Emergence and Spread of Extended Spectrum β-Lactamase Producing Enterobacteriaceae (ESBL-PE) in Pigs and Exposed Workers: A Multicentre Comparative Study between Cameroon and South Africa
Abstract
:1. Introduction
2. Results
2.1. Demographic Characteristics
2.2. ESBL-PE Status in Humans
2.3. Epidemiological Background of ESBL-PE in Pigs
2.4. Genotypic Relatedness
2.5. Risk Factors of Human ESBL-PE Carriage
3. Discussion
4. Methods
4.1. Study Design and Study Sites
4.2. Ethical Considerations
4.3. Sampling Procedures and Survey
4.3.1. Animal Sampling Procedure
4.3.2. Human Sampling Procedure
4.4. Bacteriological Analysis
4.5. ESBL Detection, Species Identification and Antimicrobial Susceptibility Testing
4.6. Genotypic Relatedness Determination of ESBL-Producing Escherichia coli
4.7. Data Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aidara-Kane, A.; Andremont, A.; Collignon, P. Antimicrobial resistance in the food chain and the AGISAR initiative. J. Infect. Public Health 2013, 6, 162–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reist, M.; Geser, N.; Hächler, H.; Schärrer, S.; Stephan, R. ESBL-producing Enterobacteriaceae: Occurrence, risk factors for fecal carriage and strain traits in the swiss slaughter cattle population younger than 2 years sampled at abattoir level. PLoS ONE 2013, 8, e71725. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Global Priority List of Antibiotic Resistant Bacteria to Guide Research, Discoveries and Development of New Antibiotics; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Founou, L.L.; Founou, R.C.; Essack, S.Y. Antibiotic resistance in the food chain: A developing country-perspective. Front. Microbiol. 2016, 7, 1881. [Google Scholar] [CrossRef] [PubMed]
- Ewers, C.; Bethe, A.; Semmler, T.; Guenther, S.; Wieler, L.H. Extended-spectrum β-lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: A global perspective. Clin. Microbiol. Infect. 2012, 18, 646–655. [Google Scholar] [CrossRef] [PubMed]
- Magoué, C.L.; Melin, P.; Gangoué-Piéboji, J.; Okomo Assoumou, M.C.; Boreux, R.; De Mol, P. Prevalence and spread of extended-spectrum β-lactamase-producing Enterobacteriaceae in Ngaoundere, Cameroon. Clin. Microbiol. Infect. 2013, 19, 416–420. [Google Scholar] [CrossRef] [PubMed]
- Dohmen, W.; Bonten, M.J.; Bos, M.E.; van Marm, S.; Scharringa, J.; Wagenaar, J.A.; Heederik, D.J. Carriage of extended-spectrum β-lactamases in pig farmers is associated with occurence in pigs. Clin. Microbiol. Infect. 2015, 21, 917–923. [Google Scholar] [CrossRef] [PubMed]
