Zoonotic and Public Health Implications of Campylobacter Species and Squamates (Lizards, Snakes and Amphisbaenians)
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hsieh, Y.-H.; Sulaiman, I.M. Campylobacteriosis: An emerging infectious foodborne disease. Foodborne Dis. 2018, 119–155. [Google Scholar] [CrossRef]
- Kaakoush, N.O.; Castaño-Rodríguez, N.; Mitchell, H.M.; Man, S.M. Global epidemiology of Campylobacter infection. Clin. Microbiol. Rev. 2015, 28, 687–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Igwaran, A.; Okoh, A.I. Human campylobacteriosis: A public health concern of global importance. Heliyon 2019, 5, e02814. [Google Scholar] [CrossRef]
- Hsieh, Y.-H.; Wang, Y.F.; Moura, H.; Miranda, N.; Simpson, S.; Gowrishankar, R.; Barr, J.; Kerdahi, K.; Sulaiman, I.M. Application of MALDI-TOF MS systems in the rapid identification of Campylobacter spp. of public health importance. J. AOAC Int. 2018, 101, 761–768. [Google Scholar] [CrossRef]
- Wilson, D.J.; Gabriel, E.; Leatherbarrow, A.J.; Cheesbrough, J.; Gee, S.; Bolton, E.; Fox, A.; Fearnhead, P.; Hart, C.A.; Diggle, P.J. Tracing the source of campylobacteriosis. PLoS Genetics 2008, 4. [Google Scholar] [CrossRef] [Green Version]
- Strachan, N.J.; Gormley, F.J.; Rotariu, O.; Ogden, I.D.; Miller, G.; Dunn, G.M.; Sheppard, S.K.; Dallas, J.F.; Reid, T.M.; Howie, H. Attribution of Campylobacter infections in northeast Scotland to specific sources by use of multilocus sequence typing. J. Infect. Dis. 2009, 199, 1205–1208. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Luo, J.; Wang, C.; Li, M.; Wang, B.; Wang, B.; Chang, H.; Ji, J.; Sen, K.; He, H. Emergence of genetic diversity and multi-drug resistant Campylobacter jejuni from wild birds in Beijing, China. Front. Microbiol. 2019, 10, 2433. [Google Scholar] [CrossRef]
- Pike, B.L.; Guerry, P.; Poly, F. Global distribution of Campylobacter jejuni Penner serotypes: A systematic review. PloS ONE 2013, 8, e067375. [Google Scholar] [CrossRef] [Green Version]
- Endtz, H.P. Campylobacter Infections, Chapter 5. In Hunter’s Tropical Medicine and Emerging Infectious Diseases, 10th ed.; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.-A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne illness acquired in the United States—Major pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef]
- Tack, D.M.; Ray, L.; Griffin, P.M.; Cieslak, P.R.; Dunn, J.; Rissman, T.; Jervis, R.; Lathrop, S.; Muse, A.; Duwell, M. Preliminary incidence and trends of infections with pathogens transmitted commonly through food—Foodborne Diseases Active Surveillance Network, 10 US Sites, 2016–2019. Morb. Mortal. Wkly. Rep. 2020, 69, 509–514. [Google Scholar] [CrossRef]
- Ruiz-Palacios, G.M. The health burden of Campylobacter infection and the impact of antimicrobial resistance: Playing chicken. Clin. Infect. Dis. 2007, 44, 701–703. [Google Scholar] [CrossRef] [PubMed]
- Acheson, D.; Allos, B.M. Campylobacter jejuni infections: Update on emerging issues and trends. Clin. Infect. Dis. 2001, 32, 1201–1206. [Google Scholar] [CrossRef] [PubMed]
- Epps, S.V.; Harvey, R.B.; Hume, M.E.; Phillips, T.D.; Anderson, R.C.; Nisbet, D.J. Foodborne Campylobacter: Infections, metabolism, pathogenesis and reservoirs. Int. J. Environ. Res. Public Health 2013, 10, 6292–6304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haddad, N.; Marce, C.; Magras, C.; Cappelier, J.-M. An overview of methods used to clarify pathogenesis mechanisms of Campylobacter jejuni. J. Food Prot. 2010, 73, 786–802. [Google Scholar] [CrossRef]
