Role of Wild Boar in the Spread of Classical Swine Fever in Japan
Abstract
:1. Introduction
2. Results
2.1. Standard Deviational Ellipse Analysis
2.2. Multi-Distance Spatial Cluster Analysis
2.3. Kernel Density Estimation Analysis
2.4. Space-Time Cluster Analysis
2.5. Quality of Available Habitat (QAH) Within Space-Time Cluster Area
3. Discussion
4. Material and Methods
4.1. Data and Data Sources
4.2. Standard Deviational Ellipse Analysis
4.3. Multi-Distance Spatial Cluster Analysis
4.4. Kernel Density Estimation Analysis
4.5. Space-Time Cluster Analysis
4.6. QAH Within Space-Time Cluster Area
Author Contributions
Founding
Acknowledgments
Conflicts of Interest
References
- Edwards, S.; Fukusho, A.; Lefevre, P.C.; Lipowski, A.; Pejsak, Z.; Roehe, P.; Westergaard, J. Classical swine fever: The global situation. Vet. Microbiol. 2000, 73, 103–119. [Google Scholar] [CrossRef]
- Lindenbach, B.D.; Murray, C.L.; Thiel, H.J.; Rice, C.M. Fields Virology, 6th ed.; Knipe, D.M., Howley, P.M., Eds.; Wolters Kluwer/Lippincott Williams & Wikins Health: Philadelphia, PA, USA, 2013. [Google Scholar]
- OIE. World Animal Health Information System. Available online: http://www.oie.int/wahis_2/public/wahid.php/Diseaseinformation/Diseasetimelines (accessed on 7 September 2019).
- Lowings, P.; Ibata, G.; Needham, J.; Paton, D. Classical swine fever virus diversity and evolution. J. Gen. Virol. 1996, 77, 1311–1321. [Google Scholar] [CrossRef] [PubMed]
- Paton, D.J.; McGoldrick, A.; Greiser-Wilke, I.; Parchariyanon, S.; Song, J.Y.; Liou, P.P.; Stadejek, T.; Lowings, J.P.; Bjorklund, H.; Belak, S. Genetic typing of classical swine fever virus. Vet. Microbiol. 2000, 73, 137–157. [Google Scholar] [CrossRef]
- Kameyama, K.I.; Nishi, T.; Yamada, M.; Masujin, K.; Morioka, K.; Kokuho, T.; Fukai, K. Experimental infection of pigs with a classical swine fever virus isolated in Japan for the first time in 26 years. J. Veter Med. Sci. 2019, 81, 1277–1284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mittelholzer, C.; Moser, C.; Tratschin, J.D.; Hofmann, M.A. Analysis of classical swine fever virus replication kinetics allows differentiation of highly virulent from avirulent strains. Vet. Microbiol. 2000, 74, 293–308. [Google Scholar] [CrossRef]
- Enkhbold, B.; Shatar, M.; Wakamori, S.; Tamura, T.; Hiono, T.; Matsuno, K.; Okamatsu, M.; Umemura, T.; Damdinjav, B.; Sakoda, Y. Genetic and virulence characterization of classical swine fever viruses isolated in Mongolia from 2007 to 2015. Virus Genes 2017, 53, 418–425. [Google Scholar] [CrossRef]
- Lim, S.I.; Kim, Y.K.; Lim, J.A.; Han, S.H.; Hyun, H.S.; Kim, K.S.; Hyun, B.H.; Kim, J.J.; Cho, I.S.; Song, J.Y.; et al. Antigenic characterization of classical swine fever virus YC11WB isolates from wild boar. J. Vet. Sci. 2017, 18, 201–207. [Google Scholar] [CrossRef]
- Luo, Y.; Ji, S.; Liu, Y.; Lei, J.L.; Xia, S.L.; Wang, Y.; Du, M.L.; Shao, L.; Meng, X.Y.; Zhou, M.; et al. Isolation and Characterization of a Moderately Virulent Classical Swine Fever Virus Emerging in China. Transbound. Emerg. Dis. 2017, 64, 1848–1857. [Google Scholar] [CrossRef]
- Postel, A.; Nishi, T.; Kameyama, K.I.; Meyer, D.; Suckstorff, O.; Fukai, K.; Becher, P. Reemergence of Classical Swine Fever, Japan, 2018. Emerg. Infect. Dis. 2019, 25, 1228–1231. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Agriculture, Forestry and Fisheries, Japan (MAFF). Update of Classical Swine Fever in Japan. Available online: http://www.maff.go.jp/j/syouan/douei/csf/index.html (accessed on 8 August 2019).
