Dynamic Network of Interactions in the Wildlife-Livestock Interface in Mediterranean Spain: An Epidemiological Point of View
Abstract
:1. Introduction
2. Results
Simulation of Pathogen Transmission
3. Discussion
3.1. On the Study Approach
3.2. On the Technologies
3.3. Social Network Analysis
3.4. Simulation of Pathogen Transmission
4. Materials and Methods
4.1. Study Area
4.2. Animal Capture and Monitoring
4.3. Definition of Interactions
4.3.1. GPS Technology
4.3.2. Proximity Technology
4.4. Network Characterisation and Data Analysis
4.5. Simulation of Pathogen Transmission
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McCallum, H.; Fenton, A.; Hudson, P.J.; Lee, B.; Levick, B.; Norman, R.; Perkins, S.E.; Viney, M.; Wilson, A.J.; Lello, J. Breaking beta: Deconstructing the parasite transmission function. Philos. Trans. R. Soc. B 2017, 372, 20160084. [Google Scholar] [CrossRef] [PubMed]
- Ji, W.; White, P.C.; Clout, M.N. Contact rates between possums revealed by proximity data loggers. J. Appl. Ecol. 2005, 42, 595–604. [Google Scholar] [CrossRef]
- Sparkes, J.; Ballard, G.; Fleming, P.J.; van de Ven, R.; Körtner, G. Contact rates of wild-living and domestic dog populations in Australia: A new approach. Oecologia 2016, 182, 1007–1018. [Google Scholar] [CrossRef] [PubMed]
- Plowright, W. Vector transmission of African swine fever virus. In Hog Cholera/Classical Swine Fever and African Swine Fever; EEC Publication EUR 5904 EN; Liess, B., Ed.; Office for Official Publications of the European Communities: Luxembourg, 1977; pp. 575–587. [Google Scholar]
- Palmer, M.V.; Whipple, D.L.; Waters, W.R. Experimental deer-to-deer transmission of Mycobacterium bovis. Am. J. Vet. Res. 2001, 62, 692–696. [Google Scholar] [CrossRef] [Green Version]
- Palmer, M.V.; Waters, W.R.; Whipple, D.L. Investigation of the transmission of Mycobacterium bovis from deer to cattle through indirect contact. Am. J. Vet. Res. 2004, 65, 1483–1489. [Google Scholar] [CrossRef] [Green Version]
- Bolton, K.J.; McCaw, J.M.; Forbes, K.; Nathan, P.; Robins, G.; Pattison, P.; Nolan, T.; McVernon, J. Influence of contact definitions in assessment of the relative importance of social settings in disease transmission risk. PLoS ONE 2012, 7, e30893. [Google Scholar] [CrossRef] [Green Version]
- Triguero-Ocaña, R.; Vicente, J.; Acevedo, P. Performance of proximity loggers under controlled field conditions: An assessment from a wildlife ecological and epidemiological perspective. Anim. Biotelem. 2019, 7, 1–9. [Google Scholar] [CrossRef]
- Robert, K.; Garant, D.; Pelletier, F. Keep in touch: Does spatial overlap correlate with contact rate frequency? J. Wildl. Manag. 2012, 76, 1670–1675. [Google Scholar] [CrossRef]
- Barasona, J.A.; Latham, M.C.; Acevedo, P.; Armenteros, J.A.; Latham, A.D.M.; Gortázar, C.; Carro, F.; Soriguer, R.C.; Vicente, J. Spatiotemporal interactions between wild boar and cattle: Implications for cross-species disease transmission. Vet. Res. 2014, 45, 122. [Google Scholar] [CrossRef] [Green Version]
- Triguero-Ocaña, R.; Barasona, J.A.; Carro, F.; Soriguer, R.C.; Vicente, J.; Acevedo, P. Spatio-temporal trends in the frequency of interspecific interactions between domestic and wild ungulates from Mediterranean Spain. PLoS ONE 2019, 14, e0211216. [Google Scholar] [CrossRef] [Green Version]
- Drewe, J.A.; Weber, N.; Carter, S.P.; Bearhop, S.; Harrison, X.A.; Dall, S.R.; McDonald, R.A.; Delahay, R.J. Performance of proximity loggers in recording intra-and inter-species interactions: A laboratory and field-based validation study. PLoS ONE 2012, 7, e39068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ossi, F.; Focardi, S.; Picco, G.P.; Murphy, A.; Molteni, D.; Tolhurst, B.; Giannini, N.; Gaillard, J.M.; Cagnacci, F. Understanding and geo-referencing animal contacts: Proximity sensor networks integrated with GPS-based telemetry. Anim. Biotelem. 2016, 4, 21. [Google Scholar] [CrossRef] [Green Version]
- Lavelle, M.J.; Kay, S.L.; Pepin, K.M.; Grear, D.A.; Campa, H., III; VerCauteren, K.C. Evaluating wildlife-cattle contact rates to improve the understanding of dynamics of bovine tuberculosis transmission in Michigan, USA. Prev. Vet. Med. 2016, 135, 28–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Triguero-Ocaña, R.; Vicente, J.; Lavelle, J.; Acevedo, P. Collecting data to assess the interactions between livestock and wildlife. In Disease at the Wildlife/Livestock Interface: Research and Perspectives in a Changing World; Vicente, J., Vercauteren, K.C., Gortázar, C., Eds.; Wildlife Research Monographs; Springer: Berlin/Heidelberg, Germany, in press.