- Wallis, M. The pathogenesis of Campylobacter jejuni. Br. J. Biomed. Sci. 1994, 51, 57–64. [Google Scholar]
- Mihaljevic, R.R.; Sikic, M.; Klancnik, A.; Brumini, G.; Mozina, S.S.; Abram, M. Environmental stress factors affecting survival and virulence of Campylobacter jejuni. Microb. Pathog. 2007, 43, 120–125. [Google Scholar] [CrossRef]
- Baffone, W.; Casaroli, A.; Citterio, B.; Pierfelici, L.; Campana, R.; Vittoria, E.; Guaglianone, E.; Donelli, G. Campylobacter jejuni loss of culturability in aqueous microcosms and ability to resuscitate in a mouse model. Int. J. Food Microb. 2006, 107, 83–91. [Google Scholar] [CrossRef]
- Moran, A.; Upton, M.E. Factors affecting production of coccoid forms by Campylobacter jejuni on solid media during incubation. J. Appl. Bacter. 1987, 62, 527–537. [Google Scholar] [CrossRef]
- Joshua, G.P.; Guthrie-Irons, C.; Karlyshev, A.; Wren, B. Biofilm formation in Campylobacter jejuni. Microbiology 2006, 152, 387–396. [Google Scholar] [CrossRef] [Green Version]
- Stintzi, A. Gene expression profile of Campylobacter jejuni in response to growth temperature variation. J. Bacteriol. 2003, 185, 2009–2016. [Google Scholar] [CrossRef] [Green Version]
- Day, W.A.; Sajecki, J.L.; Pitts, T.M.; Joens, L.A. Role of catalase in Campylobacter jejuni intracellular survival. Infect. Immun. 2000, 68, 6337–6345. [Google Scholar] [CrossRef] [PubMed]
- Iraola, G.; Costa, D. Pathogenomics of emerging Campylobacter Species. Clin. Microbiol. Rev. 2019, 32, 1–24. [Google Scholar] [CrossRef]
- Newell, D.; Elvers, K.; Dopfer, D.; Hansson, I.; Jones, P.; James, S.; Gittins, J.; Stern, N.; Davies, R.; Connerton, I. Biosecurity-based interventions and strategies to reduce Campylobacter spp. on poultry farms. Appl. Environ. Microbiol. 2011, 77, 8605–8614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taheri, N.; Fällman, M.; Wai, S.N.; Fahlgren, A. Accumulation of virulence-associated proteins in Campylobacter jejuni outer membrane vesicles at human body temperature. J. Proteom. 2019, 195, 33–40. [Google Scholar] [CrossRef]
- Kirkpatrick, B.D.; Tribble, D.R. Update on human Campylobacter jejuni infections. Curr. Opin. Gastroenterol. 2011, 27, 1–7. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA) Panel on Biological Hazards (BIOHAZ). Scientific opinion on Campylobacter in broiler meat production: Control options and performance objectives and/or targets at different stages of the food chain. EFSA J. 2011, 9, 2105. [Google Scholar] [CrossRef]
- Navarro-Gonzalez, N.; Ugarte-Ruiz, M.; Domínguez, L.; Ruiz-Fons, F. A European perspective on the transmission of foodborne pathogens at the wildlife–livestock–human interface. Food Saf. Risks Wildl. 2016, 59–88. [Google Scholar]
- Whiley, H.; Van den Akker, B.; Giglio, S.; Bentham, R. The role of environmental reservoirs in human campylobacteriosis. Int. J. Environ. Res.Public Health 2013, 10, 5886–5907. [Google Scholar] [CrossRef] [Green Version]
- Rukambile, E.; Sintchenko, V.; Muscatello, G.; Kock, R.; Alders, R. Infection, colonization and shedding of Campylobacter and Salmonella in animals and their contribution to human disease: A review. Zoonoses Public Health 2019, 66, 562–578. [Google Scholar] [CrossRef]
- Murray, M.H.; Sánchez, C.A.; Becker, D.J.; Byers, K.A.; Worsley-Tonks, K.E.; Craft, M.E. City sicker? A meta-analysis of wildlife health and urbanization. Front. Ecol. Environ. 2019, 17, 575–583. [Google Scholar] [CrossRef]
