Apoptosis, Autophagy, and Pyroptosis: Immune Escape Strategies for Persistent Infection and Pathogenesis of Classical Swine Fever Virus
Abstract
:1. Introduction
2. Apoptosis in the Pathogenesis of CSFV
3. Autophagy in the Pathogenesis of CSFV
4. Cross-Talk between Apoptosis and Autophagy in CSFV Pathogenesis
5. Pyroptosis in the Pathogenesis of CSFV
6. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Kleiboeker, S.B. Swine fever: Classical swine fever and african swine fever. Vet. Clin. N. Am. Food Anim. Pract. 2002, 18, 431–451. [Google Scholar] [CrossRef]
- Lohse, L.; Nielsen, J.; Uttenthal, A. Early pathogenesis of classical swine fever virus (csfv) strains in danish pigs. Vet. Microbiol. 2012, 159, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Thiel, H.J.; Stark, R.; Weiland, E.; Rumenapf, T.; Meyers, G. Hog cholera virus: Molecular composition of virions from a pestivirus. J. Virol. 1991, 65, 4705–4712. [Google Scholar] [PubMed]
- Armengol, E. Identification of t-cell epitopes in the structural and non-structural proteins of classical swine fever virus. J. Gen. Virol. 2002, 83 Pt 3, 551–560. [Google Scholar] [CrossRef]
- Kosmidou, A.; Büttner, M.; Meyers, G. Isolation and characterization of cytopathogenic classical swine fever virus (csfv). Arch. Virol. 1998, 143, 1295–1309. [Google Scholar] [CrossRef]
- Wang, J.; Sun, Y.; Xing-Yu, M.; Li, L.F.; Li, Y.; Luo, Y.; Wang, W.; Yu, S.; Yin, C.; Li, S.; et al. Comprehensive evaluation of the host responses to infection with differentially virulent classical swine fever virus strains in pigs. Virus Res. 2018, 255, 68–76. [Google Scholar] [CrossRef]
- König, M.; Lengsfeld, T.; Pauly, T.; Stark, R.; Thiel, J.H. Classical swine fever virus: Independent induction of protective immunity by two structural glycoproteins. J. Virol. 1995, 69, 6479–6486. [Google Scholar]
- Moormann, M.R.J.; Bouma, A.; Kramps, A.J.; Terpstra, C.; Smit, D.H.J. Development of a classical swine fever subunit marker vaccine and companion diagnostic test. Vet. Microbiol. 2000, 73, 209–219. [Google Scholar] [CrossRef]
- Bensaude, E. Classical swine fever virus induces proinflammatory cytokines and tissue factor expression and inhibits apoptosis and interferon synthesis during the establishment of long-term infection of porcine vascular endothelial cells. J. Gen. Virol. 2004, 85, 1029–1037. [Google Scholar] [CrossRef]
- Sun, J.; Shi, Z.; Guo, H.; Tu, C. Changes in the porcine peripheral blood mononuclear cell proteome induced by infection with highly virulent classical swine fever virus. J. Gen. Virol. 2010, 91, 2254–2262. [Google Scholar] [CrossRef]
- Johns, H.L.; Bensaude, E.; La Rocca, S.A.; Seago, J.; Charleston, B.; Steinbach, F.; Drew, T.W.; Crooke, H.; Everett, H. Classical swine fever virus infection protects aortic endothelial cells from pipc-mediated apoptosis. J. Gen. Virol. 2010, 91, 1038–1046. [Google Scholar] [CrossRef] [PubMed]
- Knoetig, S.M.; Summerfield, A.; Spagnuolo-Weaver, M.; Mccullough, K.C. Immunopathogenesis of classical swine fever. role of monocytic cells. Immunology 1999, 97, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Summerfield, A.; Mcneilly, F.; Walker, I.; Allan, G.; Knoetig, S.M.; Mccullough, K.C. Depletion of cd4(+) and cd8(high+) t-cells before the onset of viraemia during classical swine fever. Vet. Immunol. Immunopathol. 2001, 78, 3–19. [Google Scholar] [CrossRef]
