopictus to Zika virus. Euro Surveill. 2016, 21. [Google Scholar] [CrossRef] [PubMed]
- Hall-Mendelin, S.; Pyke, A.T.; Moore, P.R.; Mackay, I.M.; McMahon, J.L.; Ritchie, S.A.; Taylor, C.T.; Moore, F.A.J.; van den Hurk, A.F. Assessment of Local Mosquito Species Incriminates Aedes aegypti as the Potential Vector of Zika Virus in Australia. PLoS Negl. Trop. Dis. 2016, 10, e0004959. [Google Scholar] [CrossRef] [PubMed]
- Weger-Lucarelli, J.; Ruckert, C.; Chotiwan, N.; Nguyen, C.; Garcia Luna, S.M.; Fauver, J.R.; Foy, B.D.; Perera, R.; Black, W.C.; Kading, R.C.; et al. Vector Competence of American Mosquitoes for Three Strains of Zika Virus. PLoS Negl. Trop. Dis. 2016, 10, e0005101. [Google Scholar]
- Richard, V.; Paoaafaite, T.; Cao-Lormeau, V.M. Vector Competence of French Polynesian Aedes aegypti and Aedes polynesiensis for Zika Virus. PLoS Negl. Trop. Dis. 2016, 10, e0005024. [Google Scholar] [CrossRef] [PubMed]
- Anglero-Rodriguez, Y.I.; MacLeod, H.J.; Kang, S.; Carlson, J.S.; Jupatanakul, N.; Dimopoulos, G. Aedes aegypti Molecular Responses to Zika Virus: Modulation of Infection by the Toll and Jak/Stat Immune Pathways and Virus Host Factors. Front. Microbiol. 2017, 8, 2050. [Google Scholar] [CrossRef] [PubMed]
- Azar, S.R.; Roundy, C.M.; Rossi, S.L.; Huang, J.H.; Leal, G.; Yun, R.; Fernandez-Salas, I.; Vitek, C.J.; Paploski, I.A.D.; Stark, P.M.; et al. Differential Vector Competency of Aedes albopictus Populations from the Americas for Zika Virus. Am. J. Trop. Med. Hyg. 2017, 97, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Ciota, A.T.; Bialosuknia, S.M.; Zink, S.D.; Brecher, M.; Ehrbar, D.J.; Morrissette, M.N.; Kramer, L.D. Effects of Zika Virus Strain and Aedes Mosquito Species on Vector Competence. Emerg. Infect. Dis. 2017, 23, 1110–1117. [Google Scholar] [CrossRef] [PubMed]
- Costa-da-Silva, A.L.; Ioshino, R.S.; Araujo, H.R.; Kojin, B.B.; Zanotto, P.M.; Oliveira, D.B.; Melo, S.R.; Durigon, E.L.; Capurro, M.L. Laboratory strains of Aedes aegypti are competent to Brazilian Zika virus. PLoS ONE 2017, 12, e0171951. [Google Scholar]
- Duchemin, J.B.; Mee, P.T.; Lynch, S.E.; Vedururu, R.; Trinidad, L.; Paradkar, P. Zika vector transmission risk in temperate Australia: A vector competence study. Virol. J. 2017, 14, 108. [Google Scholar] [PubMed]
- Goertz, G.P.; Vogels, C.B.F.; Geertsema, C.; Koenraadt, C.J.M.; Pijlman, G.P. Mosquito co-infection with Zika and chikungunya virus allows simultaneous transmission without affecting vector competence of Aedes aegypti. PLoS Negl. Trop. Dis. 2017, 11, e0005654. [Google Scholar] [CrossRef] [PubMed]
- Heitmann, A.; Jansen, S.; Luhken, R.; Leggewie, M.; Badusche, M.; Pluskota, B.; Becker, N.; Vapalahti, O.; Schmidt-Chanasit, J.; Tannich, E. Experimental transmission of Zika virus by mosquitoes from central Europe. Euro Surveill. 2017, 22, 30437. [Google Scholar] [CrossRef]
- Huang, Y.S.; Lyons, A.C.; Hsu, W.W.; Park, S.L.; Higgs, S.; Vanlandingham, D.L. Differential outcomes of Zika virus infection in Aedes aegypti orally challenged with infectious blood meals and infectious protein meals. PLoS ONE 2017, 12, e0182386. [Google Scholar] [CrossRef] [PubMed]