- Fischer, J.; Hille, K.; Mellmann, A.; Schaumburg, F.; Kreienbrock, L.; Köck, R. Low-level antimicrobial resistance of Enterobacteriaceae isolated from the nares of pig-exposed persons. Epidemiol. Infect. 2016, 144, 686–690. [Google Scholar] [CrossRef] [PubMed]
- Dohmen, W.; Schmitt, H.; Bonten, M.; Heederik, D. Air exposure as a possible route for ESBL in pig farmers. Environ. Res. 2017, 155, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization for the United Nations (FAO). Étude sur les Abattoirs D’animaux de Boucherie en Afrique Centrale (Cameroun–Congo–Gabon–Tchad); FAO: Rome, Italy, 2013. [Google Scholar]
- Le, H.V.; Kawahara, R.; Khong, D.T.; Tran, H.T.; Nguyen, T.N.; Pham, K.N.; Jinnai, M.; Kumeda, Y.; Nakayama, T.; Ueda, S.; et al. Widespread dissemination of extended-spectrum β-lactamase-producing, multidrug-resistant Escherichia coli in livestock and fishery products in vietnam. Int. J. Food Contam 2015, 2, 17. [Google Scholar] [CrossRef]
- Dahms, C.; Hübner, N.O.; Kossow, A.; Mellmann, A.; Dittmann, K.; Kramer, A. Occurrence of ESBL-producing Escherichia coli in livestock and farm workers in mecklenburg-Western Pomerania, Germany. PLoS ONE 2015, 10, e0143326. [Google Scholar] [CrossRef] [PubMed]
- Geser, N.; Stephan, R.; Hachler, H. Occurrence and characteristics of extended-spectrum β-lactamase (ESBL) producing Enterobacteriaceae in food producing animals, minced meat and raw milk. BMC Vet. Res. 2012, 8, 21. [Google Scholar] [CrossRef] [PubMed]
- Department of Agriculture, Forestry and Fisheries, South Africa (DAFF). Fertilizer, Farm Feeds, Agricultural Remedies and Stock Remedies Act, 1947; Publication of Farm Feeds (Animal Feeds) Policy for Public Comments. Act No. 36 of 1947 C.F.R.; Department of Agriculture, Forestry and Fisheries, South Africa (DAFF): Pretoria, South Africa, 1996. Available online: http://www.daff.gov.za/ (accessed on 21 August 2017).
- Ben-Ami, R.; Rodríguez-Baño, J.; Arslan, H.; Pitout, J.D.; Quentin, C.; Calbo, E.S.; Azap, Ö.K.; Arpin, C.; Pascual, A.; Livermore, D.M.; et al. A multinational survey of risk factors for infection with extended-spectrum β-lactamase-producing Enterobacteriaceae in non-hospitalized patients. Clin. Infect. Dis. 2009, 49, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Clinical Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing. In Proceedings of the Twenty-Sixth Informational Supplement; CLSI document M100-S26; Clinical Laboratory Standards Institute: Wayne, PA, USA, 2016; Available online: https://clsi.org/ (accessed on 13 March 2017).