- Blome, S.; Meindl-Böhmer, A.; Nowak, G.; Moennig, V. Disseminated intravascular coagulation does not play a major role in the pathogenesis of classical swine fever. Vet. Microbiol. 2013, 162, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Chander, V.; Nandi, S.; Ravishankar, C.; Upmanyu, V.; Verma, R. Classical swine fever in pigs: Recent developments and future perspectives. Anim. Health Res. Rev. 2014, 15, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Nordén, R.; Nyström, K.; Aurelius, J.; Brisslert, M.; Olofsson, S. Virus-induced appearance of the selectin ligand slex in herpes simplex virus type 1-infected t-cells: Involvement of host and viral factors. Glycobiology 2013, 23, 310–321. [Google Scholar] [CrossRef]
- Fuchs, Y.; Steller, H. Programmed cell death in animal development and disease. Cell 2011, 147, 7542–7758. [Google Scholar] [CrossRef]
- Danthi, P. Viruses and the diversity of cell death. Annu. Rev. Virol. 2016, 3, 533. [Google Scholar] [CrossRef]
- Jorgensen, I.; Rayamajhi, M.; Miao, E.A. Programmed cell death as a defence against infection. Nat. Rev. Immunol. 2017, 17, 151–164. [Google Scholar] [CrossRef]
- Huska, J.D.; Hardwick, J.M. Programmed Cell Death and Virus Infection. Ref. Mod. Biomed. Sci. 2015, 7, 154–162. [Google Scholar]
- Huysmans, M.; Saul, L.A.; Coll, N.S.; Nowack, M.K. Dying two deaths—Programmed cell death regulation in development and disease. Curr. Opin. Plant Biol. 2017, 35, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Carruthers, V.B.; Cotter, P.A.; Kumamoto, C.A. Microbial pathogenesis: Mechanisms of infectious disease. Cell Host Microbe 2007, 2, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Hengartner, M.O. The biochemistry of apoptosis. Nature 2000, 407, 770–776. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.C.; Cullen, S.P.; Martin, S.J. Apoptosis: Controlled demolition at the cellular level. Nat. Rev. Mol. Cell Biol. 2008, 9, 231–241. [Google Scholar] [CrossRef]
- Mizushima, N.; Komatsu, M. Autophagy: Renovation of cells and tissues. Cell 2011, 147, 728–741. [Google Scholar] [CrossRef]
- Bergsbaken, T.; Fink, S.L.; Cookson, B.T. Pyroptosis: Host cell death and inflammation. Nat. Rev. Microbiol. 2009, 7, 99–109. [Google Scholar] [CrossRef]
- Clarke, P.; Tyler, K.L. Apoptosis in animal models of virus-induced disease. Nat. Rev. Microbiol. 2009, 7, 144–155. [Google Scholar] [CrossRef]
- Klionsky, D.J.; Emr, S.D. Autophagy as a regulated pathway of cellular degradation. Science 2000, 290, 1717–1721. [Google Scholar] [CrossRef]
- Fink, S.L.; Cookson, B.T. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell. Microbiol. 2000, 8, 1812–1825. [Google Scholar] [CrossRef]
- Lange, A.; Blome, S.; Moennig, V.; Greiser-Wilke, I. Pathogenesis of classical swine fever—Similarities to viral haemorrhagic fevers: A review. Berliner Und Münchener Tierärztliche Wochenschrift 2011, 124, 36–47. [Google Scholar]
- Choi, C.; Hwang, K.K.; Chae, C. Classical swine fever virusinduces tumor necrosis factor-α and lymphocyte apoptosis. Arch. Virol. 2004, 149, 875–889. [Google Scholar] [CrossRef] [PubMed]
- Pei, J.; Zhao, M.; Ye, Z.; Gou, H.; Wang, J.; Yi, L.; Dong, X.; Liu, W.; Luo, Y.; Liao, M.; et al. Autophagy enhances the replication of classical swine fever virus in vitro. Autophagy 2014, 10, 93–110. [Google Scholar] [CrossRef] [PubMed]
- Gou, H.; Zhao, M.; Xu, H.; Yuan, J.; He, W.; Zhu, M.; Ding, H.; Yi, L.; Chen, J. CSFV induced mitochondrial fission and mitophagy to inhibit apoptosis. Oncotarget 2017, 8, 24. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Zhu, M.; Deng, S.; Fan, S.; Xu, H.; Liao, J.; Li, P.; Zheng, J.; Zhao, M.; Chen, J. Classical swine fever virus induces pyroptosis in the peripheral lymphoid organs of infected pigs. Virus Res. 2018, 250, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Clemens, M.J. Epstein-barr virus: Inhibition of apoptosis as a mechanism of cell transformation. Int. J. Biochem. Cell Biol. 2006, 38, 164–169. [Google Scholar] [CrossRef]