- Wang, C.-M.; Shia, W.-Y.; Jhou, Y.-J.; Shyu, C.-L. Occurrence and molecular characterization of reptilian Campylobacter fetus strains isolated in Taiwan. Vet. Microbiol. 2013, 164, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Bjelland, A.M.; Sandvik, L.M.; Skarstein, M.M.; Svendal, L.; Debenham, J.J. Prevalence of Salmonella serovars isolated from reptiles in Norwegian zoos. Acta Vet. Scand. 2020, 62, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Whiley, H.; McLean, R.; Ross, K. Detection of Campylobacter jejuni in lizard faeces from central Australia using quantitative PCR. Pathogens 2017, 6, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cogger, H. General description and definition of the order Squamata. Fauna Aust. 1993, 2, 157–171. [Google Scholar]
- Alves, R.R.N.; de Araújo, B.M.C.; da Silva Policarpo, I.; Pereira, H.M.; Borges, A.K.M.; da Silva Vieira, W.L.; Vasconcellos, A. Keeping reptiles as pets in Brazil: Ethnozoological and conservation aspects. J. Nat. Conserv. 2019, 49, 9–21. [Google Scholar] [CrossRef]
- Benn, A.L.; McLelland, D.J.; Whittaker, A.L. A review of welfare assessment methods in reptiles, and preliminary application of the welfare quality® protocol to the pygmy blue-tongue skink, Tiliqua adelaidensis, using animal-based measures. Animals 2019, 9, 27. [Google Scholar] [CrossRef] [Green Version]
- Schuppli, C.A.; Fraser, D.; Bacon, H.J. Welfare of non-traditional pets. Rev. Sci. Tech. 2014, 33, 221–231. [Google Scholar] [CrossRef]
- Gilbert, M.J.; Miller, W.G.; Yee, E.; Kik, M.; Zomer, A.L.; Wagenaar, J.A.; Duim, B. Comparative genomics of Campylobacter iguaniorum to unravel genetic regions associated with reptilian hosts. Genome Biol. Evol. 2016, 8, 3022–3029. [Google Scholar] [CrossRef]
- Gilbert, M.J.; Miller, W.G.; Yee, E.; Kik, M.; Wagenaar, J.A.; Duim, B. Complete genome sequence of Campylobacter iguaniorum strain 1485ET, isolated from a bearded dragon (Pogona vitticeps). Genome Announc. 2014, 2, e00844-14. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-M.; Wu, Z.-Y.; Shia, W.-Y.; Jhou, Y.-J.; Tung, K.-C.; Shyu, C.-L. Complete genome sequence of Campylobacter fetus subsp. testudinum strain Pet-3, isolated from a lizard (Hydrosaurus pustulatus). Genome Announc. 2015, 3, e01420-14. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, M.J.; Kik, M.; Miller, W.G.; Duim, B.; Wagenaar, J.A. Campylobacter iguaniorum sp. nov., isolated from reptiles. Int. J. Syst. Evol. Microbiol. 2015, 65, 975–982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilbert, M.J.; Kik, M.; Timmerman, A.J.; Severs, T.T.; Kusters, J.G.; Duim, B.; Wagenaar, J.A. Occurrence, diversity, and host association of intestinal Campylobacter, Arcobacter, and Helicobacter in reptiles. PLoS ONE 2014, 9, e101599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dingle, K.E.; Blaser, M.J.; Tu, Z.-C.; Pruckler, J.; Fitzgerald, C.; Van Bergen, M.A.; Lawson, A.J.; Owen, R.J.; Wagenaar, J.A. Genetic relationships among reptilian and mammalian Campylobacter fetus strains determined by multilocus sequence typing. J. Clin. Microbiol. 2010, 48, 977–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilbert, M.J.; Miller, W.G.; Yee, E.; Zomer, A.L.; Van Der Graaf-Van Bloois, L.; Fitzgerald, C.; Forbes, K.J.; Méric, G.; Sheppard, S.K.; Wagenaar, J.A. Comparative genomics of Campylobacter fetus from reptiles and mammals reveals divergent evolution in host-associated lineages. Genome Biol. Evol. 2016, 8, 2006–2019. [Google Scholar] [CrossRef]