- Li, C.X.; Guo, X.X.; Deng, Y.Q.; Xing, D.; Sun, A.J.; Liu, Q.M.; Wu, Q.; Dong, Y.D.; Zhang, Y.M.; Zhang, H.D.; et al. Vector competence and transovarial transmission of two Aedes aegypti strains to Zika virus. Emerg. Microbes Infect. 2017, 6, e23. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.Z.; Zhou, T.F.; Lai, Z.T.; Zhang, Z.H.; Jia, Z.R.; Zhou, G.F.; Williams, T.; Xu, J.B.; Gu, J.B.; Zhou, X.H.; et al. Competence of Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus Mosquitoes as Zika Virus Vectors, China. Emerg. Infect. Dis. 2017, 23, 1085–1091. [Google Scholar] [CrossRef] [PubMed]
- Pompon, J.; Morales-Vargas, R.; Manuel, M.; Tan, C.H.; Vial, T.; Tan, J.H.; Sessions, O.M.; Vasconcelos, P.D.; Ng, L.C.; Misse, D. A Zika virus from America is more efficiently transmitted than an Asian virus by Aedes aegypti mosquitoes from Asia. Sci. Rep. 2017, 7, 1215. [Google Scholar] [PubMed]
- Roundy, C.M.; Azar, S.R.; Rossi, S.L.; Huang, J.H.; Leal, G.; Yun, R.; Fernandez-Salas, I.; Vitek, C.J.; Paploski, I.A.; Kitron, U.; et al. Variation in Aedes aegypti Mosquito Competence for Zika Virus Transmission. Emerg. Infect. Dis. 2017, 23, 625–632. [Google Scholar] [PubMed]
- Ryckebusch, F.; Berthet, M.; Misse, D.; Choumet, V. Infection of a French Population of Aedes albopictus and of Aedes aegypti (Paea Strain) with Zika Virus Reveals Low Transmission Rates to These Vectors’ Saliva. Int. J. Mol. Sci. 2017, 18, 2384. [Google Scholar] [CrossRef] [PubMed]
- Vazeille, M.; Dehecq, J.S.; Failloux, A.B. Vectorial status of the Asian tiger mosquito Aedes albopictus of La Reunion Island for Zika virus. Med. Vet. Entomol. 2017. [Google Scholar] [CrossRef]
- Willard, K.A.; Demakovsky, L.; Tesla, B.; Goodfellow, F.T.; Stice, S.L.; Murdock, C.C.; Brindley, M.A. Zika Virus Exhibits Lineage-Specific Phenotypes in Cell Culture, in Aedes aegypti Mosquitoes, and in an Embryo Model. Viruses 2017, 9, 383. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Alto, B.W.; Smartt, C.T.; Shin, D. Transcription Profiling for Defensins of Aedes aegypti (Diptera: Culicidae) During Development and in Response to Infection With Chikungunya and Zika Viruses. J. Med. Entomol. 2018, 55, 78–89. [Google Scholar] [PubMed]
- Dodson, B.L.; Pujhari, S.; Rasgon, J.L. Vector competence of selected North American Anopheles and Culex mosquitoes for Zika virus. PeerJ 2018, 6, e4324. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.H.; Goncalves, R.L.; Lara, F.A.; Dias, F.A.; Gandara, A.C.; Menna-Barreto, R.F.; Edwards, M.C.; Laurindo, F.R.; Silva-Neto, M.A.; Sorgine, M.H.; et al. Blood meal-derived heme decreases ROS levels in the midgut of Aedes aegypti and allows proliferation of intestinal microbiota. PLoS Pathog. 2011, 7, e1001320. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.H.M.; Talyuli, O.A.C.; Goncalves, R.L.S.; Paiva-Silva, G.O.; Sorgine, M.H.F.; Alvarenga, P.H.; Oliveira, P.L. Catalase protects Aedes aegypti from oxidative stress and increases midgut infection prevalence of Dengue but not Zika. PLoS Negl. Trop. Dis. 2017, 11, e0005525. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H.; Chang, M.M.; Wang, X.L.; Zheng, A.H.; Zou, Z. The immune strategies of mosquito Aedes aegypti against microbial infection. Dev. Comp. Immunol. 2017, 83, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Souza-Neto, J.A.; Sim, S.; Dimopoulos, G. An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense. Proc. Natl. Acad. Sci. USA 2009, 106, 17841–17846. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, J.L.; Dimopoulos, G. The Toll immune signaling pathway control conserved anti-dengue defenses across diverse Ae. aegypti strains and against multiple dengue virus serotypes. Dev. Comp. Immunol. 2010, 34, 625–629. [Google Scholar] [CrossRef] [PubMed]