- Clarke, P.; Debiasi, R.L.; Goody, R.; Hoyt, C.C.; Richardson-Burns, S.; Tyler, K.L. Mechanisms of reovirus-induced cell death and tissue injury: Role of apoptosis and virus-induced perturbation of host-cell signaling and transcription factor activation. Viral Immunol. 2005, 18, 89–115. [Google Scholar] [CrossRef] [Green Version]
- Ross, M.E.; Caligiuri, M.A. Cytokine-induced apoptosis of human natural killer cells identifies a novel mechanism to regulate the innate immune response. Blood 1997, 89, 910–918. [Google Scholar] [CrossRef] [Green Version]
- Whiteside, T.L. Apoptosis of immune cells in the tumor microenvironment and peripheral circulation of patients with cancer: Implications for immunotherapy. Vaccine 2002, 20 (Suppl. S4), A46–A51. [Google Scholar] [CrossRef]
- Roulston, A.; Marcellus, R.C.; Branton, P.E. Viruses and apoptosis. Annu. Rev. Microbiol. 1999, 53, 577. [Google Scholar] [CrossRef]
- Jürg Tschopp Thome, M.; Hofmann, K.; Meinl, E. The fight of viruses against apoptosis. Curr. Opin. Genet. Dev. 1998, 8, 82–87. [Google Scholar]
- Moennig, V. Introduction to classical swine fever: Virus, disease and control policy. Vet. Microbiol. 2000, 73, 93–102. [Google Scholar] [CrossRef]
- Naniche, D.; Oldstone, M. Generalized immunosuppression: How viruses undermine the immune response. Cell. Mol. Life Sci. CMLS 2000, 57, 1399–1407. [Google Scholar] [CrossRef] [PubMed]
- Zingle, K.; Summerfield, A.; Mccullough, K.C.; Inumaru, S. Induction of apoptosis in bone marrow neutrophil-lineage cells by classical swine fever virus. J. Gen. Virol. 2001, 82, 1309–1318. [Google Scholar]
- Summerfield, A.; Knoetig, S.M.; Tschudin, R.; Mccullough, K.C. Pathogenesis of granulocytopenia and bone marrow atrophy during classical swine fever involves apoptosis and necrosis of uninfected cells. Virology 2000, 272, 50–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruschke, C.J. Glycoprotein e^ of pestiviruses induces apoptosis in lymphocytes of several species. J. Virol. 1997, 71, 6692–6696. [Google Scholar]
- Meyers, G.; Saalmüller, A.; Büttner, M. Mutations abrogating the rnase activity in glycoprotein e of the pestivirus classical swine fever virus lead to virus attenuation. J. Virol. 2000, 73, 10224–10235. [Google Scholar]
- Ruggli, N.; Summerfield, A.; Fiebach, A.R.; Guzylack-Piriou, L.; Tratschin, J.D. Classical swine fever virus can remain virulent after specific elimination of the interferon regulatory factor 3-degrading function of npro. J. Virol. 2008, 83, 817–829. [Google Scholar] [CrossRef] [Green Version]
- Johns, H.L.; Doceul, V.; Everett, H.; Crooke, H.; Charleston, B.; Seago, J. The classical swine fever virus n-terminal protease npro binds to cellular hax-1. J. Gen. Virol. 2010, 91, 2677–2686. [Google Scholar] [CrossRef]
- Tang, Q.; Guo, K.; Kang, K.; Zhang, Y.; He, L.; Wang, J. Classical swine fever virus ns2 protein promotes interleukin-8 expression and inhibits mg132-induced apoptosis. Virus Genes 2011, 42, 355–362. [Google Scholar] [CrossRef]
- Tang, Q.H.; Zhang, Y.M.; Fan, L.; Tong, G.; Dai, C. Classic swine fever virus ns2 protein leads to the induction of cell cycle arrest at s-phase and endoplasmic reticulum stress. Virol. J. 2010, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Hurley, J.; Schulman, B. Atomistic autophagy: The structures of cellular self-digestion. Cell 2014, 157, 300–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levine, B.; Kroemer, G. Autophagy in the pathogenesis of disease. Cell 2008, 132, 27–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jordan, T.X.; Randall, G. Manipulation or capitulation: Virus interactions with autophagy. Microbes Infect. 2012, 14, 126–139. [Google Scholar] [CrossRef] [PubMed]