- Ministry of Agriculture, Forestry and Fisheries, Japan (MAFF). MId-Term Report: Epidemiological Investigation for Classical Swine Fever; MAFF: Tokyo, Japan, 2019. (In Japanese) [Google Scholar]
- Aoki, H.; Ishikawa, K.; Sakoda, Y.; Sekiguchi, H.; Kodama, M.; Suzuki, S.; Fukusho, A. Characterization of classical swine fever virus associated with defective interfering particles containing a cytopathogenic subgenomic RNA isolated from wild boar. J. Vet. Med. Sci. 2001, 63, 751–758. [Google Scholar] [CrossRef]
- Bartak, P.; Greiser-Wilke, I. Genetic typing of classical swine fever virus isolates from the territory of the Czech Republic. Vet. Microbiol. 2000, 77, 59–70. [Google Scholar] [CrossRef]
- David, D.; Edri, N.; Yakobson, B.A.; Bombarov, V.; King, R.; Davidson, I.; Pozzi, P.; Hadani, Y.; Bellaiche, M.; Schmeiser, S.; et al. Emergence of classical swine fever virus in Israel in 2009. Vet. J. 2011, 190, e146–e149. [Google Scholar] [CrossRef] [PubMed]
- Fritzemeier, J.; Teuffert, J.; Greiser-Wilke, I.; Staubach, C.; Schluter, H.; Moennig, V. Epidemiology of classical swine fever in Germany in the 1990s. Vet. Microbiol. 2000, 77, 29–41. [Google Scholar] [CrossRef]
- Jemersic, L.; Greiser-Wilke, I.; Barlic-Maganja, D.; Lojkic, M.; Madic, J.; Terzic, S.; Grom, J. Genetic typing of recent classical swine fever virus isolates from Croatia. Vet. Microbiol. 2003, 96, 25–33. [Google Scholar] [CrossRef]
- Kim, Y.K.; Lim, S.I.; Kim, J.J.; Cho, Y.Y.; Song, J.Y.; Cho, I.S.; Hyun, B.H.; Choi, S.H.; Kim, S.H.; Park, E.H.; et al. Surveillance of classical swine fever in wild boar in South Korea from 2010-2014. J. Vet. Med. Sci. 2016, 77, 1667–1671. [Google Scholar] [CrossRef]
- Pol, F.; Rossi, S.; Mesplede, A.; Kuntz-Simon, G.; Le Potier, M.F. Two outbreaks of classical swine fever in wild boar in France. Vet. Rec. 2008, 162, 811–816. [Google Scholar] [CrossRef]
- Rajkhowa, T.K.; Hauhnar, L.; Lalrohlua, I.; Mohanarao, G.J. Emergence of 2.1. subgenotype of classical swine fever virus in pig population of India in 2011. Vet. Q. 2014, 34, 224–228. [Google Scholar] [CrossRef] [Green Version]
- Schnyder, M.; Stark, K.D.; Vanzetti, T.; Salman, M.D.; Thor, B.; Schleiss, W.; Griot, C. Epidemiology and control of an outbreak of classical swine fever in wild boar in Switzerland. Vet. Rec. 2002, 150, 102–109. [Google Scholar] [CrossRef]
- Zanardi, G.; Macchi, C.; Sacchi, C.; Rutili, D. Classical swine fever in wild boar in the Lombardy region of Italy from 1997 to 2002. Vet. Rec. 2003, 152, 461–465. [Google Scholar] [CrossRef]
- Zhang, H.; Leng, C.; Feng, L.; Zhai, H.; Chen, J.; Liu, C.; Bai, Y.; Ye, C.; Peng, J.; An, T.; et al. A new subgenotype 2.1d isolates of classical swine fever virus in China, 2014. Infect. Genet. Evol. 2015, 34, 94–105. [Google Scholar] [CrossRef]
- Moennig, V. The control of classical swine fever in wild boar. Front. Microbiol. 2015, 6, 1211. [Google Scholar] [CrossRef] [Green Version]
- Rossi, S.; Fromont, E.; Pontier, D.; Cruciere, C.; Hars, J.; Barrat, J.; Pacholek, X.; Artois, M. Incidence and persistence of classical swine fever in free-ranging wild boar (Sus scrofa). Epidemiol. Infect. 2005, 133, 559–568. [Google Scholar] [CrossRef] [PubMed]
- National Land Information DIvision, National Spatial Planning and Regional Policy Bureau, Ministry of Land, Infrastructure, Transport and Tourism, Japan. National Land Numerical Information Download Service. Available online: http://nlftp.mlit.go.jp/ksj/index.html (accessed on 21 August 2019).
