The Transcriptional Profile of Trichophyton rubrum Co-Cultured with Human Keratinocytes Shows New Insights about Gene Modulation by Terbinafine
Abstract
:1. Introduction
2. Results
2.1. Viability of HaCaT Keratinocytes after Co-Culture in the Presence of Terbinafine
2.2. RNA-seq Analysis of T. rubrum Genes in Response to Co-Culture in the Presence of Terbinafine
2.3. Effect of Terbinafine on the Differential Expression of T. rubrum Genes Co-Cultured with Hacat Keratinocytes
2.4. Functional Categorization of Differentially Expressed Genes
2.5. Validation by qPCR
3. Discussion
3.1. Transmembrane Transporters and Antifungal Resistance
3.2. The Role of Terbinafine in Inhibition of Ergosterol Biosynthesis
3.3. Genes Identified after Co-Culture of T. rubrum in the Presence of Terbinafine
3.3.1. Sulfite Efflux Pump SSU1 (TERG_02694)
3.3.2. Thioredoxin (TERG_08480)
3.3.3. Glycosyl Hydrolase (TERG_02742)
3.3.4. Transcription Factor C2H2 (TERG_03861)
3.3.5. Βeta-lactamase and Metallo-β-lactamase (TERG_ 05698 and TERG_08360)
3.3.6. N-acetylglucosamine-6-phosphate Deacetylase (TERG_03223)
4. Materials and Methods
4.1. Trichophyton rubrum, Media and Growth Conditions
4.2. Keratinocytes, Media and Growth Conditions
4.3. Chemicals
4.4. Co-Culture Assay and Conditions
4.5. RNA Isolation and Integrity Analysis
4.6. Library Construction and Sequencing
4.7. Sequence Data Analysis
4.8. Validation of the Data
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bouchara, J.P.; Mignon, B.; Chaturvedi, V. Dermatophytes and Dermatophytoses: A Thematic Overview of State of the Art, and the Directions for Future Research and Developments. Mycopathologia 2017, 182, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Aly, R. Ecology and epidemiology of dermatophyte infections. J. Am. Acad. Dermatol. 1994, 31, S21–S25. [Google Scholar] [CrossRef]
- Havlickova, B.; Czaika, V.A.; Fredrich, M. Epidemiological trends in skin mycosis worldwide. Mycosis 2008, 51, 2–15. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Foley, K.A.; Versteeg, S.G. New Antifungal Agents and New Formulations Against Dermatophytes. Mycopathologia 2017, 182. [Google Scholar] [CrossRef]
- Kaur, R.; Panda, P.S.; Sardana, K.; Khan, S. Mycological Pattern of Dermatomycoses in a Tertiary Care Hospital. J. Trop. Med. 2015, 2015. [Google Scholar] [CrossRef]
- Komoto, T.T.; Bitencourt, T.A.; Silva, G.; Beleboni, R.O.; Marins, M.; Fachin, A.L. Gene Expression Response of Trichophyton rubrum during Coculture on Keratinocytes Exposed to Antifungal Agents. Evid. Based Complement. Altern. Med. 2015, 2015. [Google Scholar] [CrossRef]
- Cantelli, B.A.M.; Bitencourt, T.A.; Komoto, T.T.; Beleboni, R.O.; Marins, M.; Fachin, A.L. Caffeic acid and licochalcone A interfere with the glyoxylate cycle of Trichophyton rubrum. Biomed. Pharmacother. 2017, 96, 1389–1394. [Google Scholar] [CrossRef]
- Bitencourt, T.A.; Macedo, C.; Franco, M.E.; Rocha, M.C.; Moreli, I.S.; Cantelli, B.A.M.; Sanches, P.R.; Beleboni, R.O.; Malavazi, I.; Passos, G.A.; et al. Trans-chalcone activity against Trichophyton rubrum relies on an interplay between signaling pathways related to cell wall integrity and fatty acid metabolism. BMC Genom. 2019, 20, 411. [Google Scholar] [CrossRef]
- Abdel-Rahman, S. Newland Update on terbinafine with a focus on dermatophytoses. Clin. Cosmet. Investig. Dermatol. 2009, 49. [Google Scholar] [CrossRef]
