Occurrence and Antimicrobial Susceptibility Profiles of Multidrug-Resistant Aeromonads Isolated from Freshwater Ornamental Fish in Chiang Mai Province
Abstract
:1. Introduction
2. Results
2.1. Occurrence of Pathogenic Bacteria from Ornamental Fish
2.2. Antimicrobial Susceptibility Profiles of Bacteria Isolates
2.3. Determination of MIC and MBC
2.4. Antimicrobial Capacity
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Bacterial Isolation, Identification, and Biochemical Characterization
4.3. Antimicrobial Susceptibility Test
4.4. Minimum Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC)
4.5. Statistical Analysis and Data Reconfiguration
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Anusha, P.; Thangaviji, V.; Velmurugan, S.; Michaelbabu, M.; Citarasu, T. Protection of ornamental goldfish Carassius auratus against Aeromonas hydrophila by treating Ixora coccinea active principles. Fish Shellfish Immunol. 2014, 36, 485–493. [Google Scholar] [CrossRef]
- Verner-jeffreys, D.W.; Welch, T.J.; Schwarz, T.; Pond, M.J.; Woodward, M.J.; Haig, S.J.; Rimmer, G.S.E.; Roberts, E.; Morrison, V.; Baker-Austin, C. High prevalence of multidrug-tolerant bacteria and associated antimicrobial resistance genes isolated from ornamental fish and their carriage water. PLoS ONE 2009, 4, e8388. [Google Scholar] [CrossRef]
- Rose, S.; Hill, R.; Bermudez, L.E.; Miller-Morgan, T. Imported ornamental fish are colonized with antibiotic-resistant bacteria. J. Fish Dis. 2013, 36, 533–542. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Swaminathan, T.R.; Kumar, R.G.; Dharmaratnam, A.; Basheer, V.S.; Jena, J.K. Mass mortality in ornamental fish, Cyprinus carpio koi caused by a bacterial pathogen, Proteus hauseri. Acta Trop. 2015, 149, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Aswani, R.; Jasim, B.; Sebastian, K.S.; Radhakrishnan, E.K.; Mathew, J. Distribution of multi-virulence factors among Aeromonas spp. isolated from diseased Xiphophorus hellerii. Aquac. Int. 2020, 28, 235–248. [Google Scholar] [CrossRef]
- Hossain, S.; De Silva, B.C.J.; Dahanayake, P.S.; Heo, G.J. Characterization of virulence properties and multi-drug resistance profiles in motile Aeromonas spp. isolated from zebrafish (Danio rerio). Lett. Appl. Microbiol. 2018, 67, 598–605. [Google Scholar] [CrossRef] [PubMed]
- Wonglapsuwan, M.; Kongmee, P.; Suanyuk, N.; Chotigeat, W. Roles of phagocytosis activating protein (PAP) in Aeromonas hydrophila infected Cyprinus carpio. Dev. Comp. Immunol. 2016, 59, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Adamek, M.; Teitge, F.; Steinhagen, D. Quantitative diagnostics of gill diseases in common carp: Not as simple as it seems. Dis. Aquat. Org. 2019, 134, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Pekala, A.; Kozińska, A.; Paździor, E.; Glowacka, H. Phenotypical and genotypical characterization of Shewanella putrefaciens strains isolated from diseased freshwater fish. J. Fish Dis. 2015, 38, 283–293. [Google Scholar] [CrossRef]
- Kigigha, L.T.; Oku, I.Y.; Ojesanmi, A.S. Enumeration and characterization of bacteria associated with backwater fish species in wilberforce island bayelsa state Nigeria. Cont. J. Biol. Sci. 2012, 5, 32–37. [Google Scholar]
- Levy, S.B.; Bonnie, M. Antibacterial resistance worldwide: Causes, challenges and responses. Nat. Med. 2004, 10, S122–S129. [Google Scholar] [CrossRef] [PubMed]