- Etebari, K.; Hegde, S.; Saldana, M.A.; Widen, S.G.; Wood, T.G.; Asgari, S.; Hughes, G.L. Global Transcriptome Analysis of Aedes aegypti Mosquitoes in Response to Zika Virus Infection. mSphere 2017, 2, e00456-17. [Google Scholar] [CrossRef] [PubMed]
- Jupatanakul, N.; Sim, S.; Anglero-Rodriguez, Y.I.; Souza-Neto, J.; Das, S.; Poti, K.E.; Rossi, S.L.; Bergren, N.; Vasilakis, N.; Dimopoulos, G. Engineered Aedes aegypti JAK/STAT Pathway-Mediated Immunity to Dengue Virus. PLoS Negl. Trop. Dis. 2017, 11, e0005187. [Google Scholar] [CrossRef] [PubMed]
- Barletta, A.B.; Nascimento-Silva, M.C.; Talyuli, O.A.; Oliveira, J.H.; Pereira, L.O.; Oliveira, P.L.; Sorgine, M.H. Microbiota activates IMD pathway and limits Sindbis infection in Aedes aegypti. Parasites Vectors 2017, 10, 103. [Google Scholar] [CrossRef] [PubMed]
- Saldana, M.A.; Etebari, K.; Hart, C.E.; Widen, S.G.; Wood, T.G.; Thangamani, S.; Asgari, S.; Hughes, G.L. Zika virus alters the microRNA expression profile and elicits an RNAi response in Aedes aegypti mosquitoes. PLoS Negl. Trop. Dis. 2017, 11, e0005760. [Google Scholar] [CrossRef] [PubMed]
- Blair, C.D.; Olson, K.E. The role of RNA interference (RNAi) in arbovirus-vector interactions. Viruses 2015, 7, 820–843. [Google Scholar] [CrossRef] [PubMed]
- Varjak, M.; Donald, C.L.; Mottram, T.J.; Sreenu, V.B.; Merits, A.; Maringer, K.; Schnettler, E.; Kohl, A. Characterization of the Zika virus induced small RNA response in Aedes aegypti cells. PLoS Negl. Trop. Dis. 2017, 11, e0006010. [Google Scholar]
- Vodovar, N.; Bronkhorst, A.W.; van Cleef, K.W.; Miesen, P.; Blanc, H.; van Rij, R.P.; Saleh, M.C. Arbovirus-derived piRNAs exhibit a ping-pong signature in mosquito cells. PLoS ONE 2012, 7, e30861. [Google Scholar] [CrossRef] [PubMed]
- Bonizzoni, M.; Dunn, W.A.; Campbell, C.L.; Olson, K.E.; Marinotti, O.; James, A.A. Complex modulation of the Aedes aegypti transcriptome in response to dengue virus infection. PLoS ONE 2012, 7, e50512. [Google Scholar] [CrossRef] [PubMed]
- Londono-Renteria, B.; Troupin, A.; Conway, M.J.; Vesely, D.; Ledizet, M.; Roundy, C.M.; Cloherty, E.; Jameson, S.; Vanlandingham, D.; Higgs, S.; et al. Dengue Virus Infection of Aedes aegypti Requires a Putative Cysteine Rich Venom Protein. PLoS Pathog. 2015, 11, e1005202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colpitts, T.M.; Cox, J.; Vanlandingham, D.L.; Feitosa, F.M.; Cheng, G.; Kurscheid, S.; Wang, P.; Krishnan, M.N.; Higgs, S.; Fikrig, E. Alterations in the Aedes aegypti transcriptome during infection with West Nile, dengue and yellow fever viruses. PLoS Pathog. 2011, 7, e1002189. [Google Scholar] [CrossRef] [PubMed]
- Asgari, S. Role of microRNAs in arbovirus/vector interactions. Viruses 2014, 6, 3514–3534. [Google Scholar] [PubMed]
- Liu, Y.X.; Zhou, Y.H.; Wu, J.Y.; Zheng, P.M.; Li, Y.J.; Zheng, X.Y.; Puthiyakunnon, S.; Tu, Z.J.; Chen, X.G. The expression profile of Aedes albopictus miRNAs is altered by dengue virus serotype-2 infection. Cell Biosci. 2015, 5, 16. [Google Scholar] [CrossRef] [PubMed]