- Ryder, N.S. Terbinafine: Mode of action and properties of the squalene epoxidase inhibition. Br. J. Dermatol. 1992, 126, 2–7. [Google Scholar] [CrossRef]
- Odds, F.C.; Brown, A.J.P.; Gow, N.A.R. Antifungal agents: Mechanisms of action. Trends Microbiol. 2003, 11, 272–279. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Leidich, S.D.; Isham, N.; Leitner, I.; Ryder, N.S.; Ghannoum, M.A. Clinical Trichophyton rubrum strain exhibiting primary resistance to terbinafine. Antimicrob. Agents Chemother. 2003, 47, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Osborne, C.S.; Leitner, I.; Favre, B.; Neil, S.; Osborne, C.S.; Leitner, I.; Favre, B.; Ryder, N.S. Amino Acid Substitution in Trichophyton rubrum Squalene Epoxidase Associated with Resistance to Terbinafine Amino Acid Substitution in Trichophyton rubrum Squalene Epoxidase Associated with Resistance to Terbinafine. Antimicrob. Agents Chemother. 2005, 49, 2840–2844. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.; Maeda, M.; Alshahni, M.M.; Tanaka, R.; Yaguchi, T.; Bontems, O.; Salamin, K.; Fratti, M.; Monod, M. Terbinafine Resistance of Trichophyton Clinical Isolates Caused by Specific Point Mutations in the Squalene Epoxidase Gene. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef] [PubMed]
- Rudramurthy, S.M.; Shankarnarayan, S.A.; Dogra, S.; Shaw, D.; Mushtaq, K.; Paul, R.A.; Narang, T.; Chakrabarti, A. Mutation in the Squalene Epoxidase Gene of Trichophyton interdigitale and Trichophyton rubrum Associated with Allylamine Resistance. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef] [PubMed]
- Schøsler, L.; Andersen, L.K.; Arendrup, M.C.; Sommerlund, M. Recurrent terbinafine resistant Trichophyton rubrum infection in a child with congenital ichthyosis. Pediatr. Dermatol. 2018, 35, 259–260. [Google Scholar] [CrossRef]
- Peres, N.T.D.A.; Maranhão, F.C.A.; Rossi, A.; Martinez-Rossi, N.M. Dermatophytes: Host-pathogen interaction and antifungal resistance. An. Bras. Dermatol. 2010, 85, 657–667. [Google Scholar] [CrossRef]
- Zhang, W.; Yu, L.; Yang, J.; Wang, L.; Peng, J.; Jin, Q. Transcriptional profiles of response to terbinafine in Trichophyton rubrum. Appl. Microbiol. Biotechnol. 2009, 82, 1123–1130. [Google Scholar] [CrossRef]
- Maranhão, F.C.A.; Paião, F.G.; Martinez-Rossi, N.M. Isolation of transcripts over-expressed in human pathogen Trichophyton rubrum during growth in keratin. Microb. Pathog. 2007, 43, 166–172. [Google Scholar] [CrossRef]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef]
- Wolf, T.; Kämmer, P.; Brunke, S.; Linde, J. Two’s company: Studying interspecies relationships with dual RNA-seq. Curr. Opin. Microbiol. 2018, 42, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Aprianto, R.; Slager, J.; Holsappel, S.; Veening, J.W. Time-resolved dual RNA-seq reveals extensive rewiring of lung epithelial and pneumococcal transcriptomes during early infection. Genome Biol. 2016, 17, 198. [Google Scholar] [CrossRef] [PubMed]
- Wesolowska-Andersen, A.; Everman, J.L.; Davidson, R.; Rios, C.; Herrin, R.; Eng, C.; Janssen, W.J.; Liu, A.H.; Oh, S.S.; Kumar, R.; et al. Dual RNA-seq reveals viral infections in asthmatic children without respiratory illness which are associated with changes in the airway transcriptome. Genome Biol. 2017, 18, 12. [Google Scholar] [CrossRef]
- Tierney, L.; Linde, J.; Müller, S.; Brunke, S.; Molina, J.C.; Hube, B.; Schöck, U.; Guthke, R.; Kuchler, K. An interspecies regulatory network inferred from simultaneous RNA-seq of Candida albicans invading innate immune cells. Front. Microbiol. 2012, 3, 85. [Google Scholar] [CrossRef] [PubMed]