- Trust, T.J.; Whitby, J.L. Antibiotic resistance of bacteria in water containing ornamental fishes. Antimicrob. Agents Chemother. 1976, 10, 598–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Revina, O.; Avsejenko, J.; Cirule, D.; Valdovska, A. Antimicrobial resistance of Aeromonas spp. isolated from the sea trout (Salmo trutta L.) in Latvia. Res. Rural Dev. 2017, 1, 271–275. [Google Scholar]
- Cole, B.; Tamaru, C.S.; Bailey, R.; Ako, H. Shipping Practices in the Ornamental Fish Industry; Center for Tropical and Subtropical Aquaculture: Waimanalo, HI, USA, 1999; pp. 4–18. [Google Scholar]
- Serra-Burriel, M.; Keys, M.; Campillo-Artero, C.; Antonella, A.; Barchitta, M.; Gikas, A.; Palos, C.; López-Casasnovas, G. Impact of multi-drug resistant bacteria on economic and clinical outcomes of healthcare-associated infections in adults: Systematic review and meta-analysis. PLoS ONE 2020, 15, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Gajdács, M. The concept of an ideal antibiotic: Implications for drug design. Molecules 2019, 24, 892. [Google Scholar] [CrossRef] [Green Version]
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Delalay, G.; Berezowski, J.; Diserens, N.; Schmidt-Posthaus, H. Characteristics of bacterial isolates in swiss farmed and ornamental fish from a retrospective study from 2000 to 2017. Schweiz. Arch Tierheilkd. 2018, 161, 43–57. [Google Scholar] [CrossRef]
- Walczak, N.; Puk, K.; Guz, L. Bacterial flora associated with diseased freshwater ornamental fish. J. Vet. Res. 2017, 61, 445–449. [Google Scholar] [CrossRef] [Green Version]
- Musa, N.; Seong Wei, L.; Shaharom, F.; Wee, W. Surveillance of Bacteria Species in Diseased Freshwater Ornamental Fish from Aquarium Shop. World Appl. Sci. J. 2008, 3, 903–905. [Google Scholar]
- Carnevia, D.; Perretta, A. Pathogenic Gram-negative bacteria isolated from ornamental fish in Uruguay characterization and antibiotic resistance. Bull. Eur. Assoc. Fish Pathol. 2013, 33, 181–186. [Google Scholar]
- Stratev, D.; Odeyemi, O.A. Antimicrobial resistance of Aeromonas hydrophila isolated from different food sources: A mini review. J. Infect. Public Health 2016, 9, 535–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanchan, C.; Imjai, P.; Kanchan, N.; Sawasdee, B. Antibiotic Resistance of Bacterial Species Isolated from Diseased Goldfish, Carassius auratus. Prawarun Agric. J. 2018, 15, 355–362. [Google Scholar]
- John, N.; Hatha, A.A.M. Distribution, Extracellular Virulence Factors and Drug Resistance of Motile Aeromonads in Fresh Water Ornamental Fishes and Associated Carriage Water. Int. J. Aquac. 2013, 3, 92–100. [Google Scholar]
- Abd-El-Malek, A.M. Incidence and virulence characteristics of Aeromonas spp. in fish. Vet. World 2017, 10, 34–37. [Google Scholar] [CrossRef] [Green Version]
- Daood, N. Isolation and Antibiotic Susceptibility of Aeromonas spp. From Freshwater Fish Farm and Farmed Carp (Dam of 16 Tishreen, Lattakia). Damascus Univ. J. Basic Sci. 2012, 28, 27–39. [Google Scholar]
- Gajdács, M. Resistance trends and epidemiology of Aeromonas and Plesiomonas infections (RETEPAPI): A 10-year retrospective survey. Infect. Dis. 2019, 51, 710–713. [Google Scholar] [CrossRef] [Green Version]
