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Abstract: Bats are natural reservoirs of severe acute respiratory syndrome coronavirus (SARS-CoV)
and Middle East respiratory syndrome CoV (MERS-CoV). Scotophilus bat CoV-512 demonstrates
potential for cross-species transmission because its viral RNA and specific antibodies have been
detected in three bat species of Taiwan. Understanding the cell tropism of Scotophilus bat CoV-512 is the
first step for studying the mechanism of cross-species transmission. In this study, a lentivirus-based
pseudovirus was produced using the spike (S) protein of Scotophilus bat CoV-512 or SARS-CoV as
a surface protein to test the interaction between coronaviral S protein and its cell receptor on 11
different cells. Susceptible cells expressed red fluorescence protein (RFP) after the entry of RFP-bound
green fluorescence protein (GFP)-fused S protein of Scotophilus bat CoV-512 (RFP-Sco-S-eGFP) or
RFP-SARS-S pseudovirus, and firefly luciferase (FLuc) activity expressed by cells infected with
FLuc-Sco-S-eGFP or FLuc-SARS-S pseudovirus was quantified. Scotophilus bat CoV-512 pseudovirus
had significantly higher entry efficiencies in Madin Darby dog kidney epithelial cells (MDCK), black
flying fox brain cells (Pabr), and rat small intestine epithelial cells (IEC-6). SARS-CoV pseudovirus
had significantly higher entry efficiencies in human embryonic kidney epithelial cells (HEK-293T),
pig kidney epithelial cells (PK15), and MDCK cells. These findings demonstrated that Scotophilus bat
CoV-512 had a broad host range for cross-species transmission like SARS-CoV.

Keywords: Scotophilus bat coronavirus-512; severe acute respiratory syndrome-coronavirus;
pseudovirus; cell receptor

1. Introduction

Coronaviruses (CoVs) can cause severe diseases in humans and domestic animals. For instance,
severe acute respiratory syndrome CoV (SARS-CoV) caused 8096 laboratory-confirmed cases with
774 deaths (10% mortality rate) between 2002 and 2003 [1], Middle East respiratory syndrome CoV
(MERS-CoV) caused 2464 laboratory-confirmed cases with 850 deaths (34% mortality rate) from 2012
until 31 August in 2019 [2], porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis
virus (TGEV) caused high mortality in young pigs, infectious bronchitis virus (IBV) caused respiratory
and renal diseases in chickens, and mouse hepatitis virus (MHV) caused hepatitis and demyelinating
encephalitis in mice [3]. Since the outbreak of SARS-CoV, the highest number of novel CoV species has
been discovered in many bat species [4]. Bat CoVs genetically close to SARS-CoV [5], MERS-CoV [6],
human CoV (HCoV)-229E [7], and HCoV-NL63 [8] were detected and may contribute to the emergence
of novel CoVs through several cross-species transmission events [4].
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Bats are the natural reservoirs of SARS-CoV, MERS-CoV, and HCoV-NL63. SARS-CoV and
HCoV-NL63 gain cellular entry through angiotensin-converting enzyme 2 (ACE2) [9], whereas
MERS-CoV utilizes dipeptidyl peptidase-4 (DPP4) as its entry receptor [10]. The entry receptor is
considered a hallmark of coronaviral cross-species transmissibility. SARS-related CoV isolated from
Rhinolophus bats can use the ACE2 of humans, civets, and Rhinolophus bats as its cell receptor to infect
cells originated from human and many other animal species [11]. Both MERS-CoV and bat CoV-HKU4
can use bat and human DPP4 to infect cells originating from humans, camels, bats, and other animal
species [12,13] and HCoV-NL63 can replicate in the lung cell line from tricolored bats [8].

Little information is available regarding cross-species events for animal CoVs. A previous study
detected Scotophilus bat CoV-512 in four different bat species along with Miniopterus bat CoV-1A
and Rhinolophus SARS-related CoV in Taiwan through the reverse transcription polymerase chain
reaction (RT-PCR) [14]. Antibodies specific to the nucleocapsid (N) protein fragments of Scotophilus bat
CoV-512 were detected in serum collected from three bat species, namely Scotophilus kuhlii, Miniopterus
fuliginosus, and Rhinolophus monoceros [15]. A close relationship and possible gene recombinants
between Scotophilus bat CoV-512 and PEDV were observed through sequence alignments [14,16].
The results of the cell entry assay also indicated that PEDV can infect cells originating from pigs (PK15
and ST), humans (Huh-7 and MRC5), monkeys (Vero) and Tadarida brasiliensis bats (Tb1-Lu) [17]. We
selected Scotophilus bat CoV-512 as our study target because it demonstrates the potential of cross-species
infection and may play a role in the emergence or transmission of PEDV. Both molecular and serological
evidences proved that Scotophilus bat CoV-512 can infect multiple animal species [14,15]. To investigate
host tropisms contributing to cross-species transmission of Scotophilus bat CoV-512, we produced a
pseudovirus bearing the full-length spike (S) protein of Scotophilus bat CoV-512 in the envelope (Env)
protein-defective, red fluorescence protein (RFP)-expression or luciferase (FLuc)-expression human
immunodeficiency virus type 1 (HIV-1) backbone for performing a cell entry assay in 11 different cells
from humans, bats, dogs, cats, pigs, rats, and monkeys.

2. Results

2.1. Generation of Primary Kidney Cells from Miniopterus fuliginosus

Organs were prepared from individual bat and only primary kidney cells from one Eastern
bent-winged bat (Miniopterus fuliginosus), named as MFK, were still viable after eight passages for
performing a pseudovirus entry assay. Primary kidney cells from one Chestnut bat (Scotophilus kuhlit)
and primary lung cells from one Formosa leaf-nosed bat (Hipposideros armiger terasensis) did not
maintain their growth after three passages.

2.2. Generation of Pseudoviruses

Lentivirus pseudotyped with the green fluorescence protein (GFP)-fused S protein of Scotophilus bat
CoV-512 (Sco-S-eGFP), the S protein of SARS-CoV (SARS-S) or the glycoprotein (G) of vesicular stomatitis
virus (VSV-G) was generated to study the cell entry of viruses in 11 different cells. The pseudovirus
without the glycoprotein on the surface (Aenv) was produced as the control of mock infection.
The generated pseudoviruses allowed for a single-cycle infection in different cells. After pseudoviruses
carrying the transfer plasmid encoding red fluorescent protein (RFP) entered susceptible cells, RFP
was expressed and observed under a microscope at 48 h post infection (hpi). Pseudoviruses carrying
the transfer plasmid encoding luciferase (FLuc) were generated to quantify the entry efficiencies of
pseudoviruses in susceptible cells by measuring luciferase activity at 48 hpi.