- Meyer, F.E.; Shuey, L.S.; Naidoo, S.; Mamni, T.; Berger, D.K.; Myburg, A.A.; van den Berg, N.; Naidoo, S. Dual RNA-Sequencing of Eucalyptus nitens during Phytophthora cinnamomi Challenge Reveals Pathogen and Host Factors Influencing Compatibility. Front. Plant Sci. 2016, 7, 191. [Google Scholar] [CrossRef]
- Petrucelli, M.F.; Peronni, K.; Sanches, P.R.; Komoto, T.T.; Matsuda, J.B.; da Silva Junior, W.A.; Beleboni, R.O.; Martinez-Rossi, N.M.; Marins, M.; Fachin, A.L. Dual RNA-Seq analysis of trichophyton rubrum and HaCat keratinocyte co-culture highlights important genes for fungal-host interaction. Genes 2018, 9, 362. [Google Scholar] [CrossRef]
- Martinez, D.A.; Oliver, B.G.; Gräser, Y.; Goldberg, J.M.; Li, W.; Martinez-Rossi, N.M.; Monod, M.; Shelest, E.; Barton, R.C.; Birch, E.; et al. Comparative genome analysis of Trichophyton rubrum and related dermatophytes reveals candidate genes involved in infection. MBio 2012, 3, e00259-12. [Google Scholar] [CrossRef]
- Franco, M.E.; Bitencourt, T.A.; Marins, M.; Fachin, A.L. In silico characterization of tandem repeats in Trichophyton rubrum and related dermatophytes provides new insights into their role in pathogenesis. Database 2017, 2017, 1–10. [Google Scholar] [CrossRef]
- Bitencourt, T.A.; Macedo, C.; Franco, M.E.; Assis, A.F.; Komoto, T.T.; Stehling, E.G.; Beleboni, R.O.; Malavazi, I.; Marins, M.; Fachin, A.L. Transcription profile of Trichophyton rubrum conidia grown on keratin reveals the induction of an adhesin-like protein gene with a tandem repeat pattern. BMC Genom. 2016, 17, 249. [Google Scholar] [CrossRef]
- Westermann, A.J.; Barquist, L.; Vogel, J. Resolving host–pathogen interactions by dual RNA-seq. PLoS Pathog. 2017, 13, e1006033. [Google Scholar] [CrossRef]
- Martinez-Rossi, N.M.; Peres, N.T.A.; Rossi, A. Antifungal resistance mechanisms in dermatophytes. Mycopathologia 2008, 166, 369–383. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.; Dias, P.J.; Sá-correia, I.; Teixeira, M.C. MFS multidrug transporters in pathogenic fungi: Do they have real clinical impact? Front. Physiol. 2014, 5, 197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scorzoni, L.; de Paula e Silva, A.C.A.; Marcos, C.M.; Assato, P.A.; de Melo, W.C.M.A.; de Oliveira, H.C.; Costa-Orlandi, C.B.; Mendes-Giannini, M.J.S.; Fusco-Almeida, A.M. Antifungal therapy: New advances in the understanding and treatment of mycosis. Front. Microbiol. 2017, 8, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fachin, A.L.; Ferreira-Nozawa, M.S.; Maccheroni, W.; Martinez-Rossi, N.M. Role of the ABC transporter TruMDR2 in terbinafine, 4-nitroquinoline N-oxide and ethidium bromide susceptibility in Trichophyton rubrum. J. Med. Microbiol. 2006, 55, 1093–1099. [Google Scholar] [CrossRef] [Green Version]
- Maranhao, F.C.A.; Paiao, F.G.; Fachin, A.L.; Martinez-Rossi, N.M. Membrane transporter proteins are involved in Trichophyton rubrum pathogenesis. J. Med. Microbiol. 2009, 58, 163–168. [Google Scholar] [CrossRef] [Green Version]
- Kumar Nigam, P. Antifungal drugs and resistance: Current concepts. Dermatol. Online 2015, 6, 212–221. [Google Scholar] [CrossRef]
- Daum, G.; Lees, N.D.; Bard, M.; Dickson, R. Biochemistry, cell biology and molecular biology of lipids ofSaccharomyces cerevisiae. Yeast 1998, 14, 1471–1510. [Google Scholar] [CrossRef]