- Kiani, S.; Naghavi, N.S.; Branch, F.; Nazari, A. Detection of Vibrio Species Isolated from Ornamental Guppy Fish in Kashan, Isfahan, Iran Fish culturing Pounds. BMJ 2016, 4, 43–48. [Google Scholar]
- Vivekanandhan, G.; Savithamani, K.; Hatha, A.A.M.; Lakshmanaperumalsamy, P. Antibiotic resistance of Aeromonas hydrophila isolated from marketed fish and prawn of South India. Int. J. Food Microbiol. 2002, 76, 165–168. [Google Scholar] [CrossRef]
- Jongjareanjai, M.; Assawawongkasem, N.; Chansue, N. In vitro antibiotic susceptibility of Aeromonas hydrophila isolated from disease ornamental fish. Thai J. Vet. Med. 2009, 39, 225–229. [Google Scholar]
- Dias, C.; Mota, V.; Martinez-Murcia, A.; Saavedra, M.J. Antimicrobial resistance patterns of Aeromonas spp. Isolated from ornamental fish. J. Aquac. Res. Dev. 2012, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Titilawo, Y.; Sibanda, T.; Obi, L.; Okoh, A. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of faecal contamination of water. Environ. Sci. Pollut. Res. 2015, 22, 10969–10980. [Google Scholar] [CrossRef] [PubMed]
- Walsh, T.R.; Stunt, R.A.; Nabi, J.A.; MacGowan, A.P.; Bennett, P.M. Distribution and expression of β-lactamase genes among Aeromonas spp. J. Antimicrob. Chemother. 1997, 40, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Rathore, G.; Singh, V.; Mani, I.; Singh, R.K.; Mishra, S.K.; Mishra, B.N.; Verma, O.P. Bacterial resistance to oxytetracycline in different life stages of Indian freshwater carp aquaculture system. Int. J. Microbiol. Res. 2009, 1, 25–34. [Google Scholar]
- Odeyemi, O.A.; Ahmad, A. Antibiotic resistance profiling and phenotyping of Aeromonas species isolated from aquatic sources. Saudi J. Biol. Sci. 2017, 24, 65–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamy, B.; Marchandin, H.; Lamy, B.; Laurent, F.; Lamy, B.; Laurent, F.; Kodjo, A.; Lamy, B.; Roger, F.; Jumas-Bilak, E.; et al. Which antibiotics and breakpoints should be used for Aeromonas susceptibility testing? Considerations from a comparison of agar dilution and disk diffusion methods using Enterobacteriaceae breakpoints. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 2369–2377. [Google Scholar] [CrossRef]
- Ryu, S.; Kim, B.I.; Lim, J.S.; Tan, C.S.; Chun, B.C. One health perspectives on emerging public health threats. J. Prev. Med. Public Health 2017, 50, 411–414. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 5 August 2018).
- Stevenson, M.; Nunes, T.; Heuer, C.; Marshall, J.; Sanchez, J.; Thornton, R.; Reiczigel, J.; Robison-Cox, J.; Sebastiani, P.; Solymos, P.; et al. epiR: Tools for the Analysis of Epidemiological Data, R package version 1.0-10; 2019; Available online: https://CRAN.R-project.org/package=epiR (accessed on 5 August 2018).
- Buller, N.B. Bacteria from Fish and Other Aquatic Animals: A Practical Identification Manual, 1st ed.; CABI Publishing: Wallingford, UK, 2004; pp. 83–116. [Google Scholar]
- National Committee for Clinical Laboratory Standards. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals Proposed Standard; NCCLS Document M-31-T; National Committee for Clinical Laboratory Standards: Wayne, PA, USA, 1997. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: 20th Informational Supplement M100-S20; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2010. [Google Scholar]