2.2.1. Pseudovirus Production after Co-Transfection

To generate pseudotyped Scotophilus bat CoV-512 (RFP-Sco-S-eGFP), SARS-CoV (RFP-SARS-S),
and VSV (RFP-VSV-G), three plasmids were co-transfected into human embryonic kidney epithelial
cells (HEK-293T) cells. After 72 h post co-transfection with the packing plasmid (pCMVdeltaR8.91),
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transfer plasmid (pLAS2w.RFP-C.Pneo), and plasmid encoding the surface protein (pEGFP-Sco-S,
PCMV-5ARS-S, and pMD.G), red fluorescence from the expressed RFP was observed in HEK-293T cells
producing the RFP-Sco-S-eGFP, RFP-SARS-S, or RFP-VSV-G pseudoviruses. Green fluorescence from the
expressed GFP fused with the carboxyl terminal S protein of Scotophilus bat CoV-512 could be observed
only in HEK-293T cells producing the RFP-Sco-S-eGFP pseudovirus (Figure 1). No fluorescence could
be observed in HEK-293T cells producing the FLuc-SARS-S or FLuc-VSV-G pseudovirus carrying the
transfer plasmid (pLAS2w-Fluc-Ppuro) encoding luciferase. Green fluorescence from the expressed
GFP fused to the S protein of Scotophilus bat CoV-512 could be observed in HEK-293T cells producing
the FLuc-Sco-5-eGFP pseudovirus.

Bright field (HEK-2

Red fluorescence (RFP) Green fluorescence (eGFP)

93T cells)
MR N

(a) Scotophilus bat coronavirus-512 pseudovirus (RFP-Sco-S-eGFP), 72 h post transfection

Bright field (HEK-293T Red fluorescence (REFP)

el

TR

(b) Severe acute respiratory syndrome coronavirus pseudovirus (RFP-SARS-S), 72 h post transfection

Bright field (HEK-293T cells) Red fluorescence (RFP)

(c) Vesicular stomatitis virus pseudovirus (RFP-VSV-G), 72 h post transfection

Figure 1. Pseudovirus production after co-transfection of three plasmids in human embryonic
kidney (HEK)-293T cells at 72 h post transfection. (a) Production of red fluorescence protein
(RFP)-bound green fluorescence protein (GFP)-fused S protein of Scotophilus bat coronavirus (CoV)-512
pseudovirus (RFP-Sco-S-eGFP): pictures from left to right are HEK-293T cells under bright field, red
fluorescence produced by the expressed red fluorescence protein (RFP) from the transfer plasmid
pLAS2w.RFP-C.Pneo, green fluorescence produced by the expressed green fluorescence protein (GFP)
fused with the carboxyl terminal spike (S) protein of Scotophilus bat CoV-512. (b) Production of severe
acute respiratory syndrome (SARS)-CoV (RFP-SARS-S): HEK-293T cells on the left and red fluorescence
from RFP on the right. (c) Production of vesicular stomatitis virus (VSV) pseudovirus (RFP-VSV-G):
HEK-293T cells on the left and red fluorescence from RFP on the right. The scale bars represent 100 pum.

2.2.2. Pseudovirus Titration

The infectivity of the generated pseudoviruses was determined by counting red fluorescent cells
and also green fluorescent cells in the case of RFP-Sco-S-eGFP. The titers of the three pseudoviruses
were calculated after the inoculation of serially tenfold-diluted pseudoviruses in HEK-293T cells
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(Figure 2). The average titers of RFP-Sco-S-eGFP, RFP-SARS-S, and RFP-VSV-G in HEK-293T cells
were 5.4 x 10%, 2.4 x 10%, and 8 x 10* TCIDsp/mL (infectious dose infecting 50% of tissue culture),
respectively. For the pseudoviruses carrying the luciferase gene, the average titers of FLuc-Sco-S-eGFP,
FLuc-SARS-S, and FLuc-VSV-G in HEK-293T cells were 3 x 102, 1.5 x 103, and 1.2 x 10°, respectively.
The generated pseudoviruses were stored at —80 °C and virus titers began to decrease after 1 month
of storage at —80 °C. Therefore, a fresh batch of pseudoviruses was prepared for pseudovirus entry
assays performed for different batches of cells at different times.

x1 x101 x102 x10-3 x10+

(@) Scotophilus bat coronavirus-512 pseudovirus (RFP-Sco-S-eGFP) in HEK-293T cells

x101 x102 x10-3 x10

(b) Severe respiratory syndrome coronavirus pseudovirus (RFP-SARS-S) in HEK-293T cells

x10! x102 x10-3 x10

(c) Vesicular stomatitis virus pseudovirus (RFP-VSV-G) in HEK-293T cells

Figure 2. Pseudovirus titration from the dilutions of X1 to x107* into HEK-293T cells. (a) Infection
of Scotophilus bat coronavirus-512 pseudovirus (RFP-Sco-S-eGFP) was indicated by the expression of
red fluorescent protein (RFP) in cells on top panel and by the expression of green fluorescent protein
(GFP) fused to the spike (S) protein on bottom panel. (b) Infection of severe acute respiratory syndrome
coronavirus pseudovirus (RFP-SARS-S) was indicated by the expression of RFP. (c) Infection of vesicular
stomatitis virus pseudovirus (RFP-VSV-G) was indicated by the expression of RFP. The scale bars
represent 100 pum.

2.2.3. Detection of Pseudoviral Proteins after Infection

The detection of the p24 protein in the lentiviral backbone of pseudoviruses by using the
immunofluorescent antibody assay (IFA) could confirm the infection of the six pseudoviruses. Cells
infected with RFP-Sco-5-eGFP or FLuc-Sco-S-eGFP expressed not only RFP but also GFP, which could
be observed directly or detected using the IFA. After 49 hpi, positive green IFA signals for p24 were
observed in HEK-293T cells infected with RFP-Sco-S-eGFP, RFP-SARS-S, or RFP-VSV-G (Figure 3a—).
In addition, positive green IFA signals for GFP were observed in cells infected with RFP-Sco-S-eGFP
(Figure 3d). After 48 hpi, positive green IFA signals for p24 were observed in MFK cells infected with
FLuc-VSV-G or FLuc-SARS-S (Figure 3e,f). In cells infected with FLuc-Sco-S-eGFP, positive red IFA
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signals for GFP and green fluorescence produced by GFP could be observed and are shown in the
merged images with red and green fluorescence images (Figure 3g,h).

a) RFP-VSV-G, anti-p24 (b) RFP-SARS-S, anti-p24 (c) RFP-Sco-S-eGFP, anti-p24 (d) RFP-Sco-S-eGFP, anti-GFP

(e) FLuc-VSV-G, anti-p24 (f) FLuc-SARS-S, anti-P24 (g) FLuc-Sco-S-eGFP, anti-p24 h) FLuc-Sco-S-eGFP, anti-GFP

Figure 3. Detection of p24 protein in the lentiviral backbone of pseudoviruses and green
fluorescence protein (GFP) fused with the spike protein of Scotophilus bat coronavirus-512 pseudovirus
(RFP-Sco-S-eGFP) by immunofluorescence antibody (IFA) assay. (a) Positive green IFA signals for p24
in HEK-293T cells infected with vascular stomatitis virus pseudovirus (RFP-VSV-G). (b) Positive green
IFA signals for p24 in HEK-293T cells infected with severe acute respiratory syndrome coronavirus
pseudovirus (RFP-SARS-S). (c) Positive green IFA signals for p24 in HEK-293T cells infected with
RFP-Sco-S-eGFP. (d) Positive green IFA signals for GFP in HEK-293T cells infected with RFP-Sco-S-eGFP.
(e) Positive green IFA signals for p24 in MFK cells infected with FLuc-VSV-G. (f) Positive green
IFA signals for p24 in MFK cells infected with FLuc-SARS-S. (g) Positive red IFA signals and green
fluorescence from GFP in MFK cells infected with FLuc-Sco-S-eGFP. (h) Positive red IFA signals
and green fluorescence from GFP in MFK cells infected with FLuc-Sco-S-eGFP. Blue parts are DAPI
(4’ 6-diamidino-2-phenylindole) staining cell nucleus. The scale bars represent 100 pm.