- Lepesheva, G.I.; Waterman, M.R. Sterol 14α-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms. Biochim. Biophys. Acta Gen. Subj. 2007, 1770, 467–477. [Google Scholar] [CrossRef] [Green Version]
- Becher, R.; Wirsel, S.G.R. Fungal cytochrome P450 sterol 14α-demethylase (CYP51) and azole resistance in plant and human pathogens. Appl. Microbiol. Biotechnol. 2012, 95, 825–840. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, W.; Wang, L.; Yang, J.; Liu, T.; Peng, J.; Leng, W.; Chen, L.; Li, R.; Jin, Q. Transcriptional profiles of the response to ketoconazole and amphotericin B in Trichophyton rubrum. Antimicrob. Agents Chemother. 2007, 51, 144–153. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Wang, W.; Wang, K.; Yu, X.; Liu, J.; Zhou, F.; Xie, B.; Li, S. Sterol C-22 Desaturase ERG5 Mediates the Sensitivity to Antifungal Azoles in Neurospora crassa and Fusarium verticillioides. Front. Microbiol. 2013, 4, 127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chinnapun, D. Virulence factors involved in pathogenicity of dermatophytes. Walailak J. Sci. Technol. 2015, 12, 573–580. [Google Scholar]
- Lechenne, B.; Reichard, U.; Zaugg, C.; Fratti, M.; Kunert, J.; Boulat, O.; Monod, M. Sulphite efflux pumps in Aspergillus fumigatus and dermatophytes. Microbiology 2007, 153, 905–913. [Google Scholar] [CrossRef] [Green Version]
- Missall, T.A.; Lodge, J.K. Function of the thioredoxin proteins in Cryptococcus neoformans during stress or virulence and regulation by putative transcriptional modulators. Mol. Microbiol. 2005, 57, 847–858. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Molepo, J.; Patel, M. Challenges in the Development of Antifungal Agents Against Candida: Scope of Phytochemical Research. Curr. Pharm. Des. 2016, 22, 4135–4150. [Google Scholar] [CrossRef]
- Kaufman, G.; Berdicevsky, I.; Woodfolk, J.A.; Horwitz, B.A. Markers for Host-Induced Gene Expression in Trichophyton Dermatophytosis. Infect. Immun. 2005, 73, 6584–6590. [Google Scholar] [CrossRef] [Green Version]
- Davies, G.; Henrissat, B. Structures and mechanisms of glycosyl hydrolases. Structure 1995, 3, 853–859. [Google Scholar] [CrossRef] [Green Version]
- Castelli, M.V.; Butassi, E.; Monteiro, M.C.; Svetaz, L.A.; Vicente, F.; Zacchino, S.A. Novel antifungal agents: A patent review (2011—Present). Expert Opin. Ther. Pat. 2014, 24, 323–338. [Google Scholar] [CrossRef]
- Ejzykowicz, D.E.; Solis, N.V.; Gravelat, F.N.; Chabot, J.; Li, X.; Sheppard, D.C.; Filler, S.G. Role of Aspergillus fumigatus DvrA in Host Cell Interactions and Virulence. Eukaryot. Cell 2010, 9, 1432–1440. [Google Scholar] [CrossRef] [Green Version]
- Nobile, C.J.; Mitchell, A.P. Regulation of Cell-Surface Genes and Biofilm Formation by the C. albicans Transcription Factor Bcr1p. Curr. Biol. 2005, 15, 1150–1155. [Google Scholar] [CrossRef] [Green Version]
- Nobile, C.J.; Andes, D.R.; Nett, J.E.; Smith, F.J.; Yue, F.; Phan, Q.T.; Edwards, J.E.; Filler, S.G.; Mitchell, A.P. Critical Role of Bcr1-Dependent Adhesins in C. albicans Biofilm Formation In Vitro and In Vivo. PLoS Pathog. 2006, 2, e63. [Google Scholar] [CrossRef] [PubMed]