- Ransohoff, J.D.; Wei, Y.; Khavari, P.A. The functions and unique features of long intergenic non-coding RNA. Nat. Rev. Mol. Cell Biol. 2018, 19, 143–157. [Google Scholar] [CrossRef] [PubMed]
- Etebari, K.; Asad, S.; Zhang, G.M.; Asgari, S. Identification of Aedes aegypti Long Intergenic Non-coding RNAs and Their Association with Wolbachia and Dengue Virus Infection. PLoS Negl. Trop. Dis. 2016, 10, e0005069. [Google Scholar] [CrossRef] [PubMed]
- Minard, G.; Mavingui, P.; Moro, C.V. Diversity and function of bacterial microbiota in the mosquito holobiont. Parasites Vectors 2013, 6, 146. [Google Scholar] [CrossRef] [PubMed]
- Gaio Ade, O.; Gusmao, D.S.; Santos, A.V.; Berbert-Molina, M.A.; Pimenta, P.F.; Lemos, F.J. Contribution of midgut bacteria to blood digestion and egg production in aedes aegypti (Diptera: Culicidae) (L.). Parasites Vectors 2011, 4, 105. [Google Scholar] [CrossRef] [PubMed]
- Coon, K.L.; Brown, M.R.; Strand, M.R. Gut bacteria differentially affect egg production in the anautogenous mosquito Aedes aegypti and facultatively autogenous mosquito Aedes atropalpus (Diptera: Culicidae). Parasites Vectors 2016, 9, 375. [Google Scholar] [CrossRef] [PubMed]
- Jupatanakul, N.; Sim, S.; Dimopoulos, G. The insect microbiome modulates vector competence for arboviruses. Viruses 2014, 6, 4294–4313. [Google Scholar] [CrossRef] [PubMed]
- Hegde, S.; Rasgon, J.L.; Hughes, G.L. The microbiome modulates arbovirus transmission in mosquitoes. Curr. Opin. Virol. 2015, 15, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Saldana, M.A.; Hegde, S.; Hughes, G.L. Microbial control of arthropod-borne disease. Mem. Inst. Oswaldo Cruz 2017, 112, 81–93. [Google Scholar] [CrossRef] [PubMed]
- Guegan, M.; Zouache, K.; Demichel, C.; Minard, G.; Van, V.T.; Potier, P.; Mavingui, P.; Moro, C.V. The mosquito holobiont: Fresh insight into mosquito-microbiota interactions. Microbiome 2018, 6. [Google Scholar] [CrossRef] [PubMed]
- Villegas, L.E.M.; Campolina, T.B.; Barnabe, N.R.; Orfano, A.S.; Chaves, B.A.; Norris, D.E.; Pimenta, P.F.P.; Secundino, N.F.C. Zika virus infection modulates the bacterial diversity associated with Aedes aegypti as revealed by metagenomic analysis. PLoS ONE 2018, 13, e0190352. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, J.; Du, S.; Shan, C.; Nie, K.; Zhang, R.; Li, X.F.; Zhang, R.; Wang, T.; Qin, C.F.; et al. Evolutionary enhancement of Zika virus infectivity in Aedes aegypti mosquitoes. Nature 2017, 545, 482–486. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, Y.; Nie, K.; Du, S.; Qiu, J.; Pang, X.; Wang, P.; Cheng, G. Flavivirus NS1 protein in infected host sera enhances viral acquisition by mosquitoes. Nat. Microbiol. 2016, 1, 16087. [Google Scholar] [CrossRef] [PubMed]
- Tsetsarkin, K.A.; Vanlandingham, D.L.; McGee, C.E.; Higgs, S. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog. 2007, 3, e201. [Google Scholar] [CrossRef] [PubMed]