2.2.4. Electron Microscopic Morphology of Pseudoviruses

The generated Scotophilus bat CoV-512 pseudoviruses RFP-Sco-S-eGFP showed a characteristic
corona-structure and vesicular stomatitis virus pseudovirus RFP-VSV-G did not have corona-structure
under the electron microscope (Figure 4).

(@) Scotophilus bat coronavirus-512 pseudovirus (b) Vesicular stomatitis virus pseudovirus

Figure 4. Electron microscopic images of pseudoviruses. (a) Scotophilus bat coronavirus-512 pseudovirus
(RFP-Sco-S-eGFP). (b) Vesicular stomatitis virus pseudovirus (RFP-VSV-G).

2.3. Cell Entries of RFP-Pseudoviruses

Cell entries of RFP-Sco-S-eGFP, RFP-SARS-S, and RFP-VSV-G were determined by counting
red fluorescent cells and all tested cells were susceptible to the infection of the three pseudoviruses
(Figure 5). At 48 hpi of the pseudovirus RFP-Sco-5-eGFP, more than 100 cells showing red fluorescence
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per field were observed in Vero (average 544 red fluorescent cells), MFK (463), 293T (384), IEC-6
(320), Caco-2 (249), and Fcwf-4 (151) cells and less than 50 cells showing red fluorescence per field
were observed in Pabr (49), MDCK (45), Palu (30), Paki (15), and PK15 (15) cells. Cells infected with
RFP-Sco-S-eGFP also showed green fluorescence from the expressed GFP fused to the S protein of
Scotophilus bat CoV-512. At 48 hpi of the pseudovirus RFP-SARS-S, more than 100 cells showing red
fluorescence per field were observed in IEC-6 (539), Vero (440), Caco-2 (404), 293T (350), MFK (202),
PK15 (171), Palu (151), and Pabr (130) cells and less than 80 cells showing red fluorescence per field
were observed in Paki (72), Fewf-4 (69), and MDCK (25) cells. At 48 hpi of the pseudovirus RFP-VSV-G,
more than 100 cells showing red fluorescence per field were observed in 293T (345), Fcwf-4 (276),
Pabr (189), MFK (174), PK15 (160), Caco-2 (143), and IEC-6 (126) cells and less 100 cells showing red
fluorescence per field were observed in MDCK (91), Paki (39), Vero (29), and Palu (16) cells.

RFP-Sco-S-eGFP RFP-SARS-S REP-VSV-G
Bright field RFP and GFP (384) Bnght field RFP (350) Bright field REP (345)

(a) Human (Homo sapzens) embryomc kidney epithelial cells, HEK-293T

RFP-Sco-S-eGFP REP-SARS-S RFP-VSV-G
REP (404) Bright field REP (143)

Brl]ht field RFP and GFP (249) Bright field

(b) Human (Homo sapiens) colorectal adenocarcinoma cells, Caco-2

RFP-5c0-S-eGFP RFP-SARS-S REP-VSV-G
REP (440) Bright field REP (29)

Brliht field RFP and GFP (544) Bright field

(c) African green monkey (Chlorocebus aethiops) kidney epithelial cells, Vero

RFP-Sco-S-eGFP RFP-SARS-S RFP-VSV-G
Bright field RFP and GFP (320) Bright field RFP (539) Bright field REFP (126)

(d) Rat (Rattus norvegicus) small intestine epithelial cells, IEC-6

RFP-Sco-S-eGFP RFP-SARS-S REP-VSV-G

Brliht field RFP and GFP (15) Bright f1eld REP (160)

Brl]ht field RFP (171)

(e) Pig (Sus scrofa) kidney epithelial cells, PK15

Figure 5. Cont.
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RFP-Sco-S-eGFP RFP-SARS-S RFP-VSV-G

Brliht field RFP and GFP (45) Brliht field RFP (25) REP (91)

RFP-Sco-5-eGFP RFP-SARS-S RFP-VSV-G
Bright field RFP and GFP (151) Bright field REFP (69) Bright field REP (276)

(g) Cat (Felis catus) whole fetus cells, Fewf-4

Br1‘ht field

(f) Madin Darby dog (Canis familiaris) kidney epithelial cells, MDCK

REP-Sco-S-eGFP RFP-SARS-S REP-VSV-G
Bright field RFP and GFP (49) Bright field RFP (130) Bright field RFP (189)

h) Black flying fox (Pteropus alecto) brain cells, Pabr

REP-Sco-5-eGFP RFP-SARS-S REP-VSV-G
Bright field RFP and GFP (30) Bright field RFP (151) Bright field RFP (16)

(i) Black flying fox (Pteropus alecto) lung epithelial cells, Palu

REP-5c0-5-eGFP RFP-SARS-S REP-VSV-G
Bright field REP and GFP (15) Bright fi REP (72) Bright field RFP (39)

- - i - . -
ik ;i

(j) Black flying fox (Pteropus alecto) kidney epithelial cells, Paki

RFP-Sco-S-eGFP RFP-SARS-S RFP-VSV-G
‘Brlght field RFP and GFP (463) Bright field RFP (202) Bright field RFP (174)

(k) Eastern bent-winged bat (Miniopterus fuligionsus) kidney epithelial cells, MFK

Figure 5. Cell entries of pseudoviruses carrying red fluorescence protein (RFP) gene are represented
by red fluorescence images (RFP) for severe acute respiratory syndrome coronavirus pseudovirus
(RFP-SARS-S, middle panels) and vesicular stomatitis virus pseudovirus (RFP-VSV-G, right panels),
and merged red and green fluorescence images (RFP and GFP) present the entries of Scotophilus
bat coronavirus-512 pseudovirus (RFP-Sco-S-eGFP, left panels) in 11 different cells. (a) HEK-293T:
human (Homo sapiens) embryonic kidney epithelial cells; (b) Caco-2: human (Homo sapiens) colorectal
adenocarcinoma cells; (c) Vero: African green monkey (Chlorocebus aethiops) kidney epithelial cells;
(d) IEC-6: rat (Rattus norvegicus) small intestine epithelial cells; (e) PK15: pig (Sus scrofa) kidney
epithelial cells; (f) MDCK: Madin Darby dog (Canis familiaris) kidney epithelial cells; (g) Fcwf-4: cat
(Felis catus) whole fetus cells; (h) Pabr: black flying fox (Pteropus alecto) brain cells; (i) Palu: black flying
fox (Pteropus alecto) lung epithelial cells; (j) Paki: black flying fox (Pteropus alecto) kidney epithelial cells;
(k) MFK: Eastern bent-winged bat (Miniopterus fuliginosus) kidney epithelial cells. Bright field images
of cells were used as reference. The scale bars represent 100 pum.
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2.4. Cell Entries of FLuc-Pseudoviruses