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint Tables for Interpretation of MICs and zone Diameters Version 6.1. 2016. Available online: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_6.0_Breakpoint_Tables.pdf (accessed on 25 March 2017).
- Versalovic, J.; Koeuth, T.; Lupski, J.R. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 1991, 19, 6823–6831. [Google Scholar] [CrossRef] [PubMed]
Variables | Nasal Sample | Hand Sample | ||||
---|---|---|---|---|---|---|
Frequency n (%) | Prevalence ESBL-PE (%) | Overall p-Value | Frequency n (%) | Prevalence ESBL-PE (%) | Overall p-Value | |
Personal characteristics | ||||||
Country | ||||||
Cameroon | 53 (69) | 67.92 | 0.000 | 53 (64) | 79 | 0.000 |
South Africa | 24 (31) | 0 | 30 (36) | 0 | ||
Gender | ||||||
Female | 9 (12) | 44.44 | 0.883 | 12 (12) | 41.67 | 0.503 |
Male | 68 (88) | 47.06 | 71 (88) | 52.11 | ||
Age | ||||||
21–30 | 31 (40) | 41.94 | 0.084 | 32 (39) | 46.88 | 0.063 |
31–40 | 26 (34) | 50 | 28 (34) | 42.86 | ||
41–50 | 13 (17) | 38.46 | 14 (17) | 71.43 | ||
51–60 | 5 (6) | 100 | 6 (7) | 83.33 | ||
Above 60 | 2 (3) | 0 | 3 (3) | 0 | ||
Educational level | ||||||
Illiterate | 4 (5) | 50 | 0.048 | 5 (6) | 40 | 0.032 |
Primary school not achieved | 6 (8) | 50 | 7 (8) | 42.86 | ||
Primary school | 34 (44) | 64.71 | 35 (42) | 71.43 | ||
Secondary school | 27 (35) | 25.93 | 27 (33) | 37.04 | ||
High school/university | 6 (8) | 33.33 | 8 (10) | 25 | ||
Average monthly income (US $) | ||||||
Below 55 | 8 (10) | 62.50 | 0.007 | 8 (14) | 62.5 | 0.004 |
55–110 | 14 (19) | 78.57 | 14 (29) | 85.71 | ||
110–165 | 12 (16) | 66.67 | 12 (17) | 58.33 | ||
165–220 | 10 (13) | 40 | 10 (17) | 70 | ||
220–275 | 20 (27) | 20 | 24 (10) | 25 | ||
Above 275 | 11 (15) | 27.27 | 13 (12) | 30.77 | ||
Relative working at hospital or with animals | ||||||
Yes | 42 (55) | 64.29 | 0.001 | 44 (53) | 68.18 | 0.001 |
No | 35 (45) | 25.71 | 39 (47) | 30.77 | ||
Clinical factors | ||||||
Recent hospitalization (within one year of sampling) | ||||||
Yes | 21 (27) | 39.29 | 0.032 | 21 (25) | 71.43 | 0.027 |
No | 56 (73) | 66.67 | 62 (75) | 43.55 | ||
Nasal problem | ||||||
Yes | 11 (14) | 36.36 | 0.456 | 11 (13) | 45.45 | 0.714 |
No | 66 (86) | 48.48 | 72 (87) | 51.39 | ||