- Dallenne, C.; Da Costa, A.; Decré, D.; Favier, C.; Arlet, G. Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae. J. Antimicrob. Chemother. 2010, 65, 490–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kettle, A.J.; Carere, J.; Batley, J.; Benfield, A.H.; Manners, J.M.; Kazan, K.; Gardiner, D.M. A γ-lactamase from cereal infecting Fusarium spp. catalyses the first step in the degradation of the benzoxazolinone class of phytoalexins. Fungal Genet. Biol. 2015, 83, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glenn, A.E.; Davis, C.B.; Gao, M.; Gold, S.E.; Mitchell, T.R.; Proctor, R.H.; Stewart, J.E.; Snook, M.E. Two Horizontally Transferred Xenobiotic Resistance Gene Clusters Associated with Detoxification of Benzoxazolinones by Fusarium Species. PLoS ONE 2016, 11, e0147486. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Glenn, A.E.; Blacutt, A.A.; Gold, S.E. Fungal Lactamases: Their Occurrence and Function. Front. Microbiol. 2017, 8, 1775. [Google Scholar] [CrossRef] [PubMed]
- Yadav, V.; Panilaitis, B.; Shi, H.; Numuta, K.; Lee, K.; Kaplan, D.L. N-acetylglucosamine 6-Phosphate Deacetylase (nagA) Is Required for N-acetyl Glucosamine Assimilation in Gluconacetobacter xylinus. PLoS ONE 2011, 6, e18099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, N.; Tu, J.; Dong, G.; Wang, Y.; Sheng, C. Emerging New Targets for the Treatment of Resistant Fungal Infections. J. Med. Chem. 2018. [Google Scholar] [CrossRef]
- Yamada-Okabe, T.; Sakamori, Y.; Mio, T.; Yamada-Okabe, H. Identification and characterization of the genes for N-acetylglucosamine kinase and N-acetylglucosamine-phosphate deacetylase in the pathogenic fungus Candida albicans. Eur. J. Biochem. 2001, 268, 2498–2505. [Google Scholar] [CrossRef]
- Santiago, K.; Bomfim, G.F.; Criado, P.R.; Almeida, S.R. Monocyte-derived dendritic cells from patients with dermatophytosis restrict the growth of Trichophyton rubrum and induce CD4-T cell activation. PLoS ONE 2014, 9, e110879. [Google Scholar] [CrossRef]
- Edgar, R. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002, 30, 207–210. [Google Scholar] [CrossRef] [Green Version]
- Blake, J.A.; Harris, M.A. The Gene Ontology (GO) Project: Structured Vocabularies for Molecular Biology and Their Application to Genome and Expression Analysis. In Current Protocols in Bioinformatics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; pp. 1–9. ISBN 0471250953. [Google Scholar]
- Vêncio, R.Z.; Koide, T.; Gomes, S.L.; de B Pereira, C.A. BayGO: Bayesian analysis of ontology term enrichment in microarray data. BMC Bioinform. 2006, 7, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bitencourt, T.A.; Komoto, T.T.; Massaroto, B.G.; Miranda, C.E.S.; Beleboni, R.O.; Marins, M.; Fachin, A.L. Trans-chalcone and quercetin down-regulate fatty acid synthase gene expression and reduce ergosterol content in the human pathogenic dermatophyte Trichophyton rubrum. BMC Complement. Altern. Med. 2013, 13, 229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacob, T.R.; Peres, N.T.A.; Persinoti, G.F.; Silva, L.G.; Mazucato, M.; Rossi, A.; Martinez-Rossi, N.M. rpb2 is a reliable reference gene for quantitative gene expression analysis in the dermatophyte Trichophyton rubrum. Med. Mycol. 2012, 50, 368–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
ID | Log2 Fold Change | Gene Product Name | Orthologous |
---|---|---|---|
TERG_00523 | 5.50 | Hypothetical protein | - |
TERG_08182 | 4.79 | Hypothetical protein | - |
TERG_01636 | 4.72 | Hypothetical protein | Microsporum gypseum CBS 118893 ADP-ribosylglycohydrolase (1715 nt) |
TERG_02902 | 4.64 | Hypothetical protein | - |
TERG_00540 | 4.44 | Hypothetical protein | Trichophyton verrucosum HKI 0517 oxidoreductase, zinc-binding, putative (1134 nt) |