After the inoculation of tenfold-diluted (10_1) pseudovirus FLuc-Sco-5-eGFP, FLuc-SARS-S, or
FLuc-VSV-G, all 11 tested cells showed luciferase activity (RLU) stronger than those from 293T cells
inoculated with the pseudovirus without the glycoprotein on the surface (Aenv) as mock infection
control (Figure 6). Dilution effects were observed between the cells inoculated with 1071, 1072, or
1072 of pseudoviruses. At 48 hpi of FLuc-Sco-S-eGFP, MDCK had average RLU value of 9126, which
was the highest RLU among 11 cells followed by Pabr (6708), IEC-6 (3822), PK15 (2835), Paki (2270),
Palu (2225), Caco-2 (1715), 293T (2804), MFK (1683), Fcwf-4 (1188), and Vero (909) cells. At 48 hpi
of FLuc-SARS-S diluted in 1071, 293T (25,136) cells had the highest RLU followed by PK15 (24,723),
MDCK (16,024), Caco-2 (4463), Pabr (2398), Paki (2382), Vero (2118), Palu (1201), IEC-6 (859), MFK (623),
and Fewf-4 (466) cells. At 48 hpi of FLuc-VSV-G diluted in 107!, 293T (815,628) cells had the highest
RLU followed by Fewf-4 (185,952), IEC-6 (57,767), PK15 (48,325), Pabr (40,356), MDCK (33,626), Vero
(20,886), Caco-2 (12,466), Palu (9510), MFK (8477), and Paki (3181) cells. All 11 cells were susceptible to
Scotophilus bat CoV-512 because the RLU vales of all 11 cells inoculated with 107! of pseudovirus were
significantly higher than those of mock infection (p < 0.01 to p < 0.0001). All tested cells except Fcw{-4
cells showed significantly higher RLU values than those of mock infection and they were susceptible
to SARS-CoV (p < 0.05 to p < 0.0001). For VSV, all tested cells except MFK cells showed significantly
higher RLU values than those of mock infection (p < 0.05 to p < 0.0001). Some cells could still produce
significantly higher RLU values than those from mock infection after the inoculation of pseudovirus
diluted into 1072 and 1073 (p < 0.05 to p < 0.0001).
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(a) Scotophilus bat coronavirus-512 pseudovirus Fluc-Sco-S-eGFP

Figure 6. Cont.
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(c) Vesicular stomatitis virus pseudovirus FLuc-VSV-G

Figure 6. Cell entry efficiencies of pseudoviruses diluted in 107!, 1072, and 1073 were measured
by luciferase activity (RLU) at 48 h post infection. (a) Infection by Scotophilus bat coronavirus-512
pseudovirus (FLuc-Sco-5-eGFP). (b) Infection by severe acute respiratory syndrome coronavirus
pseudovirus (FLuc-SARS-S). (c) Infection by vesicular stomatitis virus pseudovirus (FLuc-VSV-G).
Mock presents the HEK-293T cells inoculated with the pseudovirus without surface glycoprotein (Aenv)



Pathogens 2019, 8, 259 10 of 21

as negative control. HEK-293T: human (Homo sapiens) embryonic kidney epithelial cells; Caco-2: human
(Homo sapiens) colorectal adenocarcinoma cells; Vero: African green monkey (Chlorocebus aethiops)
kidney epithelial cells; IEC-6: rat (Rattus norvegicus) small intestine epithelial cells; PK15: pig (Sus
scrofa) kidney epithelial cells; MDCK: Madin Darby dog (Canis familiaris) kidney epithelial cells; Fewf-4:
cat (Felis catus) whole fetus cells; Pabr: black flying fox (Pteropus alecto) brain cells; Palu: black flying
fox (Pteropus alecto) lung epithelial cells; Paki: black flying fox (Pteropus alecto) kidney epithelial cells;
MFK: Eastern bent-winged bat (Miniopterus fuliginosus) kidney epithelial cells. Error bars indicate the
standard deviation (n = 12). RLU values from each set of cells were compared to RLU value of Mock
infection in 293T cells by using multiple ¢ tests (* p < 0.05; ** p < 0.01; ** p < 001; **** p < 0.0001).

Supplementary Figure S1 shows the entry efficiencies of different pseudoviruses in tenth dilution
(107! on the basis of cell lines to allow a more direct comparison of virus infectivity in one species.
Pseudovirus FLuc-VSV-G had the highest entry efficiencies that other two pseudoviruses did in all
cells except Palu, where FLuc-Sco-S-eGFP had the highest entry efficiency. No significant differences
were observed in Vero, Paki, and MDCK cells infected with FLuc-Sco-S-eGFP and FLuc-SARS-S
pseudoviruses, respectively. Pseudovirus FLuc-Sco-S-eGFP had significantly higher entry efficiencies
than FLuc-SARS-S did in IEC-6, Pabr, Palu, and Fcwf-4 cells. From an evolutionary perspective,
FLuc-Sco-S-eGFP had higher entry efficiencies in bat cells than FLuc-SARS-S did even though
FLuc-SARS-S had significantly higher entry efficiency in MFK cells than FLuc-Sco-S-eGFP did.

2.5. Detection of Cell Receptors on Different Cells

The number of cells reacted to the antibodies specific to aminopeptidase N (APN), ACE2, or DPP4
was counted by Image ] program (Figure 7). Strong positive IFA responses meant there were more than
200 positive cells per microscopic field and weak positive IFA responses meant less than 200 positive
cells per microscopic field. HEK-293T, MDCK, and Fcwf-4 cells had strong positive IFA responses and
PK15 had a weak positive IFA response to APN. HEK-293T, MDCK, and Vero cells had strong positive
IFA responses and PK15, Caco-2, Fcwf-4, and MFK cells had weak positive IFA responses to ACE2.
HEK-293T and Paki cells had strong positive IFA responses and PK15, Vero, and Caco-2 cells had weak
positive IFA responses to DPP4. In summary, HEK-293T and PK15 cells were tested positive for APN,
ACE2, and DPP4. Vero and Caco-2 cells were tested positive for ACE2 and DPP4. Fcwf-4 and MDCK
cells were tested positive for APN and ACE2. MFK cells were tested positive only for ACE2. Paki
cells were tested positive only for DPP4. Pabr, ICE-6, and Palu cells were tested negative for APN,
ACE2, and DPP4. The results of cell receptors detection (Figure 7) and FLuc pseudovirus entry assay
(Figure 6 and Supplementary Figure S1) are summarized in Table 1.
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APN 5937 234 Paki ; PK-15 1 MDCK 244