- Choi, H.S.; Shin, S.U.; Bae, E.H.; Ma, S.K.; Kim, S.W. Infectious spondylitis in a patient with chronic kidney disease: Identification of Campylobacter fetus subsp. testudinum with 16S ribosomal RNA sequencing. Jpn. J. Infect. Dis. 2016, 69, 517–519. [Google Scholar] [CrossRef] [Green Version]
- Patrick, M.E.; Gilbert, M.J.; Blaser, M.J.; Tauxe, R.V.; Wagenaar, J.A.; Fitzgerald, C. Human infections with new subspecies of Campylobacter fetus. Emerg. Infect. Dis. 2013, 19, 1678–1680. [Google Scholar] [CrossRef]
- Tu, Z.-C.; Zeitlin, G.; Gagner, J.-P.; Keo, T.; Hanna, B.A.; Blaser, M.J. Campylobacter fetus of reptile origin as a human pathogen. J. Clin. Microbiol. 2004, 42, 4405–4407. [Google Scholar] [CrossRef] [Green Version]
- Fitzgerald, C.; chao Tu, Z.; Patrick, M.; Stiles, T.; Lawson, A.J.; Santovenia, M.; Gilbert, M.J.; Van Bergen, M.; Joyce, K.; Pruckler, J. Campylobacter fetus subsp. testudinum subsp. nov., isolated from humans and reptiles. Int. J. Syst. Evol. Microbiol. 2014, 64, 2944–2948. [Google Scholar] [CrossRef] [Green Version]
- Hou, S.; Qu, P.; Wu, Y.; Zhang, X.; Hu, Y.; Deng, Z.; Wu, X. The identification and multilocus sequence typing of nine Campylobacter fetus isolates from specimens of patients from 2012 to 2013. Chin. J. Prev. Med. 2015, 49, 744–746. [Google Scholar]
- Hou, S.-P.; He, P.; Zhou, Y.; Wu, X.-W. Complete genome sequence of Campylobacter fetus subsp. testudinum strain 772, isolated from ascites of a patient with chronic kidney disease. Genome Announc. 2018, 6, e00432-18. [Google Scholar] [CrossRef] [Green Version]
- Levin, R.E. Campylobacter jejuni: A review of its characteristics, pathogenicity, ecology, distribution, subspecies characterization and molecular methods of detection. Food Biotechnol. 2007, 21, 271–347. [Google Scholar]
- Mittermeier, R.A.; Carr, J.L.; Swingland, I.R.; Werner, T.B.; Mast, R.B. Conservation of amphibians and reptiles. In Herpetology: Current Research on the Biology of Amphibians and Reptiles; Adler, K., Ed.; Society for the Study of Amphibians and Reptiles Publication: St. Louis, MO, USA, 1992; pp. 59–80. [Google Scholar]
- Stull, J.W.; Peregrine, A.S.; Sargeant, J.M.; Weese, J.S. Household knowledge, attitudes and practices related to pet contact and associated zoonoses in Ontario, Canada. BMC Public Health 2012, 12, 553. [Google Scholar]
- Alves, R.R.N.; Rocha, L.A. Fauna at home: Animals as pets. Ethnozoology 2018, 303–321. [Google Scholar] [CrossRef]
- Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global trends in emerging infectious diseases. Nature 2008, 451, 990–993. [Google Scholar] [PubMed]
- Woolhouse, M.E.; Gowtage-Sequeria, S. Host range and emerging and reemerging pathogens. Emerg. Infect. Dis. 2005, 11, 1842–1847. [Google Scholar] [PubMed]
- Culligan, E.P.; O’Connor, J.; Lynch, C.; O’Brien, D.; Vaughan, C.; Bolton, D.; Coffey, A.; Sleator, R.D.; Lucey, B. Draft Genome Sequence of Campylobacter fetus subsp. fetus CITCf01, isolated from a patient with subacute bacterial endocarditis. Microbiol. Resour. Announc. 2019, 8, e01556-18. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Ma, R.; Wang, Y.; Zhang, L. The clinical importance of Campylobacter concisus and other human hosted Campylobacter Species. Front. Cell. Infec. Microbiol. 2018, 8, 243. [Google Scholar] [CrossRef] [Green Version]
- Calleros, L.; Betancor, L.; Iraola, G.; Méndez, A.; Morsella, C.; Paolicchi, F.; Silveyra, S.; Velilla, A.; Pérez, R. Assessing the intra-species genetic variability in the clonal pathogen Campylobacter fetus: CRISPRs are highly polymorphic DNA markers. J. Microbiol. Methods 2017, 132, 86–94. [Google Scholar]
