Supplementary Material

Effectiveness of Medicinal Plants & Proof by Contradiction

Characterization of Biological Resistance and Successful Drug Resistance Control in Medicine

(Rudolf Fullybright, 2019)

Background

This Supplementary Material is provided as a complement to the main article. It 1) presents supporting evidence that medicinal plants continue to be effective today and 2) introduces mathematical proof by contradiction that medicinal plants have not encountered resistance from pathogens.

1) Select List of 111 Effective Pathogen-Specific Medicinal Plants, Pathogens Targeted, and Literature References Reporting Effectiveness

Table 1 below presents a select list of more than 100 medicinal plants from various geographical regions of the world. Multiple peer-reviewed, published studies have shown those plants to still be effective against their target pathogens today, as of the 21st century, when those studies are published. Table 1 presents only a restricted, partial list of such studies. Far more peer-reviewed, published studies are available in the public domain, literature.

Continuing to be effective in the 21st century and having appeared on earth millions of years ago imply that medicinal plants have remained effective against pathogens throughout their existence on earth, for millions of years.

<u>**Table 1**</u>: Select list of 111 effective medicinal plants, target pathogens, literature references, and year of effectiveness report.

Plant ID	Plant Name	Region of Origin	Target Pathogens	Published References Reporting Effectiveness	Year Effectiveness is Reported
1.	Terminalia chebula			Gowd Pratap et al. Evaluation of three	2012
2.	Clitoria ternatea		Streptococcus mutans, Lactobacillu	medicinal plants for anti-microbial activity.	2012
3.	Wedelia chinensis	India	s casei, or Staphylococcus aureus	<u>Ayu</u> . 2012 Jul-Sep; 33(3): 423–428. doi: <u>10.4103/0974-</u> <u>8520.108859</u> PMCID: PMC3665089 PMID: <u>23723653</u>	2012
ID	Plant Name	Region	Target Pathogens	References	Report Year
4.	Arum italicum Mill				2010
5.	Lathyrus sativus L.				2010
6.	Cuminum cyminum L				2010
7.	Aesculus hippocastanu m L.				2010
8.	Jasminium officionale L.				2010
9.	Thymus capitatus L.		Bacillus subtilis,	Ömer Ertürk.	2010
10.	Viscun album L.		Escherichia coli, Staphylococcus	Antibacterial and Antifungal Effects of	2010
11.	Ammi visnaga Lam.	Turkey	aureus, Pseudomonas aeruginosa, Candida	Alcoholic Extracts of 41 Medicinal Plants growing in Turkey.	2010
12.	Nigella arvensis L.		albicans, or Aspergillus niger	Czech J. Food Sci. Vol. 28, 2010, No. 1: 53–60	2010
13.	Coriandrum sativum L.		2159012111105111201	20, 2010, 110, 1, 33-00	2010
14.	Ocimum basillicum L.				2010
15.	Tanecetum sorbifolium				2010
16.	Achillea biebersteinii				2010
17.	Buxus sempervirens L.				2010
18.	Alkanna				2010

	tinctoria L.			
	Pimpinella			
19.	anisum L.			2010
	Artemisia			
20.	absinthium			2010
	L.			
	Origanum			2010
21.	vulgare L.			2010
	Colutea			
22.	arborescens			2010
	L.			
22	Diospyrus			2010
23.	lotus L.			2010
	Erica			
24.	verticillata			2010
	Forsk.			
25.	Galega			2010
	officinalis L.			
26.	Sambucus			2010
	nigra L.			
27.	Laurus			2010
	nobilis L.			
28.	Vitex agnus costus L.			2010
	Alhagi			
29.	camelorum			2010
_>.	Fisch.			2010
	Pistacia			
30.	lentiscus L.	Aspergillus niger		2010
31.	Vicia faba L.			2010
20	Liguidamber			2010
32.	orientalis			2010
33.	Rhus coriaria		,	2010
	L.	Bacillus subtilis,		2010
	Prunus	Escherichia coli,		
34.	laurocerasus	Staphylococcus		2010
	L.	aureus,		
	Alnus	Pseudomonas		2010
35.	glutinosa	aeruginosa, Candida		2010
	Goertn	albicans, or		
36.	Camelia	Aspergillus niger		2010
	sinensis L. Linum			
37.	Linum bienne Mill.			2010
38.	Tamarix			2010
50.	Tumurtx			2010