Vero - Pabr - Caco-2 - IEC-6 -

Palu - Fcwf-4 321 MFK -

(a) Aminopeptidase N (APN)
293T 457 Paki - PK-15 41 MDCK 209
W o ° i

Vero 208 Pabr - Caco-2 39 IEC-6 -

Palu - Fewf-4 174 MFK 159

(b) Angiotensin-converting enzyme 2 (ACE2)

Figure 7. Cont.
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DPP4 5537 379 Paki 210 PK-15 8 MDCK ;

Vero 119 Pabr - Caco-2 53 IEC-6 -

MFK -

1

T]

(o]

=

g

I
1

Palu

(c) Dipeptidyl peptidase 4 (DPP4)

Figure 7. Detection of cell receptors by immunofluorescence antibody (IFA) assay. (a) Aminopeptidase
N (APN) detected by 1:100 rabbit anti-human APN antibody (Bioss). (b) Angiotensin-converting
enzyme 2 (ACE2) detected by 1:200 rabbit anti-human ACE2 antibody (abcam). (c) Dipeptidyl
peptidase-4 (DPP4) detected by 1:00 goat anti-human DPP4 antibody (R&D). Green fluorescent signals
indicated IFA positive responses. Blue parts were DAPI staining cell nucleus. 293T: human (Homo
sapiens) embryonic kidney epithelial cells; Caco-2: human (Homo sapiens) colorectal adenocarcinoma
cells; Vero: African green monkey (Chlorocebus aethiops) kidney epithelial cells; IEC-6: rat (Rattus
norvegicus) small intestine epithelial cells; PK15: pig (Sus scrofa) kidney epithelial cells; MDCK: Madin
Darby dog (Canis familiaris) kidney epithelial cells; Fcwf-4: cat (Felis catus) whole fetus cells; Pabr: black
flying fox (Pteropus alecto) brain cells; Palu: black flying fox (Pteropus alecto) lung epithelial cells; Paki:
black flying fox (Pteropus alecto) kidney epithelial cells; MFK: Eastern bent-winged bat (Miniopterus
fuliginosus) kidney epithelial cells. The scale bars represent 100 um.
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Table 1. Summary of cell receptors staining and pseudovirus entry assay.

Cell ! Source  Tissue = APN? ACE23 DPP4* FLuc-Sco-S-eGFP5  FLuc-SARS-S °
HEK-293T Human  Kidney  >200 >200 >200 2804 °f& a
Caco-2 Human Colon Neg.” <200 <200 1715 def 4463 4
Vero Monkey  Kidney Neg. >200 <200 909 f& 21184
IEC-6 Rat Intestine Neg. Neg. Neg. 3822 ¢ 859 4
PK15 Pig Kidney <200 <200 <200 2835 <d 24,723
MDCK Dog Kidney  >200 >200 Neg. 91262 16,024
Fewf-4 Cat Fetus >200 <200 Neg. 1188 ©f8 466 4
Pabr Fruit Bat Brain Neg. Neg. Neg. 6708 ° 2398 d
Palu FruitBat  Lung Neg. Neg. Neg. 2225 de 12014
Paki Fruit Bat ~ Kidney = Neg. Neg. >200 2270 de 2382 4
MFK Bat Kidney =~ Neg. <200 Neg. 1683 def 6234

! Cells in this column are HEK-293T: human (Hormo sapiens) embryonic kidney epithelial cells; Caco-2: human
(Homo sapiens) colorectal adenocarcinoma cells; Vero: African green monkey (Chlorocebus aethiops) kidney epithelial
cells; IEC-6: rat (Rattus norvegicus) small intestine epithelial cells; PK15: pig (Sus scrofa) kidney epithelial cells;
MDCK: Madin Darby dog (Canis familiaris) kidney epithelial cells; Fewf-4: cat (Felis catus) whole fetus cells; Pabr:
black flying fox (Pteropus alecto) brain cells; Palu: black flying fox (Pteropus alecto) lung epithelial cells; Paki: black
flying fox (Pteropus alecto) kidney epithelial cells; MFK: Eastern bent-winged bat (Miniopterus fuliginosus) kidney
epithelial cells. > APN: aminopeptidase N. 3 ACE2: angiotensin converting enzyme 2. * DPP4: dipeptidyl peptidase
4. 5 FLuc-Sco-S-eGFP: Scotophilus bat coronavirus-512 pseudovirus carrying luciferase gene. ¢ FLuc-SARS-S:
severe acute respiratory syndrome coronavirus pseudovirus carrying luciferase gene. 7 Neg. means negative
immunofluorescent antibody (IFA) assay responses to cell receptors. Average RLU values (n = 12) from cells
inoculated with 107! of pseudoviruses are presented. Statistical significance of differences in RLU values between
different cells were tested by two-way ANOVA with Tukey post hoc test and groups with different letters indicate
statistical differences (p < 0.05).

3. Discussion

In this study, entry efficiencies of Scotophilus bat CoV-512 and SARS-CoV in 11 different cells were
evaluated using a lentivirus-based pseudovirus system. HEK-293T cells were selected as they have
been used for the production of pseudoviruses; additionally, several cell lines were selected because
they were used for the isolation and maintenance of viruses in other studies, such as Vero and PK15
cells for PEDV [17], MDCK cells for influenza viruses [18], and Fcwf-4 cells for FCoV [19]. Given
that CoVs tend to replicate in the epithelial cells of enteric and respiratory tracts, Caco-2 and IEC-6
were selected. MFK cells were selected because viral RNA and specific antibodies of Scotophilus bat
CoV-512 were detected in Miniopterus fuliginosus. Pteropus bat-cell lines (Paki, Pabr, Palu) were selected
as alternative bat cells for comparison. All the 11 tested cells were susceptible to the entry of Scotophilus
bat CoV-512 or SARS-CoV pseudovirus in varying degrees. Scotophilus bat CoV-512 pseudovirus had
significantly higher entry efficiencies in MDCK, Pabr, and IEC-6 cells, followed by PK15, HEK-293T,
Paki, Palu, Caco-2, MFK, Fcwf-4, and Vero cells. Notably, only MDCK, PK15, HEK-293T, and Fcwf-4
cells tested positive for APN, the proposed cell receptor for PEDV [20]. However, APN as a cell
receptor of PEDV is not completely conclusive, and conflicting results have demonstrated blockage of
PEDV infection by pAPN antibodies [20], although soluble APN could not inhibit PEDV infection [21].
As porcine APN-knockout swine testis cells did not inhibit PEDV infection [21] and APN-knockout
pigs are not resistant to PEDV infection [22], APN may not be required for PEDV cell entry but it can
promote the infectivity through aminopeptidase activity [23]. In this study, polybrene, trypsin or other
proteases were not used for the pseudovirus entry assay; therefore, the cell entry of pseudovirus was
determined by receptor recognition, implying that Scotophilus bat CoV-512 could enter susceptible cells
via cell receptors other than APN.