Skin problem | ||||||
Yes | 14 (18) | 28.57 | 0.132 | 14 (17) | 35.71 | 0.222 |
No | 63 (82) | 50.76 | 69 (83) | 53.62 | ||
Recent antibiotic use (month prior the sampling) | ||||||
Yes | 38 (49) | 55.26 | 0.140 | 38 (64) | 71.05 | 0.001 |
No | 39 (51) | 38.46 | 45 (36) | 33.33 | ||
Slaughterhouse-related factors | ||||||
Closeness of abattoir with house | ||||||
Yes | 32 (42) | 40.63 | 0.363 | 14 (33) | 17 | 0.184 |
No | 45 (58) | 51.11 | 28 (67) | 34 | ||
Abattoir | ||||||
SH001 | 21 (27) | 76.19 | 0.000 | 21 (25) | 85.71 | 0.000 |
SH002 | 19 (25) | 36.84 | 19 (23) | 63.16 | ||
SH003 | 13 (17) | 100 | 13 (16) | 92.31 | ||
SH004 | 4 (5) | 0 | 10 (12) | 0 | ||
SH005 | 20 (26) | 0 | 20 (24) | 0 | ||
Principal activity or working area | ||||||
Slaughterer | 34 (44) | 58.82 | 0.012 | 34 (41) | 58.82 | 0.000 |
Transport of pig/pork | 5 (7) | 80 | 5 (6) | 80 | ||
Wholesaler | 7 (9) | 28.57 | 7 (8) | 85.71 | ||
Butcher | 5 (7) | 80 | 5 (6) | 80 | ||
Retailer of viscera * | 7 (9) | 71.43 | 7 (8) | 85.71 | ||
Retailer of grilled pork # | 1 (1) | 0 | 1 (1) | 100 | ||
Scalding of pigs | 3 (4) | 0 | 3 (4) | 0 | ||
Evisceration | 8 (10) | 0 | 14 (17) | 0 | ||
Transport of viscera/blood | 1 (1) | 0 | 1 (1) | 0 | ||
Veterinarian | 5 (7) | 20 | 5 (6) | 20 | ||
Meat inspector | 1 (1) | 0 | 1 (1) | 0 | ||
Training to practice profession | ||||||
Yes | 28 (36) | 3.57 | 0.000 | 34 (41) | 2.94 | 0.000 |
No | 49 (64) | 71.43 | 49 (59) | 83.67 | ||
Year in profession | ||||||
[0–4] | 31 (43) | 35.48 | 0.356 | 31 (39) | 38.71 | 0.357 |
[5–9] | 6 (8) | 66.67 | 8 (10) | 50 | ||
[10–14] | 22 (30) | 50 | 24 (30) | 58.33 | ||
Above 15 | 14 (19) | 57.14 | 16 (20) | 62.50 | ||
Intensity of pig’s contact (rare, low, frequent, very frequent) | ||||||
Always | 35 (45) | 51.43 | 0.348 | 35 (42) | 57.14 | 0.136 |
Almost always | 32 (42) | 37.50 | 38 (46) | 39.47 | ||
Sometimes | 10 (13) | 60 | 10 (12) | 70 | ||
Contact with other animals during handling or various procedures of processing of animals at the abattoir | ||||||
Yes | 38 (50) | 60.53 | 0.046 | 39 (48) | 69.23 | 0.004 |
No | 38 (50) | 34.21 | 42 (52) | 35.71 | ||
Intensity of contact with other animals | ||||||
Always | 8 (21) | 87.50 | 0.025 | 8 (20) | 100 | 0.006 |
Almost always | 9 (24) | 22.22 | 10 (26) | 30 | ||
Sometimes | 17 (45) | 58.82 | 17 (44) | 70.59 | ||
Rarely | 4 (10) | 100 | 4 (10) | 100 |
Antibiotics | Cameroon | South Africa | ||||
---|---|---|---|---|---|---|