- Kuballa, P.; Nolte, W.M.; Castoreno, A.B.; Xavier, R.J. Autophagy and the immune system. Annu. Rev. Immunol. 2012, 30, 611–646. [Google Scholar] [CrossRef] [PubMed]
- Chiramel, A.I.; Brady, N.R.; Bartenschlager, R. Divergent roles of autophagy in virus infection. Cells 2013, 2, 83–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, P.; Münz, C. Autophagy and mammalian viruses: Roles in immune response, viral replication, and beyond. Adv. Virus Res. 2016, 95, 149. [Google Scholar]
- Yoshimori, T. How Autophagy Saves Mice: A Cell-Autonomous Defense System against Sindbis Virus Infection. Cell Host Microbe 2010, 7, 83–84. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Wang, S.; Han, S.; Xie, K.; Liu, Y. Plant bax inhibitor-1 interacts with atg6 to regulate autophagy and programmed cell death. Autophagy 2017, 13, 7. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Spector, S.A. Human immunodeficiency virus type-1 infection inhibits autophagy. AIDS 2008, 22, 695–699. [Google Scholar] [CrossRef] [Green Version]
- Tovilovic, G.; Ristic, B.; Siljic, M.; Nikolic, V.; Kravic-Stevovic, T.; Dulovic, M.; Milenkovic, M.; Knezevic, A.; Bosnjak, M.; Bumbasirevic, V.; et al. Mtor-independent autophagy counteracts apoptosis in herpes simplex virus type 1-infected u251 glioma cells. Microbes Infect. 2013, 15, 615–624. [Google Scholar] [CrossRef]
- Zhou, Z.; Jiang, X.; Liu, D.; Fan, Z.; Hu, X.; Yan, J.; Wang, M.; Gao, G. Autophagy is involved in influenza a virus replication. Autophagy 2009, 5, 321–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heaton, N.S.; Glenn, R. Dengue virus and autophagy. Viruses 2011, 3, 1332–1341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dreux, M.; Chisari, F.V. Impact of the autophagy machinery on hepatitis c virus infection. Viruses 2011, 3, 1342–1357. [Google Scholar] [CrossRef] [PubMed]
- Chiramel, A.I.; Best, S.M. Role of autophagy in zika virus infection and pathogenesis. Virus Res. 2017, 254, 34–40. [Google Scholar] [CrossRef]
- Vandergaast, R.; Fredericksen, B.L. West nile virus (wnv) replication is independent of autophagy in mammalian cells. PLoS ONE 2012, 7, e45800. [Google Scholar] [CrossRef]
- Sharma, M.; Bhattacharyya, S.; Sharma, K.B.; Chauhan, S.; Asthana, S.; Abdin, M.Z.; Vratis, S.; Kalia, M. Japanese encephalitis virus activates autophagy through xbp1 and atf6 er stress sensors in neuronal cells. J. Gen. Virol. 2017, 98, 1027. [Google Scholar] [CrossRef]
- Seglen, P.O.; Gordon, P.B.; Holen, I. Non-selective autophagy. Semin. Cell Biol. 1990, 1, 441. [Google Scholar]
- Shaid, S.; Brandts, C.H.; Serve, H.; Dikic, I. Ubiquitination and selective autophagy. Cell Death Differ. 2013, 20, 21–30. [Google Scholar] [CrossRef]
- Youle, R.J.; Narendra, D.P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 2011, 12, 9–14. [Google Scholar] [CrossRef]
- Ding, W.X.; Yin, X.M. Mitophagy: Mechanisms, pathophysiological roles, and analysis. Biol. Chem. 2012, 393, 547–564. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.J.; Khan, M.; Quan, J.; Till, A.; Subramani, S.; Siddiqui, A. Hepatitis b virus disrupts mitochondrial dynamics: Induces fission and mitophagy to attenuate apoptosis. PLoS Pathog. 2013, 9, e1003722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.J.; Syed, G.H.; Siddiqui, A.; Ou, J.H.J. Hepatitis c virus induces the mitochondrial translocation of parkin and subsequent mitophagy. PLoS Pathog. 2013, 9, e1003285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.J.; Syed, G.H.; Khan, M.; Chiu, W.W.; Sohail, M.A.; Gish, R.G.; Siddiqui, A. Hepatitis c virus triggers mitochondrial fission and attenuates apoptosis to promote viral persistence. Proc. Natl. Acad. Sci. USA 2014, 111, 6413–6418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Summerfield, A.; Hofmann, M.A.; Mccullough, K.C. Low density blood granulocytic cells induced during classical swine fever are targets for virus infecion. Vet. Immunol. Immunopathol. 1998, 63, 289–301. [Google Scholar] [CrossRef]