- Clinical and Laboratory Standards Institute. Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria, 3rd ed.; CLSI guideline M45; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2010. [Google Scholar]
- Kowser, M.M.; Fatema, N. Determination of MIC and MBC of selected azithromycin capsule commercially available in Bangladesh. ORION 2009, 32, 619–620. [Google Scholar]
- Schwarz, S.; Silley, P.; Simjee, S.; Woodford, N.; van duijkeren, E.; Johnson, A.P.; Gaastra, W. Editorial: Assessing the antimicrobial susceptibility of bacteria obtained from animals. J. Antimicrob. Chemother. 2010, 65, 601–604. [Google Scholar] [CrossRef]
- Urumova, V.; Petrov, V. Analysis of antimicrobial drug resistance in Enteropathogenic Escherichia coli (EPEC) isolated in rabbits with diarrhoeic syndrome. Trakia J. Sci. 2008, 6, 36–40. [Google Scholar]
- Berche, P.; Gaillard, J.L.; Simonet, M. Nosocomial infections caused by bacteria and their prevention in bacteriology. Ed Flammarion Med. Sci. 1988, 64–71. [Google Scholar]
- Gasu, E.N.; Ahor, H.S.; Borquaye, L.S. Peptide extract from Olivancillaria hiatula exhibits broad-spectrum antibacterial activity. BioMed Res. Int. 2018, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Traczewski, M.M.; Katz, B.D.; Steenbergen, J.N.; Brown, S.D. Inhibitory and Bactericidal Activities of Daptomycin, Vancomycin, and Teicoplanin against Methicillin-Resistant Staphylococcus aureus Isolates Collected from 1985 to 2007. Antimicrob. Agents Chemother. 2009, 53, 1735–1738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Bacteria | Bacterial Isolates, n (%) |
---|---|
Aeromonas sorbria | 41 (43.62) |
Aeromonas hydrophila | 18 (19.15) |
Aeromonas caviae | 5 (5.32) |
Vibrio cholerae | 8 (8.51) |
Vibrio minicus | 4 (4.26) |
Pseudomonas aeruginosa | 2 (2.13) |
Citrobacter freundii | 1 (1.06) |
Viridans streptococci | 5 (5.32) |
Plesiomonas shigelloides | 3 (3.19) |
Salmonella enterica | 3 (3.19) |
Edwardsiella tarda | 2 (2.13) |
Enterobacter spp. | 2 (2.13) |
Antimicrobial Agents | Concentration (µg) | Bacterial Isolates | |||
---|---|---|---|---|---|
Aeromonas sorbria (n = 41) | A. hydrophila (n = 18) | A. caviae (n = 5) | Total (n = 64) | ||
amoxicillin (AML) | 10 | 38 | 17 | 5 | 60 (93.75%) |
oxytetracycline (OT) | 30 | 32 | 15 | 4 | 51 (79.69%) |
erythromycin (E) | 15 | 31 | 13 | 4 | 48 (75.00%) |
sulfamethoxazole- trimethoprim (SXT) | 25 | 17 | 11 | 2 | 30 (46.88%) |
ciprofloxacin (CIP) | 5 | 17 | 7 | 2 | 26 (40.63%) |
enrofloxacin (ENR) | 5 | 10 | 5 | 1 | 16 (25.00%) |
norfloxacin (NOR) | 10 | 12 | 4 | 0 | 16 (25.00%) |
gentamicin (GN) | 10 | 7 | 3 | 1 | 11 (17.19%) |
amikacin (AK) | 30 | 6 | 1 | 1 | 8 (12.50%) |
nitrofurantoin (N) | 300 | 3 | 2 | 0 | 5 (7.81%) |
chloramphenicol (C) | 30 | 0 | 4 | 0 | 4 (6.25%) |
ceftazidime (CAZ) | 30 | 0 | 0 | 0 | 0 (0%) |
Antimicrobial Agents | Minimal Inhibitory Concentration of Bacterial Isolates (µg/mL) | ||
---|---|---|---|
MIC50 | MIC90 | Median (IQR) 1 | |
amoxicillin (AML) | 1079.40 | 2222.26 | 2048 (512–4096) |
oxytetracycline (OT) | 34.97 | 149.26 | 512 (64–2048) |
erythromycin (E) | 52.91 | 92.13 | 512 (128–1024) |
sulfamethoxazole (S) | 321.25 | 571.25 | 2048 (512–4096) |
ciprofloxacin (CIP) | 57.53 | 268.05 | 256 (64–2048) |
enrofloxacin (ENR) | 27.03 | 71.48 | 128 (16–512) |
norfloxacin (NOR) | 56.20 | 101.15 | 256 (128–512) |
amikacin (AK) | 11.29 | 34.41 | 96 (28–320) |