Pig | Human | Pig | ||||
MIC (µg/mL) Range | No. (%) Resistant Isolates | MIC (µg/mL) Range | No. (%) Resistant Isolates | MIC (µg/mL) Range | No. (%) Resistant Isolates | |
Ampicillin | ≥32 | 126 (95) | ≤2–≥32 | 32(73) | ≥32 | 38 (100) |
Amoxicillin-clavulanate | 4–≥32 | 54(40) | ≤2–≥32 | 8(18) | 8–16 | 2(5) |
Piperacillin-tazobactam | ≤4–≥128 | 24(18) | ≤4–64 | 2(5) | ≤4 | 0 |
Cefuroxime | 4–≥64 | 124(93) | ≤1–≥64 | 19(43) | ≥64 | 38 (100) |
Cefuroxime-axetil | 4–≥64 | 125(93) | ≤1–≥64 | 19(43) | ≥64 | 38 (100) |
Cefoxitin | ≤4–≥64 | 10(7) | ≤4–≥64 | 3(7) | ≤4 | 0 |
Cefotaxime | ≤1–≥64 | 118(88) | ≤1–≥64 | 14(32) | 4–≥64 | 38 (100) |
Ceftazidime | ≤1–≥64 | 93(69) | ≤1–≥64 | 8(18) | ≤1–4 | 1 (3) |
Cefepime | ≤0.5–≥64 | 6(4) | ≤1–≥64 | 2(5) | ≤1–4 | 1 (3) |
Meropenem | ≤0.25 | 0 | ≤0.25 | 0 | ≤0.25 | 0 |
Imipenem | ≤0.25 | 0 | ≤0.25 | 0 | ≤0.25 | 0 |
Ertapenem | ≤0.5 | 0 | ≤0.5 | 0 | ≤0.5 | 0 |
Amikacin | ≤2–16 | 11(8) | ≤2–16 | 1(2) | ≤2–16 | 1 (3) |
Gentamicin | ≤1–≥16 | 43(32) | ≤1–≥16 | 3(7) | ≤1–≥16 | 7(18) |
Ciprofloxacin | ≤0.25–≥4 | 33(25) | ≤0.25–≥4 | 2(5) | ≤0.25 | 0 |
Tigecycline | ≤0.5–2 | 0 | ≤0.5–1 | 0 | ≤0.5–1 | 0 |
Nitrofurantoin | ≤16–64 | 0 | ≤16–128 | 1(2) | ≤16–64 | 0 |
Colistin | ≤0.5 | 0 | ≤0.5–4 | 1(2) | ≤0.5–8 | 1(3) |
Trimethoprim-sulfamethoxazole | ≤20–≥320 | 119 (89) | ≤20–≥320 | 22(50) | ≤20–≥320 | 36(95) |
Bacteria | Resistance Profiles | Cameroon | |
---|---|---|---|
Nasal, n (%) | Hand, n (%) | ||
E. coli | AMP.AMC.TZP.CXM.CXM-A.CTX.CAZ.TMP/SXT | 1 (50) | 0 |
AMP.CXM.CXM-A.CAZ.CS | 0 | 1(8) | |
AMP.TMP/SXT.CXM.CXM-A.CTX | 0 | 4(31) | |
AMP.TMP/SXT.CXM.CXM-A.CTX.CAZ.AMC.GM.CIP.FEP | 0 | 1(8) | |
AMP.TMP/SXT.CXM.CXM-A.CTX.CAZ.AMC.TZP | 0 | 1(8) | |
AMP.TMP/SXT.CXM.CXM-A.CTX | 0 | 1(8) | |
AMP.CXM.CXM-A.CTX.FEP.TMP/SXT | 0 | 1(8) | |
E. dissolvens | AMP.AMC.CXM.CXM-A.FOX.CTX.TMP/SXT | 1 (50) | 0 |
S. sonnei | AMP.TMP/SXT.CXM.CXM-A.CTX.CAZ | 0 | 1(8) |
K. pneumoniae | AMP.AMC.CXM.CXM-A.CTX.TMP/SXT.GM.FT | 0 | 1(8) |
AMP.AMC.CXM.CXM-A.CTX.CAZ.AN.GM.CIP | 0 | 1(8) | |
AMP.TMP/SXT.CXM.CXM-A.CTX.CAZ | 0 | 1(8) | |
Grand Total | 2 (100) | 13 (100) |
Characteristics | Nasal Samples | Rectal Samples | ||||
---|---|---|---|---|---|---|
Frequency Pooled Samples, n (%) | Nasal ESBL, n (%) | Overall p-Value | Frequency Pooled Samples, n (%) | Rectal ESBL, n (%) | Overall p-Value | |
Country | ||||||
Cameroon | 72 (50) | 72 (100) | 0.000 | 72 (50) | 72 (100) | 0.000 |