- Hoornweg, T.E.; van Duijl-Richter, M.K.S.; Ayala Nunez, N.V.; Albulescu, I.C.; van Hemert, M.J.; Smit, J.M. Dynamics of Chikungunya Virus Cell Entry Unraveled by Single-Virus Tracking in Living Cells. J. Virol. 2016, 90, 4745–4756. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Guo, X.; Shen, C.; Hao, X.; Sun, P.; Li, P.; Xu, T.; Hu, C.; Rose, O.; Zhou, H.; et al. Salivary factor LTRIN from Aedes aegypti facilitates the transmission of Zika virus by interfering with the lymphotoxin-beta receptor. Nat. Immunol. 2018, 19, 342–353. [Google Scholar] [PubMed]
- Spahn, T.W.; Eugster, H.P.; Fontana, A.; Domschke, W.; Kucharzik, T. Role of lymphotoxin in experimental models of infectious diseases: Potential benefits and risks of a therapeutic inhibition of the lymphotoxin-beta receptor pathway. Infect. Immun. 2005, 73, 7077–7088. [Google Scholar] [CrossRef] [PubMed]
Study | Species | Mosquito Strain (Generation Used) | ZIKV Strain (genBank Accession No.) | Vector Competence Parameters Assessed (Tissue(s); Time Points Examined) |
---|---|---|---|---|
Li et al. (2012) [50] | AE | Western Singapore (F1) | MR766 (AY632535) | Infection Rate; Potential Transmission Rate (midguts, salivary glands; 1–7, 10, 14 dpi) |
Wong et al. (2013) [51] | AL | Western Singapore (F3) | MR766 (AY632535) | Infection Rate; Dissemination Rate; Potential Transmission Rate (midguts, salivary glands, saliva; 1–7, 10, 14 dpi) |
Diagne et al. (2015) [52] | AE | Dakar, Senegal (F1) Kédougou, Senegal (F1) | ArD 128000 ArD 132912 ArD 157995 ArD 165522 HD 78788 MR766 (AY632535) | Infection Rate; Dissemination Rate; Potential Transmission Rate (bodies, legs/wings, saliva; 5, 10, 15 dpi) |
Chouin-Carneiro et al. (2016) [53] | AE | Cayenne, French Guiana (F1) Baie-Mahault, Guadeloupe (F2) Pointe Chaudière, Martinique (F1) Orlando, USA (>F10) Rio de Janeiro, Brazil (F1) | NC-2014-5132 | Infection Rate; Dissemination Rate; Potential Transmission Rate (abdomens, thoraxes, heads; 4 and 7 dpi) * * Rio de Janeiro strain at 4, 7, 14 dpi |
AL | Vero Beach, USA (F7) Rio de Janeiro, Brazil (F1) | NC-2014-5132 | Infection Rate; Dissemination Rate; Potential Transmission Rate (abdomens, thoraxes, heads; 4 and 7 dpi) * * Vero Beach strain at 4, 7, 14 dpi | |
Di Luca et al. (2016) [54] | AL | Scalea, Italy | H/PF/2013 | Infection Rate; Dissemination Rate; Potential Transmission Rate (bodies, legs/wings; 3, 4, 7, 11, 14, 18, 21 dpi and saliva; 4, 7, 11, 14, 18, 21 dpi) |
AE | Reynosa, Mexico | H/PF/2013 | Infection Rate; Dissemination Rate; Potential Transmission Rate (bodies, legs/wings; 3, 4, 7, 11, 14, 18, 21 dpi and saliva; 4, 7, 11, 14, 18, 21 dpi) | |
Hall-Mendelin et al. (2016) [55] | AE | Townsville, Australia (F4) | MR766 (AY632535) | Infection Rate; Dissemination Rate; Potential Transmission Rate (bodies, legs/wings, saliva; 5, 7, 10, 14 dpi) |
Weger-Lucarelli et al. (2016) [56] | AE | Poza Rica, Mexico (F11–F13) | PRVABC59 (KU501215) MR766 (AY632535) 41525 (KU955591) | Infection Rate; Dissemination Rate; Potential Transmission Rate (legs/wings, bodies, saliva; 7 and 14 dpi) |
Richard et al. (2016) [57] | AE | Tahiti, French Polynesia (F16–F18) | PF13/251013-18 (KY766069) | Infection Rate; Dissemination Rate; Potential Transmission Rate (bodies, legs, saliva; 2, 6, 9, 14 and 21 dpi) |
Angleró-Rodríguez et al. (2017) [58] | Rockefeller Orlando, USA | FSS13025 (KU955593) | Infection Rate; Dissemination Rate; Potential Transmission Rate (midguts, abdomens; 4, 7, 10, 14 dpi) and salivary glands (10, 14, 21 dpi) | |