- Silk, M.J.; Croft, D.P.; Delahay, R.J.; Hodgson, D.J.; Boots, M.; Weber, N.; McDonald, R.A. Using social network measures in wildlife disease ecology, epidemiology, and management. BioScience 2017, 67, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Wellman, B. Structural analysis: From method and metaphor to theory and substance. Contemp. Stud. Sociol. 1997, 15, 19–61. [Google Scholar]
- Martínez-López, B.; Perez, A.M.; Sánchez-Vizcaíno, J.M. Social network analysis. Review of general concepts and use in preventive veterinary medicine. Transbound. Emerg. Dis. 2009, 56, 109–120. [Google Scholar] [CrossRef]
- Laumann, E.O.; Pappi, F.U. Networks of Collective Action: A Perspective on Community Influence Systems; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Martin, V.; Zhou, X.; Marshall, E.; Jia, B.; Fusheng, G.; FrancoDixon, M.A.; DeHaan, N.; Pfeiffer, D.U.; Soares-Magalhães, R.J.; Gilbert, M. Risk-based surveillance for avian influenza control along poultry market chains in South China: The value of social network analysis. Prev. Vet. Med. 2011, 102, 196–205. [Google Scholar] [CrossRef]
- Chen, S.; White, B.J.; Sanderson, M.W.; Amrine, D.E.; Ilany, A.; Lanzas, C. Highly dynamic animal contact network and implications on disease transmission. Sci. Rep. 2014, 4, 4472. [Google Scholar] [CrossRef]
- Nunn, C.L.; Thrall, P.H.; Kappeler, P.M. Shared resources and disease dynamics in spatially structured populations. Ecol. Model. 2014, 272, 198–207. [Google Scholar] [CrossRef]
- Blonder, B.; Wey, T.W.; Dornhaus, A.; James, R.; Sih, A. Temporal dynamics and network analysis. Methods Ecol. Evol. 2012, 3, 958–972. [Google Scholar] [CrossRef]
- Farine, D. The dynamics of transmission and the dynamics of networks. J. Anim. Ecol. 2017, 86, 415–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kukielka, E.; Barasona, J.A.; Cowie, C.E.; Drewe, J.A.; Gortázar, C.; Cotarelo, I.; Vicente, J. Spatial and temporal interactions between livestock and wildlife in South Central Spain assessed by camera traps. Prev. Vet. Med. 2013, 112, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Carrasco-García, R.; Barasona, J.A.; Gortázar, C.; Montoro, V.; Sanchez-Vizcaino, J.M.; Vicente, J. Wildlife and livestock use of extensive farm resources in South Central Spain: Implications for disease transmission. Eur. J. Wildl. Res. 2016, 62, 65–78. [Google Scholar] [CrossRef]
- Gortázar, C.; Torres, M.J.; Vicente, J.; Acevedo, P.; Reglero, M.; de la Fuente, J.; Negro, J.J.; Aznar-Martín, J. Bovine tuberculosis in Doñana Biosphere Reserve: The role of wild ungulates as disease reservoirs in the last Iberian lynx strongholds. PLoS ONE 2008, 3, e2776. [Google Scholar] [CrossRef] [Green Version]
- Gortázar, C.; Vicente, J.; Boadella, M.; Ballesteros, C.; Galindo, R.C.; Garrido, J.; Aranaz, A.; de La Fuente, J. Progress in the control of bovine tuberculosis in Spanish wildlife. Vet. Microbiol. 2011, 151, 170–178. [Google Scholar] [CrossRef] [Green Version]
- LaHue, N.P.; Vicente, J.; Acevedo, P.; Gortázar, C.; Martínez-López, B. Spatially explicit modeling of animal tuberculosis at the wildlife-livestock interface in Ciudad Real province, Spain. Prev. Vet. Med. 2016, 128, 101–111. [Google Scholar] [CrossRef]