South Africa | 72 (50) | 36 (50) | 72 (50) | 30 (41.67) | ||
Abattoir | ||||||
SH001 | 43 (30) | 43 (100) | 0.000 | 43 (30) | 43 (100) | 0.000 |
SH002 | 19 (13) | 19 (100) | 19 (13) | 19 (100) | ||
SH003 | 10 (7) | 10 (100) | 10 (7) | 10 (100) | ||
SH004 | 40 (28) | 19 (47.50) | 40 (28) | 9 (22.50) | ||
SH005 | 32 (22) | 17 (53.13) | 32 (22) | 21 (65.63) | ||
Gender | ||||||
Sow | 79 (55) | 64 (81.01) | 0.066 | 79 (55) | 59 (74.68) | 0.262 |
Boar | 65 (45) | 44 (67.69) | 65 (45) | 43 (66.15) | ||
Time point | ||||||
First | 42 (29) | 31 (73.81) | 0.149 | 42 (29) | 34 (80.95) | 0.050 |
Second | 54 (38) | 45 (83.33) | 54 (38) | 40 (74.07) | ||
Third | 48 (33) | 32 (66.67) | 48 (33) | 28 (58.33) |
Bacteria | Resistance Profiles | No. Antibiotics | No. Classes | Cameroon | South Africa | ||
---|---|---|---|---|---|---|---|
Nasal, n (%) | Rectal, n (%) | Nasal, n (%) | Rectal, n (%) | ||||
E. coli | AMP.TMP/SXT.CXM.CXM-A.CTX | 5 | 2 | 3 (5) | 2 (4) | 0 | 29(94) |
AMP.TMP/SXT.CXM.CXM-A.CTX.CAZ | 6 | 2 | 7 (12) | 11 (20) | 0 | 0 | |
AMP.TMP/SXT.CXM.CXM-A.CTX.CAZ.FEP | 7 | 2 | 2 (3) | 2 (4) | 0 | 0 | |
AMP.TMP/SXT.CXM.CXM-A.CTX.CAZ.GM.CIP | 8 | 4 | 1 (2) | 2 (4) | 0 | 0 | |
AMP.TMP/SXT.CXM.CXM-A.CTX.CAZ.CIP | 7 | 3 | 1 (2) | 0 | 0 | 0 | |
AMP.TMP/SXT.CXM.CXM-A.CTX.CAZ.AMC | 8 | 3 | 1 (2) | 3 (5) | 0 | 0 | |
AMP.TMP/SXT.CXM.CXM-A.CTX.CAZ.AMC.GM.CIP | 9 | 4 | 2 (3) | 3 (5) | 0 | 0 | |
AMP.TMP/SXT.CXM.CXM-A.CTX.CAZ.AMC.TZP | 8 | 2 | 5 (8) | 5 (9) | 0 | 0 | |
AMP.TMP/SXT.CXM.CXM-A.CTX.CAZ.AMC.TZP.FOX.FEP.GM.CIP | 12 | 4 | 1 (2) | 0 | 0 | 0 | |
AMP.CXM.CXM-A.CTX.CAZ | 5 | 1 | 0 | 2 (4) | 0 | 0 | |
AMP.TMP/SXT.CXM.CXM-A.CTX.CAZ.FEP.GM. | 8 | 3 | 0 | 1 (2) | 0 | 0 | |
AMP.TMP/SXT.CXM.CXM-A.CTX.CIP | 6 | 3 | 0 | 1 (2) | 0 | 0 | |
AMP.TMP/SXT.CXM.CXM-A.CTX.CAZ.CIP.AMC | 8 | 3 | 0 | 5 (9) | 0 | 0 | |
AMP.TMP/SXT.CXM.CXM-A.CTX.GM | 6 | 3 | 0 | 1 (2) | 0 | 0 | |
AMP.TMP/SXT.CXM.CXM-A.CTX.CAZ.CIP.AMC.TZP | 9 | 3 | 0 | 1 (2) | 0 | 0 | |
AMP.TMP/SXT.CXM.CXM-A.CTX.CAZ.CIP.GM.TZP.FEP | 10 | 4 | 0 | 1 (2) | 0 | 0 | |
AMP.CXM.CXM-A.CTX | 4 | 1 | 0 | 0 | 0 | 2 (6) | |
AMP.CXM.CXM-A.CTX.TMP/SXT.CAZ.FEP.AK.GM.CS | 10 | 4 | 0 | 0 | 1 (14) | 0 | |
AMP.CXM.CXM-A.CTX.TMP/SXT.GM | 6 | 3 | 0 | 0 | 1 (14) | 0 | |
AMP.CXM.CXM-A.CTX.TMP/SXT.GM.AMC | 7 | 3 | 0 | 0 | 5 (71) | 0 | |
AMP.TMP/SXT.CXM.CXM-A.CTX.CAZ.CIP.GM.AMC.TZP | 10 | 4 | 0 | 2 (4) | 0 | 0 | |
K. pneumoniae | AMP.TMP/SXT.CXM.CXM-A.CTX.GM | 6 | 3 | 2 (3) | 1 (2) | 0 | 0 |