The polyclonal antibody to human APN (Bioss) used in this study was produced in the rabbits
inoculated with a keyhole limpet hemocyanin (KLH)-conjugated synthetic peptide derived from human
APN. Its cross-reactivity was tested by Bioss company and it can cross-react to mouse and rat APN. We
compared the sequences of APN from the animal species of the tested cells in this study (Figure 8), the
APN of Eastern bent-winged bat (Miniopterus fuliginosus) had the closest phylogenetic relationship
with pig (Sus scrofa) APN, followed by black flying fox (Pteropus alecto) APN. Interestingly, human APN
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had closer phylogenetic relationship with bat APN than dog and cat APN. Therefore, the negative
IFA results to anti-APN antibody in Pabr cells from black flying fox and MFK cells from Eastern
bent-winged bat could result from the lack of APN receptor but not from the lack of cross-reactivity
of anti-APN antibody because MDCK cells from dogs and Fcwf-4 cells from cats showed strong
positive IFA signals. There was no correlation between the phylogenetic relationship of APNs and the
infectivity pattern of Scotophilus bat CoV-512. For ACE2, human ACE2 had the closest relationship to
monkey ACE2, followed by rat, pig, bats, dogs, and cats (Figure 8). The polyclonal antibody to human
ACE2 provided by abcam company has cross-reactivity to ACE2 from cat, ferret, and macaque monkey.
Interestingly, the phylogenetic tree of ACE2 could roughly match the infectivity pattern of SARS-CoV.
The findings indicate that Scotophilus bat CoV-512 may have different evolutionary perspective on
cross-species transmission than SARS-CoV. In future study, we will try to identify the cell receptor
used by Scotophilus bat CoV-512 and use real-time PCR with species-specific primers to quantify the
mRNA levels of the identified cell receptor because the detection of cell receptors by using IFA would
encounter the limitations of antibodies unable to bind to the cell receptors of different animal species.

APN r Chilorecebus sabaens  XP_00T988570
Home sapiens XP_ 005254949
—— HRattus nervegicus NP 112274

——  Oryciolagus cunicuius - NP_001075795

FPreropus alecto XP 006905412

— Miniopterus natalensis  XP_ 016072651

——— Sus serofa NP_999442
Canis lnpuis NP 001139506
Felis catus NP 001009252

ACE2 Rattus norvegicus NP_001012006
—E Oryctolagus cuniculus  XP_002719891
Homo sapiens NP_068576
_|: Chlorocebus sabaeus ~ XP_007989304
— Sus scrofa NP_001116542
| — Pteropus alecto XP_006911709
I— Miniopterus natalensis  XP_016058453
] Canis lupus NP 001158732
Felis catus NP 001034545
DPP4 |: Chlorocebus sabaeus  XP_007963342
Homo sapiens NP 001926
—————— Rattus norvegicus NP_036921
Miniopterus natalensis XP_016052462
_|: Pteropus alecto XP_006921185
Sus scrofa NP 999422
] Canis lupus XP 013966335
Felis catus NP_001009838

Figure 8. Phylogenetic trees of aminopeptidase N (APN), angiotensin-converting enzyme-2 (ACE2) and
dipeptidyl peptidase-4 (DPP4) from the animal species tested in this study. HEK-293T: human (Homo
sapiens) embryonic kidney epithelial cells; Caco-2: human (Homo sapiens) colorectal adenocarcinoma
cells; Vero: African green monkey (Chlorocebus aethiops) kidney epithelial cells; IEC-6: rat (Rattus
norvegicus) small intestine epithelial cells; PK15: pig (Sus scrofa) kidney epithelial cells; MDCK: Madin
Darby dog (Canis familiaris) kidney epithelial cells; Fewf-4: cat (Felis catus) whole fetus cells; Pabr: black
flying fox (Pteropus alecto) brain cells; Palu: black flying fox (Pteropus alecto) lung epithelial cells; Paki:
black flying fox (Pteropus alecto) kidney epithelial cells; MFK: Eastern bent-winged bat (Miniopterus
fuliginosus) kidney epithelial cells.
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APN was identified as the cell receptor of HCoV-229E, TGEV, FCoV, and possibly PEDV. In human,
APN is mostly expressed in epithelial cells of the kidney, intestine, and respiratory tract; granulocytes,
monocytes, fibroblasts, endothelial cells, cerebral pericytes at the blood-brain barrier, synaptic
membranes of cells in the central nerve system (CNS). The highest expression levels of APN can be
found in the small intestinal and renal tubular epithelial cells [24]. The tissue specificity and distribution
of APN were correlated with the high entry efficiencies of FLuc-Sco-S-eGFP pseudovirus in dog kidney
cells (MDCK)), black flying fox brain cells (Pabr), rat small intestine cells (IEC-6), pig kidney cells
(PK15), and black flying fox kidney cells (Paki). However, different animal species may have different
tissue specificity and distribution of APN even though little information is available. According to the
studies on DPP4 distribution, insectivorous bats primarily express DPP4 in the gastro-intestinal (GI)
tract and kidneys, frugivorous bats express DPP4 in the respiratory and GI tracts [25], camels express
DPP4 in the upper respiratory tract [26], and humans express DPP4 mainly in the lower respiratory
tract [27]. Different tissue distribution of DPP4 in different animal species leads to different tissue
tropism of MERS-CoV and varied disease severity [24-27]. ACE2 was identified as the cell receptor
of SARS-CoV and HCoV-NL63 although two CoVs bind to different parts of ACE2 [28]. The highest
expression levels of ACE2 are found in small intestine, duodenum, gall bladder, kidney, testis, and
heart [24]. All three cells showing the highest entry efficiencies of FLuc-SARS-S pseudovirus were
kidney epithelial cells: HEK-293T, PK15, and MDCK cells, and they all tested positive for ACE2.

CoV spike proteins require proteolytic activation to mediate virus entry into cells but different
CoVs use different types of proteases for their cell entry mechanism. PEDV uses lysosomal cysteine
proteases (cathepsin L and cathepsin B) to activate S protein, whereas other CoVs use proprotein
convertases or cell-surface serine proteases [29]. Extracellular trypsin could activate the entry of
PEDV, SARS-CoV and MERS-CoV into host cells [29]. Scotophilus bat CoV-512 is more closely related
to PEDV than to other known alpha-CoVs, such as TGEV, HCoV-229E, and HCoV-NL63 [14,16,30].
Although Scotophilus bat CoV-512 may have an entry mechanism similar to that of PEDV, differences
are expected because amino acid sequence identity between the S proteins from Scotophilus bat CoV-512
and PEDV is only 48% for the S1 subunit containing the receptor-binding domain [17]. For example,
although MDCK was not susceptible to PEDV [17], it showed the highest luciferase activity for the
entry of Scotophilus bat CoV-512. Both Scotophilus bat CoV-512 and PEDV can enter PK15 [17] due
to the potential gene recombination between the two CoVs during co-infection. Further studies are
warranted to verify the types of requisite proteases for proteolytic activation of the S protein for cell
entry by Scotophilus bat CoV-512.