39.	smyrensis Artemisia santonicum				2010
	L. Scorzonera				2010
40.	mollis Bieb.				2010
41.	Hypericum perforatum L.				2010
42.	Achillea coarciata Poir.				2010
43.	Pimenta officinalis Lindl				2010
44.	Cocos nucifera L.				2010
ID	Plant Name	Region	Target Pathogens	References	Report Year
45.	Berberis vulgaris		Staphylococcus aureaus, E. faecalis, E. cloacae		2018
46.	Cinnamomu m cassia		Staphylococcus aureaus, E. faecalis,	Mohamed Senouci Bereksi et al.	2018
47.	Cistus monspeliensi s		E. cloacae, E. coli, K. pneumoniae, P. aeruginosa	Evaluation of Antibacterial Activity of some Medicinal	2018
48.	Nigella sativa		S. aureus	Plants	2018
49.	Punica granatum	Algeria	Staphylococcus aureaus, E. cloacae, E. coli, K. pneumoniae, P. aeruginosa	Extracts Commonly Used in Algerian Traditional Medicine against some Pathogenic Bacteria.	2018
50.	Rhus tripartita		Staphylococcus aureaus, E. faecalis, E. coli, P. aeruginosa	Pharmacog J. 2018;10(3):507-12.	2018
51.	Withania frutescens		S. aureus		2018
ID	Plant Name	Region	Target Pathogens	References	Report Year
52.	Azadirachta indica	India	Herpes Simplex Virus-1 (HSV-1), Coxsackievirus virus B-4, Aspergillus sp., Rhizopus sp., Curvularia lunata, H. pennisetti, C.	Mohammad A. Alzohairy. Therapeutics Role of Azadirachta indica (Neem) and Their Active Constituents in Diseases Prevention and Treatment. Evid	2016

			gloeosporioides f. sp. Mangiferae, Alternaria solani, Cladosporium, Plasmodium berghei, Streptococcus salivarius Fusobacterium	Based Complement Alternat Med. 2016; 2016: 7382506. Published online 2016 Mar 1. doi: 10.1155/2016/7382506	
			nucleatum Escherichia coli O157:H7	Subbarao V. Ravva and Anna Korn. Effect of Neem (Azadirachta indica) on the Survival of Escherichia coli O157:H7 in Dairy Manure. Int J Environ Res Public Health. 2015 Jul; 12(7): 7794–7803. Published online 2015 Jul 10. doi: 10.3390/ijerph12070779 <u>4</u> .	2015
			Smallpox, Chicken pox, Poxvirus, Herpes viruses, Poliomyelitis	Zeinab Nazarian Samani and Mahmoud RaRfieian Kopaei. Effective medicinal plants in treating Hepatitis B. Int J Pharm Sci & Res 2018; 9(9): 3589-96. doi: 10.13040/ IJPS.0975- 8232.9(9).3589-96	2018
ID	Plant Name	Region	Target Pathogens	References	Report Year
53.	Acacia catechu			Voravuthikunchai S. et al. Effective medicinal	2004
54.	Holarrhena antidysenteri ca	Thailan	enterohaemorrhagic	plants against enterohaemorrhagic Escherichia coli	2004
55.	Peltophorum pterocarpum	d	Escherichia coli (EHEC) O157:H7	O157:H7. J Ethnopharmacol. 2004	2004
56.	Psidium guajava			Sep;94(1):49-54. PMID: 15261962 DOI:	2004
57.	Quercus infectoria			10.1016/j.jep.2004.03.03 6	2004