TERG_12029 | 4.19 | Hypothetical protein | - |
TERG_02067 | 4.03 | Hypothetical protein | - |
TERG_02609 | 3.93 | Sucrase/ferredoxin | Trichophyton equinum CBS 127.97 actin patches distal protein 1 (950 nt) |
TERG_06347 | 3.93 | Hypothetical protein | - |
TERG_11747 | 3.79 | Hypothetical protein | - |
TERG_08503 | 3.45 | Hypothetical protein | Microsporum canis CBS 113480 secalin (2547 nt) |
TERG_08121 | 3.38 | Protein kinase | Microsporum gypseum CBS 118893 protein kinase subdomain-containing protein (891 nt) |
TERG_08278 | 3.33 | Serine/threonine | Trichophyton tonsurans CBS 112818 serine/threonine protein kinase (2270 nt) |
TERG_05843 | 3.32 | Hypothetical protein | Trichophyton equinum CBS 127.97 F-box domain-containing protein (2405 nt) |
TERG_08194 | 3.24 | Hypothetical protein | Microsporum canis CBS 113480 serine/threonine protein kinase (2427 nt) |
TERG_00197 | 3.23 | Aldose 1-epimerase | Trichophyton verrucosum HKI 0517 aldose 1-epimerase family protein, putative (1631 nt) |
TERG_02899 | 3.17 | Hypothetical protein | - |
TERG_05111 | 3.12 | Hypothetical protein | - |
TERG_03293 | 3.03 | Hypothetical protein | - |
TERG_03132 | 2.91 | Hypothetical protein | - |
TERG_00959 | 2.79 | Hypothetical protein | Arthroderma benhamiae CBS 112371 RNA binding protein, putative (3143 nt) |
TERG_03252 | 2.78 | Hypothetical protein | - |
TERG_03304 | 2.77 | Hypothetical protein | Trichophyton verrucosum HKI 0517 AAA family ATPase, putative (2368 nt) |
TERG_06402 | 2.75 | Hypothetical protein | Trichophyton verrucosum HKI 0517 Ser/Thr protein phosphatase family protein (921 nt) |
TERG_02448 | 2.74 | Hypothetical protein | - |
TERG_11932 | 2.74 | Hypothetical protein | - |
TERG_02303 | 2.74 | Ankyrin repeat protein | Arthroderma benhamiae CBS 112371 ankyrin repeat protein (5579 nt) |
TERG_04951 | 2.73 | Hypothetical protein | Trichophyton equinum CBS 127.97 U-box domain-containing protein (2461 nt) |
TERG_06445 | 2.72 | Hypothetical protein | - |
TERG_06992 | 2.69 | Pyridine nucleotide-disulfide oxidoreductase | Trichophyton tonsurans CBS 112818 pyridine nucleotide-disulphide oxidoreductase (1785 nt) |
TERG_02900 | 2.69 | Hypothetical protein | - |
TERG_04234 | 2.66 | Hypothetical protein | Trichophyton verrucosum HKI 0517 hydrophobin, putative (562 nt) |
TERG_00583 | 2.63 | Hypothetical protein | - |
TERG_08046 | 2.56 | Hypothetical protein | Microsporum gypseum CBS 118893 beta-lactamase (852 nt) |
TERG_04721 | 2.54 | Glutamate carboxypeptidase | Trichophyton equinum CBS 127.97 glutamate carboxypeptidase (2412 nt) |
TERG_05909 | 2.51 | Hypothetical protein | - |
TERG_05239 | 2.46 | DNA polymerase lambda | Trichophyton verrucosum HKI 0517 DNA polymerase POL4, putative (2133 nt) |
TERG_01956 | 2.46 | Hypothetical protein | Arthroderma benhamiae CBS 112371 C2H2 finger domain protein, putative (3359 nt) |
TERG_06065 | 2.43 | Hypothetical protein | Trichophyton verrucosum HKI 0517 conserved glycine-rich protein (903 nt) |
TERG_06207 | 2.39 | Hypothetical protein | Trichophyton verrucosum HKI 0517 proline oxidase PrnD (1941 nt) |
TERG_07034 | 2.39 | Hypothetical protein | - |
TERG_03861 | 2.39 | C2H2 transcription factor | Trichophyton tonsurans CBS 112818 C2H2 transcription factor (895 nt) |
TERG_03443 | 2.34 | Hypothetical protein | Trichophyton equinum CBS 127.97 ankyrin repeat protein (1561 nt) |
TERG_03628 | 2.33 | Serine/threonine protein kinase | Trichophyton tonsurans CBS 112818 serine/threonine protein kinase (2187 nt) |