- Giacomelli, M.; Piccirillo, A. Pet reptiles as potential reservoir of Campylobacter species with zoonotic potential. Vet. Record 2014, 174, 479. [Google Scholar]
- World Organization for Animal Health (OIE). Chapter 3.4.4.—Bovine Genital Campylobacteriosis. In OIE Terrestrial Manual, 7th ed.; Paris, France, 2018; Available online: https://www.oie.int/standard-setting/terrestrial-manual/access-online/ (accessed on 30 August 2020).
- Sato, M.O.; Sato, M.; Adsakwattana, P.; Fontanilla, I.K. Preface to “Zoonotic Diseases and One Health”. In Zoonotic Diseases and One Health, Special Edition; Sato, M.O., Sato, M., Adsakwattana, P., Fontanilla, I.K., Eds.; MDPI Pathogens: Basel, Switzerland, 2020. [Google Scholar]
- Wielinga, P.R.; Schlundt, J. Food Safety: At the center of a One Health approach for combating zoonoses. One Health: Hum.-Anim.-Environ. Interfaces Emerg. Infect. Dis. 2012, 3–17. [Google Scholar]
- World Health Organization (WHO). Taking A Multisectoral One Health Approach: A Tripartite Guide to Addressing Zoonotic Diseases in Countries; FAO, OIE and WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Lubroth, J. FAO and the One Health approach. In One Health: The Human-Animal-Environment Interfaces in Emerging Infectious Diseases; Mackenzie, J.S., Jeggo, M., Daszak, P., Richt, J.A., Eds.; Springer: Berlin, Germany, 2012; Volume 366. [Google Scholar]
- Salyer, S.J.; Silver, R.; Simone, K.; Behravesh, C.B. Prioritizing zoonoses for global health capacity building—Themes from One Health zoonotic disease workshops in 7 countries, 2014–2016. Emerg. Infect. Dis. 2017, 23, S55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cogan, T.; Humphrey, T. The rise and fall of Salmonella enteritidis in the UK. J. Appl. Microbiol. 2003, 94, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Brown, H.L.; Passey, J.L.; Getino, M.; Pursley, I.; Basu, P.; Horton, D.L.; La Ragione, R.M. The One Health European Joint Programme (OHEJP), 2018–2022: An exemplary One Health initiative. J. Med Microbiol. 2020, 69, 1037–1039. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.Y.; Wong, S.P.; Dykes, G.A. Salmonella associated with captive and wild lizards in Malaysia. Herpetol. Notes 2014, 7, 145–147. [Google Scholar]
- Rostagno, M.H. Can stress in farm animals increase food safety risk? Foodborne Path. Dis. 2009, 6, 767–776. [Google Scholar] [CrossRef]
- Morgan, K.N.; Tromborg, C.T. Sources of stress in captivity. App. Anim. Behav.Sci. 2007, 102, 262–302. [Google Scholar] [CrossRef]
- Conrad, C.C.; Stanford, K.; Narvaez-Bravo, C.; Callaway, T.; McAllister, T. Farm fairs and petting zoos: A review of animal contact as a source of zoonotic enteric disease. Foodborne Path. Dis. 2017, 14, 59–73. [Google Scholar] [CrossRef]
- Pintar, K.D.; Christidis, T.; Thomas, M.K.; Anderson, M.; Nesbitt, A.; Keithlin, J.; Marshall, B.; Pollari, F. A systematic review and meta-analysis of the Campylobacter spp. prevalence and concentration in household pets and petting zoo animals for use in exposure assessments. PLoS ONE 2015, 10, e0144976. [Google Scholar] [CrossRef] [Green Version]
- De Vosjoli, P. The Lizard Keeper’s Handbook; i5 Publishing: Mount Joy, PA, USA, 2012. [Google Scholar]
- Marshall, C. Housing and husbandry of snakes and lizards. Vet. Nurs. J. 1993, 8, 38–45. [Google Scholar] [CrossRef]
- Vučinić, M.; Hajzler, I.; Terzin, J.; Nenadović, K.; Janković, L.; Voslarova, E.; Vučićević, M. Reptile ownership in Balkan countries: Demographics and reliance on veterinary advice. Anthrozoös 2019, 32, 129–139. [Google Scholar]