58.	Uncaria gambir				2004
59.	Walsura robusta				2004
ID	Plant Name	Region	Target Pathogens	References	Report Year
60.	Solanum nigrum		S. aureus, Listeria monocytogenes, and Vibrio cholera	Rahnama M, Fakheri B A, Mashhady M A, Saeidi S, Jahani S. The	2016
61.	Mentha longifolia	Iran	Bacillus cereus	Antimicrobial Effects of Medicinal Plants on	2016
62.	Mentha piperita		Bacillus cereus and Vibrio cholera	Pathogenic Food Bacteria, Int J Infect.	2016
63.	Withania somnifera		Bacillus cereus and Shigella dysenteriae	2017 ; 4(2):e40238. <u>doi:</u> <u>10.5812/iji.40238</u>	2016
ID	Plant Name	Region	Target Pathogens	References	Report Year
64.	Grapes			Konowalchuk J and Speirs JI: Virus inactivation by grapes and wines. Applied and Environmental Microbiology 1976; 32: 757-763	1976
65.	Apple		Herpes simplex	Konowalchuk J and Speirs JI: Antiviral activity of fruit extracts. Journal of Food Science 1976b; 41: 1013-1017	1976
69.	Strawberry	Canada	virus (HSV), Poliovirus type 1, Coxsackie virus B5, and Echovirus	Konowalchuk J and Speirs JI: Antiviral effect of apple beverages. Applied and Environmental Microbiology 1978a; 36: 798-801 Konowalchuk J and Speirs JI: Antiviral effect of commercial juices and beverages. Applied and Environmental	1978 1978
ID 70	Plant Name	Region	Target Pathogens	Microbiology 1978b; 35: 1219-1220 References	Report Year
70.	Melaleuca	*Australi	HSV-1	Zeinab Nazarian	2018

	alternifolia	а		Samani and Mahmoud	
	Santolina		HSV-1, HSV-2,	RaRfieian Kopaei.	
71.	insularis	Europe	herpes types	Effective medicinal	2018
=	Santalum	Sri		plants in treating	2010
72.	album	Lanka		Hepatitis B. Int J	2018
73.	Cardamine	Californi		Pharm Sci & Res 2018;	2018
/0.	angulata	a, USA		9(9): 3589-96. doi:	2010
74.	Polypodium	North		10.13040/ IJPS.0975-	2018
	glycyrrhiza Verbascum	America	HSV-1	8232.9(9).3589-96	
75.	Thapsus	Europe, Africa			2018
		Mediterr			
76.	Conocephalu m conicum	anean			2018
		region			
77.	Lysichiton americanum	N. America			2018
	Sanicula	Timerica			
78.	europaea	Europe	Influenza		2018
			murine		
79.	Nigella sativa	SW Asia	cytomegalovirus		2018
			(MCMV)		
			DNA viruses,		
80.	Eleutherococc	Siberia	respiratory		2018
	us senticosus		syncytial virus		
		Pacific	(RSV) adenovirus Enteric corona		
81.	Rosa nutkana	NW	virus		2018
	Amelanchier	N.	Enteric corona		2010
82.	alnifolia	America	virus		2018
83.	Ipomopsis	N.	Parainfluenza virus		2018
00.	aggregate	America	type 3		2010
84.	Lomatium	N.	Rotavirus		2018
	dissectum	America	Pocninatory		
85.	Potentilla	N.	Respiratory syncytial virus		2018
00.	arguta	America	(RSV)		2010
	0 1		Respiratory		
86.	Sambucus	N. America	syncytial virus		2018
	racemosa	America	(RSV)		
	Dianella				
87.	<i>longifolia</i> var	Australia	Poliovirus type 1		2018
	. grandis	NI 6- C			
88.	Pterocaulon	N. & S. America,	Poliovirus type 1		2018
	sphacelatum	Australia			
89.	Euphorbia	Australia	Human		2018

	australis		cytomegalovirus		
	uustrutis		(HCMV)		
			Human		
90.	Scaevola	Australia	cytomegalovirus		2018
	spinescens		(HCMV)		
	Eremophila		Ross River virus		
91.	<i>latrobei</i> subs	Australia			2018
	p. Glabra		(RRV)		
	Pittosporum				
	phylliraeoides	A . 11	Ross River virus		0.01/
92.	var.	Australia	(RRV)		2018
	Microcarpa				
	Sanicula		Parainfluenza virus		
93.	europaea	Europe	type 2		2018
		Central	RSV, Adenovirus		
94.	Myrcianthes	& S.			2018
	cisplatensis	America	serotype7• HSV-1	_	
			HSV, equine herpes		
	Opuntia	America	virus,		
95.	streptacantha	S	pseudorabies		201
	зперисанни		virus, influenza		
			virus		
96.	Bergenia	Himalay			201
<i>J</i> 0.	ligulata	as			2010
97.	Nerium	India	Influenza virus,		201
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	indicum		HSV		_01
98.	Holoptelia	India			201
	integrifolia				201
99.	Curcuma	SE Asia			201
	<i>longa</i> Linn.			Ļ	-01
100.	Ganoderma	Worldwi			201
	lucidum	de	Hepatitis B Virus		201
101.	Phyllanthus	C.			201
1010	amarus	America			201
102.	Acanthus	Australia			201
102.	ilicifolius L				201
	Acacia	Africa,			
103.	Acacia	Middle East,			201
	nilotica	India			
	Zingiber				
104.	officinale	SE Asia	Hepatitis C Virus		201
	Silybum	Worldwi			
					201
105.		de			
105. 106.	marianum Quercus	de S.			201