TERG_00642 | 2.32 | Hypothetical protein | Trichophyton equinum CBS 127.97 HHE domain-containing protein (552 nt) |
TERG_07982 | 2.32 | Hypothetical protein | - |
TERG_05469 | 2.32 | Hypothetical protein | - |
TERG_12329 | 2.32 | Hypothetical protein | Trichophyton tonsurans CBS 112818 Ku70/Ku80 beta-barrel domain-containing protein (2242 nt) |
TERG_06990 | 2.30 | Hypothetical protein | - |
TERG_02131 | 2.29 | Hypothetical protein | - |
ID | Log2 Fold Change | Gene Product Name | Orthologous |
---|---|---|---|
TERG_01731 | −3.68 | Hypothetical protein | - |
TERG_11886 | −3.49 | Hypothetical protein | Trichophyton tonsurans CBS 112818 copper radical oxidase (2955 nt) |
TERG_06315 | −3.32 | Hypothetical protein | Arthroderma benhamiae CBS 112371 integral membrane protein (1704 nt) |
TERG_00499 | −3.32 | Hypothetical protein | - |
TERG_02811 | −3.26 | Hypothetical protein | Arthroderma benhamiae CBS 112371 acetyl xylan esterase (Axe1), putative (955 nt) |
TERG_01900 | −3.25 | Aquaglyceroporin | Arthroderma benhamiae CBS 112371 aquaglyceroporin, putative (1058 nt) |
TERG_00520 | −3.19 | Hypothetical protein | - |
TERG_03105 | −3.16 | Hypothetical protein | - |
TERG_07234 | −2.76 | Hypothetical protein | - |
TERG_04164 | −2.60 | Hypothetical protein | - |
TERG_07011 | −2.58 | Hypothetical protein | Arthroderma benhamiae CBS 112371 conserved fungal protein (800 nt) |
TERG_12474 | −2.48 | Hypothetical protein | Trichophyton tonsurans CBS 112818 ABC-transporter (2471 nt) |
TERG_06276 | −2.47 | Chromate ion transporter | Trichophyton tonsurans CBS 112818 chromate ion transporter (1906 nt) |
TERG_01901 | −2.44 | Glycerol kinase | Trichophyton equinum CBS 127.97 glycerol kinase (1680 nt) |
TERG_00765 | −2.38 | Hypothetical protein | - |
TERG_01406 | −2.37 | Hypothetical protein | Trichophyton equinum CBS 127.97 phospholipase D (939 nt) |
TERG_12475 | −2.37 | Hypothetical protein | Arthroderma benhamiae CBS 112371 ABC-transporter, putative (2336 nt) |
TERG_07199 | −2.35 | Hypothetical protein | - |
TERG_05698 | −2.33 | Beta-lactamase | Trichophyton verrucosum HKI 0517 transesterase (LovD), putative (1428 nt) |
TERG_07539 | −2.30 | Hypothetical protein | Trichophyton tonsurans CBS 112818 multidrug resistance protein (2253 nt) |
TERG_11621 | −2.27 | Hypothetical protein | - |
TERG_02161 | −2.25 | DOC Family | Microsporum canis CBS 113480 DOC family protein (456 nt) |
TERG_02979 | −2.22 | Delta(24(24(1)))-sterol reductase | Trichophyton tonsurans CBS 112818 Delta(24(24(1)))-sterol reductase (1551 nt) |
TERG_07798 | −2.22 | Hypothetical protein | - |
TERG_02722 | −2.21 | Hypothetical protein | Trichophyton equinum CBS 127.97 WSC domain containing protein (2371 nt) |
TERG_00754 | −2.20 | Hypothetical protein | - |
TERG_04382 | −2.15 | C-14 sterol reductase | Trichophyton tonsurans CBS 112818 c-14 sterol reductase (1597 nt) |
TERG_05808 | −2.14 | Hypothetical protein | - |
TERG_03083 | −2.14 | 3-dehydroquinate synthase | Trichophyton equinum CBS 127.97 pentafunctional AROM polypeptide (4908 nt) |
TERG_01703 | −2.13 | Cytochrome P450 51 | Trichophyton equinum CBS 127.97 cytochrome P450 51 (1790 nt) |
TERG_08666 | −2.13 | Hypothetical protein | - |
TERG_08545 | −2.13 | C-4 methylsterol oxidase | Trichophyton equinum CBS 127.97 C-4 methyl sterol oxidase Erg25 (940 nt) |
TERG_01676 | −2.10 | 6,7-dimethyl-8-ribityllumazine synthase | Trichophyton tonsurans CBS 112818 6,7-dimethyl-8-ribityllumazine synthase (761 nt) |