SARS-CoV pseudovirus had significantly higher entry efficiencies in HEK-293, PK15, and MDCK
cells, followed by Caco-2, Pabr, Paki, Vero, Palu, IEC-6, MFK, and Fcwf-4 cells. Studies have shown
Vero, Caco-2, PK15, and HEK-293T cells as susceptible to infection by live SARS-CoV Urbani and
HKU 39849 strains, but not MDCK cells even though these cells can express ACE2 [31,32]. HEK-293T,
Vero, and Caco-2 cells were also susceptible to the entry of SARS-CoV pseudovirus; however, no data
about the susceptibility of MDCK cells to SARS-CoV pseudovirus are available [33]. Strong luciferase
activity detected in the MDCK cells inoculated with FLuc-SARS-S pseudovirus indicated viral entry
mediated by the binding between SARS-CoV S protein and ACE2 on the surface of MDCK cells without
interference from other cellular factors, such as glycosylation on S protein [34] or ACE2 [35], which
can cause MDCK cells to resist the infection by live SARS-CoV [31]. Moreover, different glycosylation
profiles can determine the host range of CoVs. For example, human APN can lose or gain its ability to
support HCoV-229E infection when a glycosylation site is added to human APN or removed from the
mouse APN, respectively [36,37]. Additionally, the addition of a glycosylation site to the rat ACE2
allows it to support SARS-CoV infection [38]. Further studies on glycosylation profiles can be insightful
on the range of hosts of Scotophilus bat CoV-512 once its cell receptor is identified.

Coronavirus infection and replication are very complex processes requiring many viral and host
proteins. We used the pseudoviruses carrying S protein of Scotophilus bat CoV-512 or SARS-CoV to
study the cell entry of CoV. There are still many questions to be answered after we identified the cells
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susceptible to Scotophilus bat CoV-512 or SARS-CoV, including the identification of cell receptor for
Scotophilus bat CoV-512, the glycosylation patterns of S protein and cell receptor, and the usage of
viral and host proteases. In addition to cell entry, successful cross-species transmission requires viral
replication and strategies to evade the innate immune responses of the new hosts. Marburg virus study
showed that the increase in virus replication in bats may correlate with an increased incidence of human
spillover events [39]. The correlations between virus replication rates and cross-species transmission of
CoVs have not been explored for bats. Replicase and E protein are essential for CoV replication [40,41].
Accessory proteins of CoVs are not required for virus replication in cultured cells [42] but may play an
important role in pathogenesis in natural hosts [43]. Viral proteins, in particular nsp1 [44], nsp3 [45], N
protein and the SARS-CoV accessary protein ORF6, ORF3b [46], and ORF4a [47], prevent IFN induction.
Scotophilus bat CoV-512 would need to evolve a strategy to overcome the innate immune responses in
new host cells.

The susceptibility of bat cells to MERS-CoV has been increasingly studied since the first
laboratory-confirmed case in 2012 because of its close phylogenetic relationships with Tylonycteris
bat CoV-HKU4, Pipistrellus bat CoV-HKUSb [6], and Hypsugo pulveratus bat CoV-HKU25 [48]. Twelve
primary bat-cell lines from seven bat species were tested for their susceptibility to MERS-CoV,
SARS-CoV, and HCoV-229E [49]. While HCoV-229E cannot infect any bat cells and SARS-CoV can
only infect kidney cells of Rhinolophus sinicus, MERS-CoV can infect five different bat cells from four
different bat species; additionally, Muller’s study demonstrated that MERS-CoV could infect five
different bat cells from five different bat species [49,50]. These findings indicate that MERS-CoV has
a much broader cell tropism than SARS-CoV and HCoV-229E. Although, in this study, MERS-CoV
pseudovirus was not tested, IFA was used to determine the distribution of DPP4 on the 11 tested
cells. A previous study showed that DPP4 surface expression varied between species but did not
correlate with infectivity [51] although significantly higher mRNA expression levels of DPP4 were
detected in the five bat cells susceptible to MERS-CoV than those in non-susceptible cells [49]. In the
future, comparison of susceptibility of these cells to Scotophilus bat CoV-512 and MERS-CoV should
be noteworthy.

4. Materials and Methods

4.1. Animal Experiment Ethics

The protocol for capturing and sampling of bats was approved by the Chung Yuan Christian
University Animal Care and Use committee and the agriculture bureau of regional government
(No. 105024).

4.2. Primary Bat Cell Culture

One Eastern bent-winged bat (Miniopterus fuliginosus) was captured for collecting samples for
CoV detection and euthanized later due to a complex bone fracture of the left wing. Lung, liver,
kidney, heart, spleen, and intestine were collected and diced into small pieces. After the tissue pieces
were washed with cold processing medium (Mg?* and Ca?*-free phosphate-buffered saline (PBS)
containing 200 mg/L disodium EDTA, 100 unit/mL penicillin, 100 pg/mL streptomycin), cold 0.25%
trypsin in PBS containing 200 mg/L disodium ethylenediaminetetraacetic acid (EDTA) was added for
the incubation at 4 °C overnight. Next, the tubes containing tissue were incubated at 37 °C on a shaking
platform for 1 h. Trypsin-treated cells were pelleted by centrifugation at 800x g for 5 min and then
re-suspended into Gibco™ Eagle’s Minimal Essential Medium containing Earle’s salts (EMEM, Thermo
Fisher, Waltham, MA, USA) containing 1X penicillin/streptomycin and 10% fetal bovine serum (FBS,
Biological Industries, Cromwell, CT, USA)After 3 to 5 days of incubation in a humidified incubator
with 5% CO, at 37 °C, the cells were passaged and maintained up to eight passages. Cell culture
medium for propagation was DMEM with 15% FBS, 1.5 g NaHCO3, 1 mM sodium pyruvate, and 1x
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penicillin-streptomycin-amphotericin B solution. The primary kidney cells were named as Miniopterus
fuliginous kidney cells, MFK.

4.3. Cell Line Culture

Ten cell lines from different organs and animal species were chosen in this study (Table 1). Cell
culture medium for HEK-293T, MDCK, Paki, Pabr, Palu, and PK15 cells was Gibco™ Dulbecco’s
Modified Eagle Medium (DMEM) (Thermo Fisher) with 10% FBS (Biological Industries), 1.5 g NaHCO3,
1 mM sodium pyruvate (Thermo Fisher), and 1x penicillin-streptomycin—amphotericin B solution
(Biological Industries). Cell culture medium for Vero, Caco-2, and Fcwf-4 cells was Minimum Essential
Medium Eagle (MEM) (Sigma-Aldrich, St. Louis, MO, USA) with 10% FBS, 1.5 g NaHCO3, 1 mM
sodium pyruvate, 0.01% NEAA (Thermo Fisher), and 1x penicillin-streptomycin—amphotericin B
solution. Cell culture medium for IEC-6 was DMEM with 5% FBS, 0.1 U/mL 95% bovine insulin
(Sigma-Aldrich), 1.5¢ NaHCO3;, 1 mM sodium pyruvate, and 1x penicillin-streptomycin-amphotericin
B solution. Eleven cells were divided into four groups according to their growth rate. HEK-293T, Paki,
PK15, and MDCK cells belonged to the first group and grew to 70% confluence for one day. Vero, Pabr,
Caco-2, and IEC-6 cells belonged to the second group and grew to 70% confluence for two days. Palu
and Fcwf-4 cells belonged to the third group and grew to 70% confluence for three days. MFK cells
needed four days to grow to 70% confluence and belonged to the fourth group.