		& Middle East			
107.	Ocimum basilicum	Tropical Africa / Asia	Hepatitis A Virus		2018
108.	Taraxacum Officinalis	Europe & Asia			2018
109.	Morinda citrifolia	SE Asia, Australia	Hepatitis		2018
110.	Matricaria chamomilla	Europe			2018
111.	Panax ginseng	Korea, Japan	Helicobacter pylori, Pseudomonas aeruginosa, Staphylococcus aureus, Porphyromonas gingivalis, Listeria monocytogenes, Bacillus cereus, Streptococcus pneumoniae	Ye-Ram Kim and Chul- Su Yang. Protective roles of ginseng against bacterial infection. Microb Cell. 2018 Nov 5; 5(11): 472–481. doi: 10.15698/mic2018.11.654 & <u>references therein.</u>	2018
ID	Plant Name	Region	Target Pathogens	References	Report Year

*: for plant species ID 70 through to 111, Wikipedia was used as the source establishing region of nativity.

Table 1 above presents a limited sample of over 100 medicinal plants from around the world which studies have found to still be effective against their target pathogens as of the 21st century. Let us now examine mathematical proof by contradiction that medicinal plants have encountered no resistance from pathogens.

2) Proof by Contradiction of Non-existence of Resistance to Medicinal Plants

In Mathematical Logic, there is a concept termed *Proof by Contradiction*: proving that something exists by proving that its opposite does not exist—and vice versa.

We are giving here proof, using the mathematical logic concept of proof by contradiction,

that, in addition to the non-observation of resistance to any medicinal plant, medicinal plants have encountered no resistance from pathogens in their millions of years of existence.

Courtesy of the Computational Geometry Laboratory of the School of Computer Science at McGill University, Montréal, Québec, Canada, we have a very good description of what is <u>Proof by Contradiction</u> [1]. For the purposes of this analysis, we are going to have to take a look at a number of extra sources, such as Chapter 62 (*Surveillance of Antiretroviral Drug Resistance in Resource-poor Settings* by Inge Derdelinckx and Charles Boucher) of *Global HIV/AIDS Medicine*, 2008, Pages 703-710. That reference infers how "effectiveness" and "resistance" are **opposites** of each other: As one goes up, the other goes down; if one has one, then one does not have the other.

In fact, here is what the Conclusion of Chapter 62 states:

"Antiretroviral drug resistance is an inevitable consequence when providing long-term treatment and should not be seen as a limitation for providing antiretrovirals to patients in resource-poor settings. The rapid expansion of HIV/AIDS treatment access is an urgent public health necessity. However, efforts should be undertaken to reduce the development of drug resistance as much as possible by providing healthcare infrastructures that will <u>maximize</u> the <u>effectiveness</u> of treatment and <u>minimize</u> the risk for <u>drug resistance</u>. ..." (emphasis added).

We also need to take a look at what the US Centers for Disease Control and Prevention (US CDC) has to say about "effectiveness" and "resistance," stating: "*If antibiotics <u>lose</u> their <u>effectiveness</u>, then we <u>lose</u> the ability to treat infections and <u>control</u> public health threats." [2] That statement implies that if effectiveness is lost, then resistance has appeared. Conversely, it also means that if there is effectiveness, then there is no resistance.*

And here is a statement from the World Health Organization (WHO) regarding "effectiveness" and "resistance": "To <u>maximize</u> the long-term <u>effectiveness</u> of first-line ART regimens, and to ensure that people are taking the most effective regimen, it is essential to continue

monitoring *resistance* and to *minimize* its further emergence and spread." [3].