Azar et al. (2017) [59] | AL | Rio Grande Valley, USA (F5) | FSS130125 (KU955593) MEX 1-7 (KX247632) DakAR 41525 (KU955591) | Infection Rate; Dissemination Rate; Potential Transmission Rate (legs, bodies, saliva; 3, 7, 14 dpi) |
Azar et al. (2017) [59] | AL | Houston, USA (F2) | PB 81 (KU365780) MEX 1-7 (KX247632) PRVABC 59 (KX377337) | Infection Rate; Dissemination Rate; Potential Transmission Rate (legs, bodies, saliva; 3, 7, 21 dpi) |
Azar et al. (2017) [59] | AL | Salvador, Brazil (F3) | PB 81 (KU365780) MEX 1-7 (KX247632) | Infection Rate; Dissemination Rate; Potential Transmission Rate (legs, bodies, saliva; 3, 7, 21 dpi) |
Ciota et al. (2017) [60] | AL | Yaphank, USA (F5–F7) | HND 2016–19563 (KX906952) CAM strain FSS130325 (JN860885) | Infection Rate; Dissemination Rate; Potential Transmission Rate (legs, bodies, saliva; 14 and 21 dpi) |
AE | Poza Rica, Mexico (F7, F8) | HND 2016–19563 (KX906952) CAM strain FSS130325 (JN860885) | Infection Rate; Dissemination Rate; Potential Transmission Rate (legs, bodies, saliva; 14 and 21 dpi) | |
Costa-da-Silva et al. (2017) [61] | AE | Rockefeller Higgs white-eye RED | ZIKVBR | Infection Rate; Dissemination Rate; Detection Rate (bodies, heads, saliva; 7 and 14 dpi) |
Duchemin et al. (2017) [62] | AE | Cairns, Australia (F6, F7, F11) | Cambodia 2010 (KU955593) | Infection Rate; Dissemination Rate; Potential Transmission Rate (midguts, heads, anterior thoraxes, carcasses, saliva; 14 dpi) |
AL | Hammond Island, Australia (F4, F9) | Cambodia 2010 (KU955593) | Infection Rate; Dissemination Rate; Potential Transmission Rate (midgut, heads, anterior thorax, carcass, saliva; 14 dpi) | |
Fernandes et al. (2017) [41] | AE | Rio de Janeiro (>F10) | ZIKVPE243 | Infection Rate; Dissemination Rate; Potential Transmission Rate (bodies, heads, saliva; 7 and 14 dpi) |
Fernandes et al. (2017) [41] | AE | Rio de Janeiro (>F10) | ZIKVSPH | Infection Rate; Dissemination Rate; Potential Transmission Rate (bodies, heads, saliva; 14 dpi) |
Fernandes et al. (2017) [41] | AE | Rio de Janeiro (>F10) | ZIKVU1 | Infection Rate; Dissemination Rate; Potential Transmission Rate (bodies, heads, saliva; 7 dpi) |
Göertz et al. (2017) [63] | AE | Rockefeller | 011V-01621 (KU937936) | Infection Rate; Potential Transmission Rate (bodies, saliva; 14 dpi) |
Heitmann et al. (2017) [64] | AE | Heidelberg, Germany | ZIKV_FB-GWUH-2016 (KU870645) | Infection Rate; Potential Transmission Rate (bodies, saliva; 14 and 21 dpi) |
AL | Freiburg, Germany (F7) Calabria, Italy (F7) | ZIKV_FB-GWUH-2016 (KU870645) | Infection Rate; Potential Transmission Rate (bodies, saliva; 14 and 21 dpi) | |
Huang et al. (2017) [65] | AE | Higgs white-eye (>F20) | PRVABC59 (KX377337) | Infection Rate; Dissemination Rate (abdomens; secondary tissues; 7 and 14 dpi) |
Li et al. (2017) [66] | AE | Haikou, China Ruili City, China | SZ01 (KU866423) | Infection Rate; Dissemination Rate; Potential Transmission Rate (midguts, salivary glands, ovaries; 2, 4, 6, 8, 10, 12, 16, 20, 24 dpi) |
Liu et al. (2017) [67] | AL | Foshan, China Guangzhou, China | (KU820899.2) | Infection Rate; Dissemination Rate; Potential Transmission Rate (midguts, heads, salivary glands; 0, 4, 7, 14 dpi) |
AE | Haikou, China | (KU820899.2) | Infection Rate; Dissemination Rate; Potential Transmission Rate (midguts, heads, salivary glands; 0, 4, 7, 14 dpi) | |