- Cowie, C.E.; Hutchings, M.R.; Barasona, J.A.; Gortázar, C.; Vicente, J.; White, P.C. Interactions between four species in a complex wildlife: Livestock disease community: Implications for Mycobacterium bovis maintenance and transmission. Eur. J. Wildl. Res. 2016, 62, 51–64. [Google Scholar] [CrossRef] [Green Version]
- Laguna, E.; Barasona, J.A.; Triguero-Ocaña, R.; Mulero-Pázmány, M.; Negro, J.J.; Vicente, J.; Acevedo, P. The relevance of host overcrowding in wildlife epidemiology: A new spatially explicit aggregation index. Ecol. Indic. 2018, 84, 695–700. [Google Scholar] [CrossRef]
- Santos, N.; Almeida, V.; Gortázar, C.; Correia-Neves, M. Patterns of Mycobacterium tuberculosis-complex excretion and characterization of super-shedders in naturally-infected wild boar and red deer. Vet. Res. 2015, 46, 129. [Google Scholar] [CrossRef] [Green Version]
- Lavelle, M.J.; Fischer, J.W.; Phillips, G.E.; Hildreth, A.M.; Campbell, T.A.; Hewitt, D.G.; Hygntrom, S.E.; Vercauteren, K.C. Assessing risk of disease transmission: Direct implications for an indirect science. BioScience 2014, 64, 524–530. [Google Scholar] [CrossRef]
- Campbell, E.L.; Byrne, A.W.; Menzies, F.D.; McBride, K.R.; McCormick, C.M.; Scantlebury, M.; Reid, N. Interspecific visitation of cattle and badgers to fomites: A transmission risk for bovine tuberculosis? Ecol. Evol. 2019, 9, 8479–8489. [Google Scholar] [CrossRef] [PubMed]
- Wilber, M.Q.; Pepin, K.M.; Campa, H., III; Hygnstrom, S.E.; Lavelle, M.J.; Xifara, T.; VerCauteren, K.C.; Webb, C.T. Modeling multi-species and multi-mode contact networks: Implications for persistence of bovine tuberculosis at the wildlife-livestock interface. J. Appl. Ecol. 2019, 56, 1471–1481. [Google Scholar] [CrossRef]
- Woodroffe, R.; Donnelly, C.A.; Ham, C.; Jackson, S.Y.; Moyes, K.; Chapman, K.; Stratton, N.G.; Cartwright, S.J. Badgers prefer cattle pasture but avoid cattle: Implications for bovine tuberculosis control. Ecol. Lett. 2016, 19, 1201–1208. [Google Scholar] [CrossRef] [PubMed]
- Barasona, J.A.; Mulero-Pázmány, M.; Acevedo, P.; Negro, J.J.; Torres, M.J.; Gortázar, C.; Vicente, J. Unmanned aircraft systems for studying spatial abundance of ungulates: Relevance to spatial epidemiology. PLoS ONE 2014, 9, e115608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Focardi, S.; Pecchioli, E. Social cohesion and foraging decrease with group size in fallow deer (Dama dama). Behav. Ecol. Sociobiol. 2005, 59, 84–91. [Google Scholar] [CrossRef]
- Tucker, C.B. Behaviour of cattle. In The Ethology of Domestic Animals, 2nd ed.; Jensen, P., Ed.; IFM Biology, Linköping University: Linköping, Sweden, 2009. [Google Scholar]
- Amato, B.; Mignacca, S.A.; Pacciarini, M.L.; Vitale, M.; Antoci, S.; Cucinotta, S.; Puleio, R.; Biasibetti, E.; Fiasconaro, M.; Capucchio, T.; et al. An outbreak of bovine tuberculosis in a fallow deer herd (Dama dama) in Sicily. Res. Vet. Sci. 2016, 106, 116–120. [Google Scholar] [CrossRef]