That statement, like the previous ones from the other sources, equally implies and means that "effectiveness" and "resistance" **are opposites of each other**, are **the opposite sides of the same coin**, and that **if you have one**, **then you do not have the other**. In fact, "effectiveness" means that the drug is effective, that **it kills the pathogen**. And "resistance" means that the pathogen resists the drug and **is NOT killed by it.** So, "effectiveness" and "resistance" are opposites of each other and **cancel each other out**. Both **do <u>not</u>** and <u>cannot</u> exist simultaneously. It is <u>impossible</u> to have both at the same time. So, proving the existence of one is equal to proving the non-existence of the other.

One may be tempted to think that lack of observation of resistance to a medicinal plant is not evidence per se. However, we need to consider the ten (10) published references mentioned in the main article (References [27] to [36]), in addition to the published references of Table 1 above, reporting more than 100 medicinal plants as being still effective against their target pathogens, together with the dozens more published references not listed in Table 1 (which cannot be listed because of space restrictions), and which all prove that medicinal plants continue to be effective against their target pathogens today. Again, beyond the 10 publications presented in the main article, and in addition to the more than 100 medicinal plants listed in Table 1 above, along with their own supporting references, dozens of other publications are out there, in the public domain, all reporting continued effectiveness of hundreds of medicinal plants from around the world, as of this 21st century, and regardless of geographic origin.

With that foundation laid down, let us now move on to the mathematical concept of proof by contradiction.

The McGill University Proof by Contradiction reference given above states:

"We now introduce a third method of proof, called proof by contradiction. This new method is not limited to proving just conditional statements – it can be used to prove any kind of statement

Effectiveness of Medicinal Plants & Proof by Contradiction

whatsoever. The basic idea is to assume that the statement we want to prove is false, and then show that this assumption leads to nonsense. We are then led to conclude that we were wrong to assume the statement was false, so the statement must be true."

On the basis of all of the above, it is established that the statement we want to prove is: Statement A: "Medicinal plants **have encountered no resistance** from pathogens." The opposite of Statement A is Statement B.

Statement B: "Medicinal plants **have encountered resistance** from pathogens" which **is equal to:** "Medicinal plants **have lost their effectiveness** against pathogens."

The Proof by Contradiction reference cited above says to assume that the statement we want to prove is false. So we assume that Statement A is false.

However, we have seen from the multiple sources above (including the US Centers for Disease Control and the World Health Organization) that "effectiveness" and "resistance" **are opposites of each other** and that **having one means not having the other**.

Therefore, if Statement A is false, then Statement B is true and that means that medicinal plants **have encountered resistance** from pathogens, **which also means that medicinal plants have lost their effectiveness** against pathogens.

But we have the ten studies presented in References [27] through [36] in the main article along with hundreds more studies in the public domain, published by additional researchers, freely available on the Internet, and which state and confirm that **medicinal plants are still effective against their respective target pathogens today**.

However, Statement B says that medicinal plants have lost their effectiveness, which is in contradiction with the findings of those studies. Therefore, the **assumption** that Statement A is false **is wrong** and, therefore, Statement A **is true**.

Therefore, medicinal plants have encountered no resistance from pathogens.

<u>Conclusion</u>: Medicinal plants have encountered no resistance from pathogens.

As seen earlier, "effectiveness" and "resistance" are opposites of each other and having one necessarily implies not having the other. Consequently, by proving that medicinal plants are presently effective against the pathogens, those studies have thereby proven that there is no resistance to the plants. In Mathematical Logic, the proof of effectiveness given by those studies is equally proof of non-existence of resistance to the plants.

<u>References</u>:

- 63. McGill University. Proof by Contradiction. Computational Geometry Laboratory. School of Computer Science. McGill University. Montreal, Canada. 2019. Retrieved May 2019 from: http://cgm.cs.mcgill.ca/~godfried/teaching/dm-readingassignments/Contradiction-Proofs.pdf
- 64. US CDC. Antibiotic / Antimicrobial Resistance (AR / AMR) About Antimicrobial Resistance. US Centers for Disease Control and Prevention. 2019. Retrieved May 2019 from: <u>https://www.cdc.gov/drugresistance/about.html</u>
- 65. World Health Organization. Global trends other microbes. WHO, 2019. Copenhagen, Denmark. Retrieved May 2019 from: <u>http://www.euro.who.int/en/health-topics/disease-prevention/antimicrobial-resistance/about-amr/global-trends-other-microbes</u>