- Muroga, N.; Hayama, Y.; Yamamoto, T.; Kurogi, A.; Tsuda, T.; Tsutsui, T. The 2010 foot-and-mouth disease epidemic in Japan. J. Vet. Med. Sci. 2012, 74, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Tokida, K.; Maruyama, N. Factor Affecting the Geographical Distribution of Japanese Wild Boars; Japan Wildlife Research Center: Tokyo, Japan, 1980. [Google Scholar]
- Takao, Y. Wild Boars and the Protection of Farm Crops at the Foot of Mt. Hakusan in Gifu Prefecture, Japan; Hakusan Nature Conservation Center: Kanazawa, Japan, 1997; pp. 57–66. (In Japanese) [Google Scholar]
- Iglesias, I.; Munoz, M.J.; Montes, F.; Perez, A.; Gogin, A.; Kolbasov, D.; de la Torre, A. Reproductive Ratio for the Local Spread of African Swine Fever in Wild Boars in the Russian Federation. Transbound. Emerg. Dis. 2016, 63, e237–e245. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, I.; Rodriguez, A.; Feliziani, F.; Rolesu, S.; de la Torre, A. Spatio-temporal Analysis of African Swine Fever in Sardinia (2012–2014): Trends in Domestic Pigs and Wild Boar. Transbound. Emerg. Dis. 2017, 64, 656–662. [Google Scholar] [CrossRef]
- Mur, L.; Atzeni, M.; Martinez-Lopez, B.; Feliziani, F.; Rolesu, S.; Sanchez-Vizcaino, J.M. Thirty-Five-Year Presence of African Swine Fever in Sardinia: History, Evolution and Risk Factors for Disease Maintenance. Transbound. Emerg. Dis. 2016, 63, e165–e177. [Google Scholar] [CrossRef]
- Anonymous. Control and eradication of Classical Swine Fever in wild boar. EFSA J. 2009, 932, 1–18. [Google Scholar]
- Artois, M.; Depner, K.R.; Guberti, V.; Hars, J.; Rossi, S.; Rutili, D. Classical swine fever (hog cholera) in wild boar in Europe. Revue Scientifique Et Technique 2002, 21, 287–303. [Google Scholar] [CrossRef]
- Bosch, J.; Iglesias, I.; Munoz, M.J.; de la Torre, A. A Cartographic Tool for Managing African Swine Fever in Eurasia: Mapping Wild Boar Distribution Based on the Quality of Available Habitats. Transbound. Emerg. Dis. 2017, 64, 1720–1733. [Google Scholar] [CrossRef]
- De la Torre, A.; Bosch, J.; Iglesias, I.; Munoz, M.J.; Mur, L.; Martinez-Lopez, B.; Martinez, M.; Sanchez-Vizcaino, J.M. Assessing the Risk of African Swine Fever Introduction into the European Union by Wild Boar. Transbound. Emerg. Dis. 2015, 62, 272–279. [Google Scholar] [CrossRef]
- Ministry of Environment, Japan. Guideline for Developing the Specified Wildlife Conservation and Management Plan; Wild Boar. Available online: https://www.env.go.jp/nature/choju/plan/plan3-2a/index.html (accessed on 7 September 2019).
- Gifu Prefecture. Nature Conservation. Available online: https://www.pref.gifu.lg.jp/kurashi/kankyo/shizenhogo/ (accessed on 7 September 2019). (In Japanese).
- Geospatial Information Authority of Japan. World Topography (In Japanese). Available online: https://www.gsi.go.jp/CHIRIKYOUIKU/world_landform.html (accessed on 16 October 2019).