AMP.TMP/SXT.CXM.CXM-A.CTX.CAZ.AK.GM.CIP.AMC | 10 | 4 | 0 | 6 (11) | 0 | 0 | |
AMP.TMP/SXT.CXM.CXM-A.CAZ.AMC.TZP | 7 | 2 | 0 | 1 (2) | 0 | 0 | |
AMP.TMP/SXT.CXM.CXM-A.CTX.CAZ.GM.AMC.TZP | 9 | 3 | 4 (7) | 2 (4) | 0 | 0 | |
AMP.TMP/SXT.CXM.CXM-A.CTX.CAZ.AMC.TZP.AK.GM.CIP | 11 | 4 | 0 | 3(5) | 0 | 0 | |
AMP.TMP/SXT.CXM.CXM-A.CTX | 5 | 2 | 1 (2) | 0 | 0 | 0 | |
AMP.TMP/SXT.CXM.CXM-A.CTX.CAZ | 6 | 2 | 4 (7) | 0 | 0 | 0 | |
AMP.TMP/SXT.CXM.CXM-A.CTX.CAZ.GM | 7 | 3 | 8 (14) | 0 | 0 | 0 | |
AMP.TMP/SXT.CXM.CXM-A.CTX.CAZ.GM.AMC.TZP | 9 | 3 | 4 (7) | 0 | 0 | 0 | |
K. ozaenae | AMP.TMP/SXT.CXM.CXM-A.CTX.CAZ.AK.GM.CIP.AMC | 10 | 4 | 1 (2) | 0 | 0 | 0 |
Enterobacter cloacae | AMP.AMC.CXM.CXM-A.FOX.CTX.TMP/SXT | 7 | 2 | 4 (7) | 0 | 0 | 0 |
C. freundii | AMP.AMC.CXM.CXM-A.FOX.CTX.TMP/SXT | 7 | 2 | 3 (5) | 0 | 0 | 0 |
S. sonnei | AMP.CTX.CAZ.TMP/SXT | 4 | 2 | 1 (2) | 0 | 0 | 0 |
AMP.TMP/SXT.CXM.CXM-A.CTX.CAZ | 6 | 2 | 4 (7) | 0 | 0 | 0 |
Variables | Univariate Logistic Regression Analysis | Multivariate Logistic Regression Analysis | ||||||
---|---|---|---|---|---|---|---|---|
Nasal ESBL-PE Carriage | Hand ESBL-PE Carriage | Nasal ESBL-PE Carriage | Hand ESBL-PE Carriage | |||||
OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | |
Abattoir | 0.43 (0.22–0.85) | 0.014 | 0.28 (0.15–0.55) | 0.000 | 2.54 (0.47–17.75) | 0.254 | 1.75 (0.19–15.54) | 0.615 |
Gender | 1.11 (0.10–12.39) | 0.932 | 1.52 (0.20–11.38) | 0.682 | 8.74 (1.03–74.16) | 0.047 | 27.94 (1.68–463.05) | 0.020 |
Educational level | 0.61 (0.39–0.94) | 0.024 | 0.72 (0.56–0.91) | 0.006 | ||||
Monthly Income | 0.57 (0.36–0.89) | 0.014 | 0.60 (0.36–0.99) | 0.045 | 0.58 (0.35–0.97) | 0.039 | 0.76 (0.44–1.31) | 0.324 |
Training | 0.01 (0.0003–0.79) | 0.038 | 0.006 (0.0005–0.0658) | 0.000 | 0.004 (0.00009–0.22) | 0.006 | 0.0008 (0.000008–0.09) | 0.003 |
Principal Activities | 0.63 (0.50–0.78) | 0.000 | 0.63 (0.46–0.87) | 0.004 | ||||
Occupation of relative a | 5.2 (1.46–18.56) | 0.011 | 4.82 (0.64–36.56) | 0.128 | 5.62 (1.02–30.82) | 0.047 | 3.58 (0.57–22.43) | 0.172 |
Year in Profession | 1.40 (0.66–2.97) | 0.387 | 1.35 (0.68–2.69) | 0.398 | ||||
Age | 1.09 (0.80–1.48) | 0.595 | 1.07 (0.61–1.89) | 0.817 | ||||
Recent hospitalization b | 3.09 (1.26–7.59) | 0.014 | 3.24 (1.18–8.86) | 0.022 | 1.28 (0.24–6.87) | 0.769 | 0.57 (0.08–4.12) | 0.576 |
Recent antibiotic use c | 1.97 (0.40–9.73) | 0.402 | 4.91 (1.20–20.03) | 0.027 | ||||
Skin problem | 0.39 (0.17–0.89) | 0.025 | 0.48 (0.21–1.08) | 0.076 | ||||