TERG_04041 | −2.10 | Sad1/UNC domain-containing protein | Trichophyton verrucosum HKI 0517 Sad1/UNC domain protein (2625 nt) |
TERG_07810 | −2.09 | Hypothetical protein | Trichophyton tonsurans CBS 112818 phospholipase (3533 nt) |
TERG_00613 | −2.09 | Hypothetical protein | - |
TERG_04793 | −2.04 | Cyclin | Trichophyton tonsurans CBS 112818 cyclin (1194 nt) |
TERG_06265 | −2.03 | Hypothetical protein | Trichophyton equinum CBS 127.97 LPS glycosyltransferase (1368 nt) |
TERG_08359 | −2.01 | FAD-dependent monooxygenase | Trichophyton tonsurans CBS 112818 FAD-dependent monooxygenase (1321 nt) |
TERG_02842 | −2.01 | Hypothetical protein | Trichophyton equinum CBS 127.97 6-hydroxy-D-nicotine oxidase (1598 nt) |
TERG_03204 | −2.00 | 60S ribosomal protein L7 | Trichophyton tonsurans CBS 112818 60S ribosomal protein L7 (1079 nt) |
TERG_07797 | −1.98 | Isoflavone reductase | Trichophyton equinum CBS 127.97 amino acid permease (2474 nt) |
TERG_01994 | −1.98 | Hypothetical protein | Trichophyton equinum CBS 127.97 OPT oligopeptide transporter protein (3035 nt) |
TERG_00032 | −1.98 | Mitochondrial dicarboxylate carrier | Trichophyton tonsurans CBS 112818 mitochondrial dicarboxylate transporter (1162 nt) |
TERG_01604 | −1.97 | 60S ribosomal protein L36 | Trichophyton tonsurans CBS 112818 60S ribosomal protein L36 (527 nt) |
TERG_03148 | −1.95 | Hypothetical protein | Trichophyton equinum CBS 127.97 molybdenum cofactor sulfurase (1551 nt) |
TERG_05236 | −1.94 | 60S ribosomal protein L35 | Trichophyton tonsurans CBS 112818 60S ribosomal protein L35 (1143 nt) |
TERG_01399 | −1.93 | Hypothetical protein | - |
TERG_06755 | −1.91 | C-8 sterol isomerase | Trichophyton verrucosum HKI 0517 C-8 sterol isomerase (Erg-1), putative (628 nt) |
TERG_02542 | −1.91 | Integral membrane protein | Trichophyton verrucosum HKI 0517 integral membrane protein Pth11-like, putative (1773 nt) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrucelli, M.F.; Matsuda, J.B.; Peroni, K.; Sanches, P.R.; Silva, W.A., Jr.; Beleboni, R.O.; Martinez-Rossi, N.M.; Marins, M.; Fachin, A.L. The Transcriptional Profile of Trichophyton rubrum Co-Cultured with Human Keratinocytes Shows New Insights about Gene Modulation by Terbinafine. Pathogens 2019, 8, 274. https://doi.org/10.3390/pathogens8040274
Petrucelli MF, Matsuda JB, Peroni K, Sanches PR, Silva WA Jr., Beleboni RO, Martinez-Rossi NM, Marins M, Fachin AL. The Transcriptional Profile of Trichophyton rubrum Co-Cultured with Human Keratinocytes Shows New Insights about Gene Modulation by Terbinafine. Pathogens. 2019; 8(4):274. https://doi.org/10.3390/pathogens8040274
Chicago/Turabian StylePetrucelli, Monise Fazolin, Josie Budag Matsuda, Kamila Peroni, Pablo Rodrigo Sanches, Wilson Araújo Silva, Jr., Rene Oliveira Beleboni, Nilce Maria Martinez-Rossi, Mozart Marins, and Ana Lúcia Fachin. 2019. "The Transcriptional Profile of Trichophyton rubrum Co-Cultured with Human Keratinocytes Shows New Insights about Gene Modulation by Terbinafine" Pathogens 8, no. 4: 274. https://doi.org/10.3390/pathogens8040274
APA StylePetrucelli, M. F., Matsuda, J. B., Peroni, K., Sanches, P. R., Silva, W. A., Jr., Beleboni, R. O., Martinez-Rossi, N. M., Marins, M., & Fachin, A. L. (2019). The Transcriptional Profile of Trichophyton rubrum Co-Cultured with Human Keratinocytes Shows New Insights about Gene Modulation by Terbinafine. Pathogens, 8(4), 274. https://doi.org/10.3390/pathogens8040274