- He, L.; Zhang, Y.; Fang, Y.; Liang, W.; Lin, J.; Cheng, M. Classical swine fever virus induces oxidative stress in swine umbilical vein endothelial cells. BMC Vet. Res. 2014, 10, 279. [Google Scholar] [CrossRef] [Green Version]
- Geisler, S.; Holmström, K.M.; Skujat, D.; Fiesel, F.C.; Rothfuss, O.C.; Kahle, P.J.; Springer, W. Pink1/parkin-mediated mitophagy is dependent on vdac1 and p62/sqstm1. Nat. Cell Biol. 2010, 12, 119–131. [Google Scholar] [CrossRef]
- Sebastián, D.; Sorianello, E.; Segalés, J.; Irazoki, A.; Ruiz-Bonilla, V.; Sala, D.; Planet, E.; Berenguer-Llergo, A.; Muñoz, J.P.; Sánchez-Feutrie, M.; et al. Mfn2 deficiency links age-related sarcopenia and impaired autophagy to activation of an adaptive mitophagy pathway. EMBO J. 2016, 35, 1677–1693. [Google Scholar] [CrossRef]
- Maiuri, M.C.; Zalckvar, E.; Kimchi, A.; Kroemer, G. Self-eating and self-killing: Crosstalk between autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 2007, 8, 741–752. [Google Scholar] [CrossRef]
- Chen, Q.; Kang, J.; Fu, C. The independence of and associations among apoptosis, autophagy, and necrosis. Signal. Transduct. Target. Ther. 2018, 3, 18. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, L.; Shi, Z.; Zhao, S.; Wang, F.; Zhou, T.; Liu, B.; Bao, J.K. Programmed cell death pathways in cancer: A review of apoptosis, autophagy and programmed necrosis. CellProlifer 2012, 90, 487–498. [Google Scholar] [CrossRef]
- Tylichová, Z.; Straková, N.; Vondráček, J.; Vaculová, A.H.; Kozubík, A.; Hofmanová, J. Activation of autophagy and pparγ protect colon cancer cells against apoptosis induced by interactive effects of butyrate and dha in a cell type-dependent manner: The role of cell differentiation. J. Nutr. Biochem. 2017, 39, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Kuro, M.; Yoshizawa, K.; Uehara, N.; Lai, C.Y.; Kanematsu, S.; Miki, H.; Kimura, A.; Yuri, T.; Takahashi, K.; Tsubura, A. Calpain inhibition restores basal autophagy and suppresses apoptosis on mnu-induced photoreceptor cell injury in mice. Invest. Ophthalmol Vis. Sci. 2011, 52, 4352. [Google Scholar]
- Eisenberg-Lerner, A.; Bialik, S.; Simon, H.U.; Kimchi, A. Life and death partners: Apoptosis, autophagy and the cross-talk between them. Cell Death Differ. 2009, 16, 966–975. [Google Scholar] [CrossRef] [PubMed]
- Gou, H.; Zhao, M.; Fan, S.; Yuan, J.; Liao, J.; He, W.; Xu, H.; Chen, J. Autophagy induces apoptosis and death of t lymphocytes in the spleen of pigs infected with CSFV. Sci. Rep. 2017, 7, 13577. [Google Scholar] [CrossRef] [Green Version]
- Pei, J.; Deng, J.; Ye, Z.; Wang, J.; Gou, H.; Liu, W.; Zhao, M.; Liao, M.; Yi, L.; Chen, J. Absence of autophagy promotes apoptosis by modulating the ros-dependent rlr signaling pathway in classical swine fever virus-infected cells. Autophagy 2016, 2, 1738–1758. [Google Scholar] [CrossRef] [Green Version]
- Kesavardhana, S.; Kanneganti, T.D. Mechanisms governing inflammasome activation, assembly and pyroptosis induction. Int. Immunol. 2017, 29, 5. [Google Scholar] [CrossRef]
- Fink, S.L.; Cookson, B.T. Apoptosis, pyroptosis, and necrosis: Mechanistic description of dead and dying eukaryotic cells. Infect. Immun. 2005, 73, 1907. [Google Scholar] [CrossRef] [Green Version]