Nasal problem | 0.61 (0.29–1.28) | 0.192 | 0.79 (0.34–1.82) | 0.578 | ||||
Protective working clothes | 0.04 (0.002–0.812) | 0.036 | 0.022 (0.002–0.258) | 0.002 | ||||
Inadequate Handwashing | 4.71 (2.28–9.70) | 0.000 | 3.9 (1.01–15.01) | 0.048 | ||||
Convenient handwashing | 0.08 (0.017–0.41) | 0.002 | 0.04 (0.013–0.145) | 0.000 | ||||
Intensity of contact with pigs | 0.97 (0.50–1.87) | 0.920 | 0.96 (0.40–2.31) | 0.934 | ||||
Contact with other animals | 2.95 (0.87–10.04) | 0.084 | 4.05 (1.42–11.53) | 0.009 | ||||
Contact with poultry | 5.83 (1.58–21.48) | 0.008 | 8.41 (2.27–31.11) | 0.001 | 9.93 (1.37–71.63) | 0.023 | 24.22 (1.28–457.35) | 0.034 |
Pig colonization Nasal ESBL (yes or No) | 1.04 (0.93–1.16) | 0.509 | 1.06 (0.95–1.17) | 0.313 | ||||
Pig colonization Rectal ESBL (yes or No) | 1.03 (0.93–1.15) | 0.585 | 1.05 (0.96–1.16) | 0.273 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Founou, L.L.; Founou, R.C.; Ntshobeni, N.; Govinden, U.; Bester, L.A.; Chenia, H.Y.; Djoko, C.F.; Essack, S.Y. Emergence and Spread of Extended Spectrum β-Lactamase Producing Enterobacteriaceae (ESBL-PE) in Pigs and Exposed Workers: A Multicentre Comparative Study between Cameroon and South Africa. Pathogens 2019, 8, 10. https://doi.org/10.3390/pathogens8010010
Founou LL, Founou RC, Ntshobeni N, Govinden U, Bester LA, Chenia HY, Djoko CF, Essack SY. Emergence and Spread of Extended Spectrum β-Lactamase Producing Enterobacteriaceae (ESBL-PE) in Pigs and Exposed Workers: A Multicentre Comparative Study between Cameroon and South Africa. Pathogens. 2019; 8(1):10. https://doi.org/10.3390/pathogens8010010
Chicago/Turabian StyleFounou, Luria Leslie, Raspail Carrel Founou, Noyise Ntshobeni, Usha Govinden, Linda Antoinette Bester, Hafizah Yousuf Chenia, Cyrille Finyom Djoko, and Sabiha Yusuf Essack. 2019. "Emergence and Spread of Extended Spectrum β-Lactamase Producing Enterobacteriaceae (ESBL-PE) in Pigs and Exposed Workers: A Multicentre Comparative Study between Cameroon and South Africa" Pathogens 8, no. 1: 10. https://doi.org/10.3390/pathogens8010010
APA StyleFounou, L. L., Founou, R. C., Ntshobeni, N., Govinden, U., Bester, L. A., Chenia, H. Y., Djoko, C. F., & Essack, S. Y. (2019). Emergence and Spread of Extended Spectrum β-Lactamase Producing Enterobacteriaceae (ESBL-PE) in Pigs and Exposed Workers: A Multicentre Comparative Study between Cameroon and South Africa. Pathogens, 8(1), 10. https://doi.org/10.3390/pathogens8010010