- Barasona, J.A.; Torres, M.J.; Aznar, J.; Gortázar, C.; Vicente, J. DNA detection reveals Mycobacterium tuberculosis complex shedding routes in its wildlife reservoir the Eurasian wild boar. Transbound. Emerg. Dis. 2017, 64, 906–915. [Google Scholar] [CrossRef]
- Madden, J.R.; Drewe, J.A.; Pearce, G.P.; Clutton-Brock, T.H. The social network structure of a wild meerkat population: 2. Intragroup interactions. Behav. Ecol. Sociobiol. 2009, 64, 81. [Google Scholar] [CrossRef]
- Kurvers, R.H.; Krause, J.; Croft, D.P.; Wilson, A.D.; Wolf, M. The evolutionary and ecological consequences of animal social networks: Emerging issues. Trends Ecol. Evol. 2014, 29, 326–335. [Google Scholar] [CrossRef]
- Barasona, J.A.; Vicente, J.; Díez-Delgado, I.; Aznar, J.; Gortázar, C.; Torres, M.J. Environmental presence of Mycobacterium tuberculosis complex in aggregation points at the wildlife/livestock interface. Transbound. Emerg. Dis. 2017, 64, 1148–1158. [Google Scholar] [CrossRef]
- Martínez-Guijosa, J.; Lima-Barbero, J.F.; Barasona, J.A.; Acevedo, P.; Boadella, M.; Cano-Terriza, D.; Cuevas, M.I.; García-Bocanegra, I.; Gortázar, C.; Vicente, J. Biosecurity at the livestock-wildlife interface: Farm characterization and design of a field protocol. In Proceedings of the 12th Conference of the European Wildlife Disease Association, Berlin, Germany, 27–31 August 2016. [Google Scholar]
- Vicente, J.; Soriguer, R.C.; Gortázar, C.; Carro, F.; Acevedo, P.; Barasona, J.A.; Torres, M.J.; Negro, J.J. Bases técnicas para una extracción sostenible de ungulados del Parque Nacional de Doñana. Unpublished report. 2014. [Google Scholar]
- Marco, I.; Lavin, S. Effect of the method of capture on the haematology and blood chemistry of red deer (Cervus elaphus). Res. Vet. Sci. 1999, 66, 81–84. [Google Scholar] [CrossRef] [PubMed]
- Barasona, J.A.; López-Olvera, J.R.; Beltrán-Beck, B.; Gortázar, C.; Vicente, J. Trap-effectiveness and response to tiletamine- zolazepam and medetomidine anaesthesia in Eurasian wild boar captured with cage and corral traps. BMC Vet. Res. 2013, 9, 107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org/ (accessed on 20 August 2017).
- Palencia, P.; Vicente, J.; Barroso, P.; Barasona, J.A.; Soriguer, R.C.; Acevedo, P. Estimating day range from camera-trap data: The animals’ behaviour as a key parameter. J. Zool. 2019, 309, 182–190. [Google Scholar] [CrossRef]
- Csárdi, G.; Nepusz, T. The igraph software package for complex network research. Int. J. Compl. Syst. 2006, 1695, 1–9. [Google Scholar]
- Sabidussi, G. The centrality index of a graph. Psychometrika 1966, 31, 581–603. [Google Scholar] [CrossRef]
- Friedkin, N.E. Structural cohesion and equivalence explanations of social homogeneity. Sociol. Met. Res. 1984, 12, 235–261. [Google Scholar] [CrossRef]
- Newman, M. The mathematics of networks. In The New Palgrave Encyclopedia of Economics, 2nd ed.; Durlauf, S.N., Blume, L., Eds.; Palgrave Macmillan: Basingstoke, UK, 2008. [Google Scholar]
- Bender-deMoll, S.; Morris, M. tsna: Tools for Temporal Social Network Analysis; R Package Version 0.2.0. 2016. Available online: https://CRAN.R-project.org/package=tsna (accessed on 3 March 2019).