4.4. Pseudovirus Generation

Non-replicative lentivirus system from the RNAi core at Academia Sinica was used to generate
two types of pseudovirus: one carried the reporter gene encoding red fluorescence protein (RFP)
and another one carried the reporter gene encoding firefly luciferase (FLuc). HEK-293T cells were
co-transfected with packaging plasmid pCMVdeltaR8.91, transfer plasmid pLAS2w.RFP-C.Pneo or
pLAS2w.FLuc.Ppuro, and surface protein plasmid containing the designed gene encoding surface
protein (pEGFP-5co-5 for Sco-S, pCMV-SARS-S (Sino Biological, Beijing, China) for SARS-S, and pMD.G
for VSV-G) by using X-tremeGENE HP transfection reagent (Sigma-Aldrich. The ratio of transfection
reagent (uL) to transfected plasmid (png) was 2:1:2 for packing plasmid pCMVdeltaR8.91, transfer
plasmid pLAS2w.RFP-C.Pneo or pLAS2w.FLuc.Ppuro, and surface protein plasmid. The supernatant
containing the produced pseudovirus was collected at 96 h after transfection and concentrated by
filtering through 100 K Macrosep®centrifugal devices (PALL, Hong Kong, China) at 3000x g at 4 °C
for 45 min. The titers of pseudoviruses were determined by calculating the infectious dose infecting
50% of tissue culture (TCID5¢/mL).

4.5. Pseudovirus Entry Assay

Eleven cell lines in four groups were inoculated serially ten-fold diluted pseudovirus when the
density of cells reached 70% confluence. For the cells inoculated with pseudovirus RFP-Sco-S-eGFP,
RFP-SARS-S, or RFP-VSV-G, fresh medium was supplemented after 2 h of inoculation at 37 °C and
the status of pseudovirus entry was monitored by observing red fluorescent or green fluorescent
cells for three days. For the cells inoculated with pseudovirus FLuc-Sco-S-eGFP, FLuc-SARS-S, or
FLuc-VSV-G, the supernatant was discarded and 20 uL of lysis buffer from luciferase assay kit (Promega,
Madison, WI, USA) was added. After 20 min of gentle shaking, 100 uL of luciferase reagent was
added and FLuc activity (RLU) in cell lysate was measured by Synergy HT microplate reader (Bio-Tek,
Winooski, VI, USA). Pseudovirus without the glycoprotein on the surface (Aenv) was produced by
HEK-293T cells co-transfected with packing plasmid and transfer plasmid but without surface protein
plasmid and used to inoculate HEK-293T cells as a mock infection control. Each dilution of each
pseudovirus inoculated 12 wells and each well was measured three times for average value.
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4.6. Immunofluorescent Antibody Assay

At 48 hpi, the pseudovirus-inoculated cells were fixed with the mixture of acetone and methanol
(80:20) at room temperature (RT) for 5 min, washed with PBS at RT for 10 min twice and ready for
primary antibody staining. To detect the backbone of lentivirus-based pseudovirus, the cells were
incubated with 1:100 monoclonal antibody (mAb) to HIV p24 (Millipore, Burlington, MA, USA) as
primary antibody at 4 °C overnight, washed with PBS at RT for 10 min twice, incubated with 1:50
fluorescein isothiocyanate (FITC)-conjugated goat anti-mouse IgG (KPL) as secondary antibody at
RT for 1 h in dark, washed with PBS at RT for 10 min twice, mounted in DAPI solution (10 mg/L) at
RT for 5 min, and covered with cover slip for observation. To detect the GFP fused to S protein of
Scotophilus bat CoV-512 pseudovirus, the mAb to GFP (Thermo Fisher in 1:200 was used as primary
antibody and 1:100 Alexa Fluor® 594 AffiniPure goat anti-mouse IgG (Jackson ImmunoResearch,
West Grove, PA, USA) was used as secondary antibody to distinguish the green fluorescence from GFP
and red fluorescence from bound secondary antibodies.

4.7. Detection of Cell Receptor

To detect the cell receptors for CoVs, the polyclonal antibody (pAb) to ACE2, APN, and DPP4
were used in IFA. The cells with 90% confluent density were fixed with the mixture of acetone and
methanol (80:20) at RT for 30 min, washed with PBS at RT for 10 min twice, incubated with 5% BSA at
RT for 1 h, washed with PBS at RT for 10 min three times, incubated with primary antibody at 4 °C
overnight in the dark, washed with PBS at RT for 10 min three times, incubated with FITC-conjugated
secondary antibody at RT for 1 h in dark, washed with PBS at RT for 10 min three times, mounted
in DAPI solution (10 mg/L) at RT for 5 min, and covered with cover slip for observation. Polyclonal
antibodies to three cell receptors were used as primary antibodies: rabbit pAb to human ACE2 (1:200,
Abcam, Cambridge, UK), rabbit pAb to human APN (1:100-1:500, Bioss, Boston, MA, USA), goat pAb
to human DPP4 (1:66-1:1000, R&D systems, Minneapolis, MN, USA). Secondary antibodies to rabbit
and goat primary antibodies were goat anti-rabbit IgG (1:100, KPL, Gaithersburg, MD, USA) and rabbit
anti-goat IgG (1:100, KPL).

4.8. Statistical Analysis

Two-way analysis of variations (ANOVA) with Tukey post hoc test was used to compare RLU
values of different cells inoculated the same pseudovirus and multiple ¢-test was used to compare RLU
values of each cell to that of the mock infected cell using the GraphPad Prism 6 software package.
p values of <0.05 were considered as statistically significance. Symbols were assigned as follows:
p <0.05,% p <0.01, **; p < 0.001, ***; p < 00001, ****,

5. Conclusions

Lentivirus-based pseudovirus containing S protein of Scotophilus bat CoV-512 or SARS-CoV was
generated to determine the susceptibility of 11 different cells for the entry of two CoVs. Scotophilus
bat CoV-512 pseudovirus had significantly higher entry efficiencies in MDCK, Pabr, and IEC-6 cells
and SARS-CoV pseudovirus had significantly higher entry efficiencies in HEK-293, PK15, and MDCK
cells. The susceptibility to virus was not completely matched to the distribution to cell receptor APN
to PEDV, ACE2 to SARS-CoV, or DPP4 to MERS-CoV. Further characterizations of glycosylation or
other factors affecting the interaction between CoV S protein and cell receptor are very important to
understand the entry mechanism of CoVs, especially Scotophilus bat CoV-512.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-0817/8/4/259/s1,

Figure S1: Cell entry efficiencies of pseudoviruses diluted in 107! measured by luciferase activity (RLU) at 48 h
post infection are shown in different cells.
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