Pompon et al. (2017) [68] | AE | Singapore | H/PF/2013 (KJ776791) BE H 815744 | Infection Rate; Potential Transmission Rate (whole bodies, saliva; 7 and 14 dpi) |
AL | Singapore | H/PF/2013 (KJ776791) BE H 815744 | Infection Rate; Potential Transmission Rate (whole bodies, saliva; 7 and 14 dpi) | |
Roundy et al. (2017) [69] | AE | Salvador, Brazil (F2) Rio Grande Valley, USA (F4) Dominican Republic (F6) | FSS 130125 (KU955593.1) DAK AR 41525 (KU955591.1) MEX 1–7 (KX247632.1) | Infection Rate; Dissemination Rate; Potential Transmission Rate (bodies, legs; 2 dpi and bodies, legs and saliva; 4, 7, 10, 14 dpi) |
Ryckebusch et al. (2017) [70] | AE | French Polynesia | PF-25013-18 | Infection Rate; Dissemination Rate; Potential Transmission Rate (midguts, salivary glands; 3, 5, 6, 8, 10, 14 dpi and saliva; 8, 10, 14, 17 dpi) |
AL | Nice, France | PF-25013-18 | Infection Rate; Dissemination Rate; Potential Transmission Rate (midguts, salivary glands, saliva; 3, 6, 8, 10, 14 dpi and saliva; 8, 10, 14 dpi) | |
Vazeille et al. (2017) [71] | AL | Réunion Island (F1) | NC-2014-5132 | Infection Rate; Dissemination Rate (bodies and heads; 3, 6, 9, 14 dpi) |
Willard et al. (2017) [72] | AE | Chiapas, Mexico (F2, F3) | MR766 (LC002520) IbH 30656 (KU963574) SPH (KU321639.1) Mex 1-44 (KX856011.1) | Infection Rate; Dissemination Rate; Potential Transmission Rate (bodies, heads, saliva; 14–15 dpi) |
Zhao et al. (2017) [73] | AE | Key West, USA (F9) Orlando, USA | PRVABC59 (KU501215.1) | Infection Rate; Dissemination Rate; Potential Transmission Rate (bodies, legs, saliva; 5, 7, 10 dpi) |
Dodson et al. (2018) [74] | AE | Rockefeller | PRVABC59 (KU501215) | Infection Rate; Dissemination Rate; Potential Transmission Rate (legs, bodies, saliva; 7 dpi) |
Uraki et al. (2018) [44] | AE | Orlando Ho Chi Minh Patilas | MEX2-81 (KX446950) | Infection Rate; Dissemination Rate (midguts and salivary glands; 7 and 10 dpi) |
Study | Aedes aegypti Strain | ZIKV Strain (genBank Accession No.) |
---|---|---|
Anglero-Rodriguez et al. (2017) [58] | Rockefeller | FSS13025 (KU955593) |
Etebari et al. (2017) [80] | Galveston | MEX 1-7 (KX247632) |
Jupatanakul et al. (2017) [81] | Rockefeller | FSS13025 (KU955593) |
Oliveira et al. (2017) [76] | Red Eye | Unknown |
Saldana et al. (2017) [83] | Galveston | MEX 1-7 (KX247632) |
Jin et al. (2018) [106] | Unknown | SZ01 (KU866423) |
Liu et al. (2018) [102] | Rockefeller | GZ01 (KU820898) FSS13025 (KU955593) FSS13025-A188V |
Villegas et al. (2018) [101] | PP-Campos | SPH (KU321639) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alfonso-Parra, C.; Avila, F.W. Molecular Responses to the Zika Virus in Mosquitoes. Pathogens 2018, 7, 49. https://doi.org/10.3390/pathogens7020049
Alfonso-Parra C, Avila FW. Molecular Responses to the Zika Virus in Mosquitoes. Pathogens. 2018; 7(2):49. https://doi.org/10.3390/pathogens7020049
Chicago/Turabian StyleAlfonso-Parra, Catalina, and Frank W. Avila. 2018. "Molecular Responses to the Zika Virus in Mosquitoes" Pathogens 7, no. 2: 49. https://doi.org/10.3390/pathogens7020049
APA StyleAlfonso-Parra, C., & Avila, F. W. (2018). Molecular Responses to the Zika Virus in Mosquitoes. Pathogens, 7(2), 49. https://doi.org/10.3390/pathogens7020049