- Scheelings, T.F.; Lightfoot, D.; Holz, P. Prevalence of Salmonella in Australian reptiles. J. Wildl. Dis. 2011, 47, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiari, Y.; Cahais, V.; Galtier, N.; Delsuc, F. Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria). BMC Biology 2012, 10, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertrand, S.; Rimhanen-Finne, R.; Weill, F.; Rabsch, W.; Thornton, L.; Perevoščikovs, J.; Van Pelt, W.; Heck, M.; Eurosurveillance editorial team. Salmonella infections associated with reptiles: The current situation in Europe. Eurosurveillance 2008, 13, 18902. [Google Scholar] [CrossRef] [PubMed]
- Haitao, S.; Parham, J.F.; Zhiyong, F.; Meiling, H.; Feng, Y. Evidence for the massive scale of turtle farming in China. Oryx 2008, 42, 147–150. [Google Scholar] [CrossRef] [Green Version]
- Vitt, L.J.; Zug, G.R.; Caldwell, J.P. Herpetology: An Introductory Biology of Amphibians and Reptiles, 2nd ed.; Academic press: Waltham, MA, USA, 2001. [Google Scholar]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Prisma Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Medicine 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
Squamate Species | Campylobacter spp. | Sequence Data | Reference |
---|---|---|---|
Lizard (Pogona vitticeps) | C. iguaniorum | Whole Genome Sequencing (WGS) | [40] |
Lizard (Iguana iguana) | C. iguaniorum subsp. nov | WGS | [42] |
Snake (Heterodon nasicus) | C. fetus subsp. testudinum | WGS | [45] |
Lizard (Tiliqua nigrolutea) | C. fetus | Multilocus sequence typing (MLST), PCR | [44] |
Lizard (Pogona vitticeps) | C. jejuni | Quantitative PCR (qPCR) | [34] |
Lizard (Rhynchoedura ornate) | C. jejuni | qPCR | [34] |
Lizard (Hydrosaurus pustulatus) | C. fetus subsp. testudinum pet-3 | WGS | [41] |
Lizard (Pogona henrilawsonii) | C. iguaniorum | MLST | [43] |
Snake (Morelia amethistina) | C. fetus subsp. fetus | Multiplex PCR, MLST | [32] |
Lizard (Hydrosaurus pustulatus) | C. fetus subsp. fetus | Multiplex PCR, MLST | [32] |
Lizard (Sauromalus ater) | C. iguaniorum | MLST | [43] |
Lizard (Hemitheconyx caudicinctus) | C. iguaniorum | MLST | [43] |
Snake (Python reticulatus) | C. fetus subsp. testudinum | MLST | [45] |
Lizard (Tiliqua rugosa) | C. fetus subsp. testudinum | MLST | [45] |
Snake (Boa constrictor) | C. fetus subsp. testudinum | MLST | [45] |
Snake (Orthriophis taeniurus) | C. fetus subsp. testudinum | MLST | [45] |
Lizard (Tiliqua nigrolutea) | C. fetus subsp. testudinum | MLST | [45] |
Country | Findings | Campylobacter spp. | Squamate | Comments | Reference |
---|---|---|---|---|---|
Taiwan | 179 reptile fecal samples obtained from chelonians, lizards and snakes. 12/179 (6.7%) were positive for Campylobacter spp.; 10/103 (9.7%) chelonians; 1/56 (1.7%) lizards and 1/20 (5%) of snakes were positive for C. fetus subsp. fetus. | C. fetus subsp. fetus | Captive and wild lizards and snakes | Only the captive reptiles’ fecal samples tested positive for C. fetus. There were no positive isolates from the 23 reptiles collected from the wild fields. | [32] |
Taiwan | Complete genome sequence of C. fetus subsp. testudinum strain pet-3 was isolated from a lizard | C. fetus subsp. testudinum strain pet-3 | Lizard (Hydrosaurus pustulatus) | Isolated from humans, lizards, and turtles | [41] |