- Case, C.L. Regulating caspase-1 during infection: Roles of nlrs, aim2, and asc. Yale J. Biol. Med. 2011, 84, 333–343. [Google Scholar]
- Miao, E.A.; Leaf, I.A.; Treuting, P.M.; Mao, D.P.; Dors, M.; Sarkar, A.; Warren, S.E.; Wewers, M.D.; Aderem, A. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat. Immunol. 2010, 11, 1136–1142. [Google Scholar] [CrossRef]
- He, W.T.; Wan, H.; Hu, L.; Chen, P.; Wang, X.; Huang, Z.; Yang, Z.H.; Zhong, C.Q.; Han, J. Gasdermin d is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res. 2015, 25, 1285–1298. [Google Scholar] [CrossRef]
- Si, M.M.; Kanneganti, T.D. Gasdermin d: The long-awaited executioner of pyroptosis. Cell Res. 2015, 25, 1183. [Google Scholar]
- Sahoo, M.; Ceballos-Olvera, I.; Barrio, L.D.; Re, F. Role of the inflammasome, il-1β, and il-18 in bacterial infections. Sci. World J. 2011, 11, 2037–2050. [Google Scholar] [CrossRef] [Green Version]
- Fettelschoss, A.; Kistowska, M.; Leibundgutlandmann, S.; Beer, H.D.; Johansen, P.; Senti, G.; Contassot, E.; Bachmann, M.F.; French, L.E.; Oxenius, A. Inflammasome activation and il-1β target il-1α for secretion as opposed to surface expression. Proc. Natl. Acad. Sci. USA 2011, 108, 18055–18060. [Google Scholar] [CrossRef] [Green Version]
- Summerfield, A.; Alves, M.; Ruggli, N.; Bruin, M.G.M.D.; Mccullough, K.C. High ifn-α responses associated with depletion of lymphocytes and natural ifn-producing cells during classical swine fever. J. Interferon Cytokine Res. 2006, 26, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Cordón, P.J.; Romanini, S.; Salguero, J.F.; Núnez, A.; Bautista, J.M.; Jover, A.; Gómez-Villamos, J.C. Apoptosis of thymocytes related to cytokine expression in experimental classical swine fever. J. Compar. Pathol. 2002, 127, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Cordon, P.J.; Nunez, A.; Salguero, F.J.; Carrasco, L.; Gómez-Villamandos, J.C. Evolution of T lymphocytes and cytokine expression in classical swine fever (CSF) virus infection. J. Comp. Pathol. 2005, 132, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Yuan, J.; Deng, S.; Chen, Y.; Xie, B.; Wu, K.; Zhu, M.; Xu, H.; Huang, Y.; Yang, J. Activation of Interleukin-1β Release by the Classical Swine Fever Virus Is Dependent on the NLRP3 Inflammasome, Which Affects Virus Growth in Monocytes. Front. Cell Infect. Microbiol. 2018, 8, 225. [Google Scholar] [CrossRef] [PubMed]
- Hazenberg, M.D.; Hamann, D.; Schuitemaker, H.; Miedema, F. T cell depletion in hiv-1 infection: How cd4+ t cells go out of stock. Nat. Immunol. 2000, 1, 285–289. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, S.-m.; Mao, Q.; Yi, L.; Zhao, M.-q.; Chen, J.-d. Apoptosis, Autophagy, and Pyroptosis: Immune Escape Strategies for Persistent Infection and Pathogenesis of Classical Swine Fever Virus. Pathogens 2019, 8, 239. https://doi.org/10.3390/pathogens8040239
Ma S-m, Mao Q, Yi L, Zhao M-q, Chen J-d. Apoptosis, Autophagy, and Pyroptosis: Immune Escape Strategies for Persistent Infection and Pathogenesis of Classical Swine Fever Virus. Pathogens. 2019; 8(4):239. https://doi.org/10.3390/pathogens8040239
Chicago/Turabian StyleMa, Sheng-ming, Qian Mao, Lin Yi, Ming-qiu Zhao, and Jin-ding Chen. 2019. "Apoptosis, Autophagy, and Pyroptosis: Immune Escape Strategies for Persistent Infection and Pathogenesis of Classical Swine Fever Virus" Pathogens 8, no. 4: 239. https://doi.org/10.3390/pathogens8040239
APA StyleMa, S. -m., Mao, Q., Yi, L., Zhao, M. -q., & Chen, J. -d. (2019). Apoptosis, Autophagy, and Pyroptosis: Immune Escape Strategies for Persistent Infection and Pathogenesis of Classical Swine Fever Virus. Pathogens, 8(4), 239. https://doi.org/10.3390/pathogens8040239