- Yuill, R.S. The Standard Deviational Ellipse; An Updated Tool for Spatial Description. Geogr. Ann. Ser. B 1971, 53, 28–39. [Google Scholar] [CrossRef]
- Fonseca, O.; Coronado, L.; Amaran, L.; Perera, C.L.; Centelles, Y.; Montano, D.N.; Alfonso, P.; Fernandex, O.; Santoro, K.R.; Frias-Lepoureau, M.T.; et al. Descriptive epidemiology of endemic Classical Swine Fever in Cuba. Span. J. Agric. Res. 2018, 16, e0506. [Google Scholar] [CrossRef]
- Lu, Y.; Deng, X.J.; Chen, J.H.; Wang, J.Y.; Chen, Q.; Niu, B. Risk analysis of African swine fever in Poland based on spatio-temporal pattern and Latin hypercube sampling, 2014–2017. BMC Vet. Res. 2019, 15, 160. [Google Scholar] [CrossRef] [PubMed]
- Environmental Systems Resaerch Institute. Multi-Distance Spatial Cluster Analysis (Ripey’s K Function). Available online: https://pro.arcgis.com/en/pro-app/tool-reference/spatial-statistics/multi-distance-spatial-cluster-analysis.htm (accessed on 20 August 2019).
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006. [Google Scholar]
- Kulldorff, M.; Heffman, R.; Hartman, J.; Assuncao, R.; Mostashari, F. A space-time permutation scan statistic for disease outbreak detection. PLoS Med. 2005, 2, e59. [Google Scholar] [CrossRef] [PubMed]
- Arino, O.; Ramos Perez, J.J.; Kalogirou, V.; Bontemps, S.; Defourny, P.; Van Bogaert, V. Global Land Cover Map for 2009 (GlobCover 2009). ESA UCL 2012. Available online: http://due.esrin.esa.int/page_globcover.php (accessed on 16 October 2019). [CrossRef]
Cluster | Observed Notifications | Expected Notifications | Duration (Days) | Start Date | End Date | Radius (km) |
---|---|---|---|---|---|---|
1 | 83 | 17.34 | 124 | 2018/9/9 | 2019/1/13 | 12.12 |
2 | 198 | 131.87 | 98 | 2019/2/11 | 2019/5/19 | 19.79 |
QAH Category | Land Cover | Cluster 1 | Cluster 2 | ||||
---|---|---|---|---|---|---|---|
DP (n) | WB (n) | Total (n) (%) | DP (n) | WB (n) | Total (n) (%) | ||
1.0 | Rainfed croplands | 4 | 38 | 42 (50.6) | 0 | 45 | 45 (22.7) |
1.5 | Closed (>40%) needleleaved evergreen forest (>5m) | 0 | 26 | 26 (31.3) | 3 | 101 | 104 (52.5) |
1.75 | Mosaic cropland (50–70%)/vegetation (grassland/shrubland/forest) (20–50%) | 0 | 0 | 0 (0.0) | 0 | 5 | 5 (2.5) |
2.0 | Mosaic vegetation (grassland/shrubland/forest) (50–70%)/cropland (20–50%) | 0 | 0 | 0 (0.0) | 0 | 14 | 14 (7.1) |
2.0 | Closed (>40%) broadleaved deciduous forest (>5m) | 0 | 1 | 1 (1.2) | 0 | 0 | 0 (0.0) |
2.0 | Closed to open (>15%) mixed broadleaved and needleleaved forest (>5m) | 0 | 14 | 14 (16.9) | 0 | 30 | 30 (15.2) |
Total | 4 | 79 | 83 (100.0) | 195 | 198 (100.0) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ito, S.; Jurado, C.; Bosch, J.; Ito, M.; Sánchez-Vizcaíno, J.M.; Isoda, N.; Sakoda, Y. Role of Wild Boar in the Spread of Classical Swine Fever in Japan. Pathogens 2019, 8, 206. https://doi.org/10.3390/pathogens8040206
Ito S, Jurado C, Bosch J, Ito M, Sánchez-Vizcaíno JM, Isoda N, Sakoda Y. Role of Wild Boar in the Spread of Classical Swine Fever in Japan. Pathogens. 2019; 8(4):206. https://doi.org/10.3390/pathogens8040206
Chicago/Turabian StyleIto, Satoshi, Cristina Jurado, Jaime Bosch, Mitsugi Ito, José Manuel Sánchez-Vizcaíno, Norikazu Isoda, and Yoshihiro Sakoda. 2019. "Role of Wild Boar in the Spread of Classical Swine Fever in Japan" Pathogens 8, no. 4: 206. https://doi.org/10.3390/pathogens8040206
APA StyleIto, S., Jurado, C., Bosch, J., Ito, M., Sánchez-Vizcaíno, J. M., Isoda, N., & Sakoda, Y. (2019). Role of Wild Boar in the Spread of Classical Swine Fever in Japan. Pathogens, 8(4), 206. https://doi.org/10.3390/pathogens8040206