USA | Polyphasic study to determine taxonomy of 13 C. fetus-like strains using MALDI-TOF MS yielded a novel Campylobacter fetus subsp. testudinum subsp. nov. | Five reptile C. fetus-like strains and eight C. fetus strains isolated from humans | Five reptiles | The 13 strains are closely related to C. fetus and they had multiple phenotypic biomarkers differentiating them from known C. fetus subspecies | [49] |
Netherlands | C. iguaniorum is genetically related but distinct from C. fetus and C. hyointestinalis | C. iguaniorum | Bearded dragon (Pogona vitticeps) | C. iguaniorum isolated from a lizard. First whole genome sequence of C. iguaniorum was established. | [40] |
Australia | 33% (17/51) of lizards’ feces collected from central Australia tested positive for C. jejuni by quantitative PCR | Campylobacter jejuni | 46 wild lizards (unknown); five captive lizards (Pogona vitticeps and Rhynchoedura ornate) | 3/5 (60%) of captive lizards; 14/46 (30%) wild lizard fecal samples were positive for C. jejuni. | [34] |
Netherlands | Initial PCR and 16S rRNA showed the pathogens were most closely related to C. fetus and C. hyointestinalis. However, a polyphasic study involving characterization by 16S rRNA, atpA and MALDI-TOF MS showed divergence from all other known Campylobacter species. | C. iguaniorum subsp. nov | Five strains isolated from lizards and chelonians | Pathogen isolated from reptiles. Growth of the strains at ambient temperature may be an adaptation to their reptilian hosts which are identified as lizards and chelonians. | [42] |
Netherlands | Campylobacter spp. through PCR as follows; 38% (62/163) in lizards, 32% (32/100) in snakes. Using culture; 3% (3/100) in snakes, and in 11% (18/163) lizards. | C. iguaniorum, C. fetus subsp. testudinum and C. hyointestinalis | Lizards (Pogona henrilawsonii, Sauromalus ater, Hemitheconyx caudicinctus) and snakes. | Lizards and snakes carry one or more of the intestinal epsilonproteobacteria. Presence of intestinal Campylobacter spp. was higher in lizards than in snakes. | [43] |
Netherlands | Despite sharing the same host, no recent recombination was detected when genome comparison of C. iguaniorum and closely related C. fetus was done. Homology was higher between C. iguaniorum and C. fetus subsp. testudinum than between C. iguaniorum and mammalian C. fetus (C. fetus subsp. fetus & C. fetus subsp. venerealis). | C. iguaniorum | Bearded dragon (Pogona vitticeps) and green iguana (Iguana iguana) | Primary reservoir reported to be reptiles, chelonians and lizards. C. iguaniorum strain 1485E and 2463D isolated from bearded dragon and green iguana respectively were genomically compared with reptilian C. fetus subsp. testudinum. | [39] |
Country | Findings | Campylobacter spp. | Squamate | Comments | Demographics | Reference |
---|---|---|---|---|---|---|
UK | Four isolates from ill patients were confirmed as reptile C. fetus strains using sap insertion PCR. Both strains (mammalian C. fetus and reptile C. fetus) were characterized by multilocus sequence typing to be sharing 92% nucleotide sequence identity. | Reptile C. fetus and classical mammalian C. fetus (C. fetus subsp. fetus and C. fetus subsp. venerealis) | One snake (Heterodon nasicus) and one blotched blue-tongued skink (Tiliqua nigrolutea) | Reptile-like C. fetus strains have been isolated from cases of human disease. They showed capability of infecting humans despite having separate genomospecies. There was evidence of recombination. | Isolates from six clinically ill patients confirmed as reptile C. fetus strains using sap insertion PCR. | [44] |