- Butts, C.T.; Leslie-Cook, A.; Krivitsky, P.N.; Bender-deMoll, S. networkDynamic: Dynamic Extensions for Network Objects; R Package Version 0.9.0. 2016. Available online: https://CRAN.R-project.org/package=networkDynamicn (accessed on 3 March 2019).
- Bender-deMoll, S. Temporal Network Tools in Statnet: Networkdynamic, ndtv and tsna. 2016. Available online: http://statnet.csde.washington.edu/workshops/SUNBELT/current/ndtv/ndtv_workshop.html#importing-event-or-spell-data (accessed on 3 March 2019).
- Goris, N.E.; Eblé, P.L.; de Jong, M.C.; De Clercq, K. Quantifying foot-and-mouth disease virus transmission rates using published data. ALTEX Altern. Anim. Exp. 2009, 26, 52–54. [Google Scholar] [CrossRef] [Green Version]
- Ge, L.; Mourits, M.C.; Kristensen, A.R.; Huirne, R.B. A modelling approach to support dynamic decision-making in the control of FMD epidemics. Prev. Vet. Med. 2010, 95, 167–174. [Google Scholar] [CrossRef]
- Ward, A.I.; Smith, G.C. Predicting the status of wild deer as hosts of Mycobacterium bovis infection in Britain. Eur. J. Wildl. Res. 2012, 58, 127–135. [Google Scholar] [CrossRef]
- Martínez-López, B.; Perez, A.M.; De la Torre, A.; Rodriguez, J.S.V. Quantitative risk assessment of foot-and-mouth disease introduction into Spain via importation of live animals. Prev. Vet. Med. 2008, 86, 43–56. [Google Scholar] [CrossRef]
Term | Range | Definition * | |
---|---|---|---|
Node properties | Degree | 0 to ∞ | Number of contacts of a specific node. |
Closeness | 0 to 1 | The ratio of how many nodes are connected directly with a reference node. | |
Betweenness centrality | 0 to ∞ | Number of shortest paths between the nodes of the network that pass through a specific node. | |
Eigenvector centrality | 0 to 1 | A measure of how connected a specific node is to other nodes highly relevant in the network. | |
Network properties | Diameter | 0 to ∞ | The shortest path length inside the network. |
Density | 0 to 1 | Number of contacts in the network regarding the total number of contacts that could had happen. | |
Clustering coefficient | 0 to 1 | Sum of the proportion of nodes that are connected to another node. | |
Average path length | 0 to ∞ | Average number of contacts that take place through the shortest path among all the nodes in the network. | |
Degree assortativity | −1 to 1 | Tendency of a specific node to contact with nodes which have similar degree values to the reference node. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Triguero-Ocaña, R.; Martínez-López, B.; Vicente, J.; Barasona, J.A.; Martínez-Guijosa, J.; Acevedo, P. Dynamic Network of Interactions in the Wildlife-Livestock Interface in Mediterranean Spain: An Epidemiological Point of View. Pathogens 2020, 9, 120. https://doi.org/10.3390/pathogens9020120
Triguero-Ocaña R, Martínez-López B, Vicente J, Barasona JA, Martínez-Guijosa J, Acevedo P. Dynamic Network of Interactions in the Wildlife-Livestock Interface in Mediterranean Spain: An Epidemiological Point of View. Pathogens. 2020; 9(2):120. https://doi.org/10.3390/pathogens9020120
Chicago/Turabian StyleTriguero-Ocaña, Roxana, Beatriz Martínez-López, Joaquín Vicente, José A. Barasona, Jordi Martínez-Guijosa, and Pelayo Acevedo. 2020. "Dynamic Network of Interactions in the Wildlife-Livestock Interface in Mediterranean Spain: An Epidemiological Point of View" Pathogens 9, no. 2: 120. https://doi.org/10.3390/pathogens9020120
APA StyleTriguero-Ocaña, R., Martínez-López, B., Vicente, J., Barasona, J. A., Martínez-Guijosa, J., & Acevedo, P. (2020). Dynamic Network of Interactions in the Wildlife-Livestock Interface in Mediterranean Spain: An Epidemiological Point of View. Pathogens, 9(2), 120. https://doi.org/10.3390/pathogens9020120