gentamicin (GN) | 18.16 | 43.31 | 128 (32–512) |
nitrofurantoin (N) | 4.28 | 63.99 | 128 (32–512) |
chloramphenicol (C) | 4.43 | 45.24 | 64 (16–256) |
Antimicrobial Agents | Minimal Bactericidal Concentration Bacterial Isolates (µg/mL) | ||
---|---|---|---|
MBC50 | MBC90 | Median (IQR) 1 | |
amoxicillin (AML) | 1873.50 | 3873.50 | 2048 (512–4096) |
oxytetracycline (OT) | 120.29 | 224.73 | 1024 (256–2048) |
erythromycin (E) | 85.64 | 148.14 | 512 (256–1024) |
sulfamethoxazole (S) | 713.43 | 1284.86 | 2048 (1024–8192) |
ciprofloxacin (CIP) | 154.60 | 354.60 | 512 (128–3072) |
enrofloxacin (ENR) | 51.28 | 110.10 | 256 (32–1024) |
norfloxacin (NOR) | 103.73 | 192.62 | 512 (128–1024) |
amikacin (AK) | 18.97 | 38.77 | 128 (32–512) |
gentamicin (GN) | 30.05 | 59.25 | 192 (64–512) |
nitrofurantoin (N) | 4.28 | 63.99 | 128 (32–512) |
chloramphenicol (C) | 34.80 | 66.55 | 256 (128–512) |
Antimicrobial Agents | Bacterial Isolates | ||||
---|---|---|---|---|---|
MBC50/MIC50 (µg/mL) | MBC90/MIC90 (µg/mL) | % Tolerance 2 | |||
Ratio | Value 1 | Ratio | Value | ||
Amoxicillin (AML) | 1873.50/1079.40 | 1.74 | 3873.50/2222.26 | 1.74 | 67.19 |
oxytetracycline (OT) | 120.29/34.97 | 3.44 | 224.73/149.26 | 1.51 | 57.81 |
erythromycin (E) | 85.64/52.91 | 1.62 | 148.14/92.13 | 1.61 | 53.13 |
sulfamethoxazole-(S) | 713.43/321.25 | 2.22 | 1284.86/571.25 | 2.25 | 35.94 |
ciprofloxacin (CIP) | 154.60/57.53 | 2.69 | 354.60/268.05 | 1.32 | 29.69 |
enrofloxacin (ENR) | 51.28/27.03 | 1.90 | 110.10/71.48 | 1.54 | 17.19 |
gentamicin (GN) | 30.05/18.16 | 1.74 | 59.25/43.31 | 1.37 | 17.19 |
norfloxacin (NOR) | 103.73/56.20 | 1.85 | 192.62/101.15 | 1.90 | 15.63 |
amikacin (AK) | 18.79/11.29 | 1.68 | 38.77/34.41 | 1.13 | 12.50 |
nitrofurantoin (N) | 4.28/4.28 | 1.00 | 63.99/63.99 | 1.00 | 6.25 |
chloramphenicol (C) | 34.80/4.43 | 7.86 | 66.55/45.24 | 1.47 | 6.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saengsitthisak, B.; Chaisri, W.; Punyapornwithaya, V.; Mektrirat, R.; Klayraung, S.; Bernard, J.K.; Pikulkaew, S. Occurrence and Antimicrobial Susceptibility Profiles of Multidrug-Resistant Aeromonads Isolated from Freshwater Ornamental Fish in Chiang Mai Province. Pathogens 2020, 9, 973. https://doi.org/10.3390/pathogens9110973
Saengsitthisak B, Chaisri W, Punyapornwithaya V, Mektrirat R, Klayraung S, Bernard JK, Pikulkaew S. Occurrence and Antimicrobial Susceptibility Profiles of Multidrug-Resistant Aeromonads Isolated from Freshwater Ornamental Fish in Chiang Mai Province. Pathogens. 2020; 9(11):973. https://doi.org/10.3390/pathogens9110973
Chicago/Turabian StyleSaengsitthisak, Banthita, Wasana Chaisri, Veerasak Punyapornwithaya, Raktham Mektrirat, Srikanjana Klayraung, John K. Bernard, and Surachai Pikulkaew. 2020. "Occurrence and Antimicrobial Susceptibility Profiles of Multidrug-Resistant Aeromonads Isolated from Freshwater Ornamental Fish in Chiang Mai Province" Pathogens 9, no. 11: 973. https://doi.org/10.3390/pathogens9110973
APA StyleSaengsitthisak, B., Chaisri, W., Punyapornwithaya, V., Mektrirat, R., Klayraung, S., Bernard, J. K., & Pikulkaew, S. (2020). Occurrence and Antimicrobial Susceptibility Profiles of Multidrug-Resistant Aeromonads Isolated from Freshwater Ornamental Fish in Chiang Mai Province. Pathogens, 9(11), 973. https://doi.org/10.3390/pathogens9110973