USA | Two Campylobacter spp. with markers of reptile origin were isolated from blood sample of a patient who was symptomatic due to recurrent bacteremia caused by C. fetus subsp. fetus. The second isolate was found 37 days after antibiotic therapy | Campylobacter fetus | Reptilian origin. Not reported how the patient acquired the pathogen. Chelonian cuisine or contact with pet reptile was suggested. | Pathogen was not able to be identified phenotypically at first. Molecular analysis (16S rRNA, then PCR, SapD sequencing) confirmed the pathogen was similar to C. fetus subsp. fetus and was of reptilian origin. | A febrile 27-year-old patient with precursor T-cell acute lymphoblastic leukemia. | [48] |
China | Identification by multilocus sequence typing (MLST) 13 human cases of Campylobacter infection reported in Guangzhou in 2012 to 2013 | Campylobacter fetus subsp. testudinum | Reptilian origin; Food or human–squamate contact was reported as most likely source as reptiles formed an integral part of Chinese cuisine. | Epidemiological data was unavailable for these nine cases. | 13 human cases of C. fetus reported. | [50] |
Korea | Infectious spondylitis with bacteremia in a patient with chronic kidney disease was detected through 16S rRNA gene sequencing | C. fetus subsp. testudinum | Reptile | C. fetus spondylitis is a very rare disease. Confirmation of the identity of the squamate linked to the transmission was lacking. | 83-year-old male patient with end stage renal disease. | [46] |
China | C. fetus subsp. testudinum strain 772 isolated from the ascites of a patient. Whole genome sequence of the C. fetus subsp. testudinum which is primarily isolated from reptile but can cause invasive infection in human was established. | C. fetus subsp. testudinum strain-772 | Reptilian food or human–squamate contact was reported as most likely source. | Complete genome sequence established. C. fetus subsp. testudinum from reptiles has zoonotic potential to cause infection in humans. | A patient with chronic kidney disease. | [51] |
USA | Positive human infection with new subspecies of genetically distinct variant of C. fetus. | C. fetus subsp. testudinum subsp. nov | Reptile. Source reported to be related to traditional asian food or contact with reptile. | C. fetus association between reptiles and humans is well illustrated. Infection was related to exposure to foods of reptilian origin or due to human–reptile contact. | Positive cases in nine men of Asian origin, >60 years, with underlying illnesses | [47] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masila, N.M.; Ross, K.E.; Gardner, M.G.; Whiley, H. Zoonotic and Public Health Implications of Campylobacter Species and Squamates (Lizards, Snakes and Amphisbaenians). Pathogens 2020, 9, 799. https://doi.org/10.3390/pathogens9100799
Masila NM, Ross KE, Gardner MG, Whiley H. Zoonotic and Public Health Implications of Campylobacter Species and Squamates (Lizards, Snakes and Amphisbaenians). Pathogens. 2020; 9(10):799. https://doi.org/10.3390/pathogens9100799
Chicago/Turabian StyleMasila, Nicodemus M., Kirstin E. Ross, Michael G. Gardner, and Harriet Whiley. 2020. "Zoonotic and Public Health Implications of Campylobacter Species and Squamates (Lizards, Snakes and Amphisbaenians)" Pathogens 9, no. 10: 799. https://doi.org/10.3390/pathogens9100799
APA StyleMasila, N. M., Ross, K. E., Gardner, M. G., & Whiley, H. (2020). Zoonotic and Public Health Implications of Campylobacter Species and Squamates (Lizards, Snakes and Amphisbaenians). Pathogens, 9(10), 799. https://doi.org/10.3390/pathogens9100799