In Vitro Anti-NTHi Activity of Haemophilin-Producing Strains of Haemophilus haemolyticus
Abstract
:1. Introduction
2. Results and Discussion
2.1. Validation of a Triplex Real-Time PCR for Quantification of NTHi, Hh and Detection of HPL
2.2. Baseline NTHi-Inhibitory Activity of Hh Strains Containing the HPL ORF
2.3. HPL Expression Correlates with the Hh-HPL+ Phenotype
2.4. The Hh-HPL+ Phenotype Confers a Competitive Advantage against NTHi
2.5. The Hh-HPL+ Phenotype is Associated with a Growth Advantage
2.6. NTHi Fitness Dramatically Decreases during Extended Co-Culture with Hh-HPL+
3. Materials and Methods
3.1. Bacterial Growth Conditions
3.1.1. Bacterial Strains
3.1.2. Propagation of Heme-Replete Populations for Growth Experiments
3.2. Determination of NTHi-Inhibitory Activity
3.3. Triplex Real-Time PCR for the Quantification of NTHi, Hh and Detection of HPL
3.4. Competition Assays
3.4.1. Short-Term Broth Competition
3.4.2. Fitness Assay
3.5. Expression Analysis
3.5.1. RNA Extraction, Purification and Quantification
3.5.2. Expression Validation
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Mukundan, D.; Ecevit, Z.; Patel, M.; Marrs, C.F.; Gilsdorf, J.R. Pharyngeal colonization dynamics of Haemophilus influenzae and Haemophilus haemolyticus in healthy adult carriers. J. Clin. Microbiol. 2007, 45, 3207–3217. [Google Scholar] [CrossRef] [Green Version]
- Van Eldere, J.; Slack, M.P.; Ladhani, S.; Cripps, A.W. Non-typeable Haemophilus influenzae, an under-recognised pathogen. Lancet Infect. Dis. 2014, 14, 1281–1292. [Google Scholar] [CrossRef] [Green Version]
- Murphy, T.F. Vaccines for nontypeable Haemophilus influenzae: The future is now. Clin. Vaccine Immunol. 2015, 22, 459–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, P. Haemophilus influenzae and the lung (Haemophilus and the lung). Clin. Transl. Med. 2012, 1, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langereis, J.D.; de Jonge, M.I. Invasive disease caused by nontypeable Haemophilus influenzae. Emerg. Infect. Dis. 2015, 21, 1711. [Google Scholar] [CrossRef] [PubMed]
- Giufrè, M.; Fabiani, M.; Cardines, R.; Riccardo, F.; Caporali, M.G.; D’Ancona, F.; Pezzotti, P.; Cerquetti, M. Increasing trend in invasive non-typeable Haemophilus influenzae disease and molecular characterization of the isolates, Italy, 2012–2016. Vaccine 2018, 36, 6615–6622. [Google Scholar] [CrossRef] [PubMed]
- Sriram, K.B.; Cox, A.J.; Clancy, R.L.; Slack, M.P.; Cripps, A.W. Nontypeable Haemophilus influenzae and chronic obstructive pulmonary disease: A review for clinicians. Crit. Rev. Microbiol. 2017, 44, 1–18. [Google Scholar]
- Maddi, S.; Kolsum, U.; Jackson, S.; Barraclough, R.; Maschera, B.; Simpson, K.D.; Pascal, T.G.; Durviaux, S.; Hessel, E.M.; Singh, D. ampicillin resistance in Haemophilus influenzae from COPD patients in the UK. Int. J. Chronic Obstr. Pulm. Dis. 2017, 12, 1507. [Google Scholar] [CrossRef] [Green Version]
- Pettigrew, M.M.; Tsuji, B.T.; Gent, J.F.; Kong, Y.; Holden, P.N.; Sethi, S.; Murphy, T.F. Effect of fluoroquinolones and macrolides on eradication and resistance of Haemophilus influenzae in chronic obstructive pulmonary disease. Antimicrob. Agents Chemother. 2016, 60, 4151–4158. [Google Scholar] [CrossRef] [Green Version]
- Wilson, R.; Sethi, S.; Anzueto, A.; Miravitlles, M. Antibiotics for treatment and prevention of exacerbations of chronic obstructive pulmonary disease. J. Infect. 2013, 67, 497–515. [Google Scholar] [CrossRef] [Green Version]
- Puig, C.; Tirado-Vélez, J.M.; Calatayud, L.; Tubau, F.; Garmendia, J.; Ardanuy, C.; Marti, S.; de la Campa, A.G.; Liñares, J. Molecular characterization of fluoroquinolone resistance in nontypeable Haemophilus influenzae clinical isolates. Antimicrob. Agents Chemother. 2015, 59, 461–466. [Google Scholar] [CrossRef] [Green Version]
- Vila, J.; Ruiz, J.; Sanchez, F.; Navarro, F.; Mirelis, B.; de Anta, M.T.J.; Prats, G. Increase in quinolone resistance in ahaemophilus influenzae strain isolated from a patient with recurrent respiratory infections treated with ofloxacin. Antimicrob. Agents Chemother. 1999, 43, 161–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bastida, T. Levofloxacin treatment failure in Haemophilus influenzae pneumonia. Emerg. Infect. Dis. 2003, 9, 1475–1478. [Google Scholar] [CrossRef] [PubMed]
- Hariadi, N.I.; Zhang, L.; Patel, M.; Sandstedt, S.A.; Davis, G.S.; Marrs, C.F.; Gilsdorf, J.R. Comparative profile of heme acquisition genes in disease-causing and colonizing nontypeable Haemophilus influenzae and Haemophilus haemolyticus. J. Clin. Microbiol. 2015, 53, 2132–2137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szelestey, B.R.; Heimlich, D.R.; Raffel, F.K.; Justice, S.S.; Mason, K.M. Haemophilus responses to nutritional immunity: Epigenetic and morphological contribution to biofilm architecture, invasion, persistence and disease severity. PLoS Pathog. 2013, 9, e1003709. [Google Scholar] [CrossRef] [PubMed]
- Morton, D.J.; Bakaletz, L.O.; Jurcisek, J.A.; VanWagoner, T.M.; Seale, T.W.; Whitby, P.W.; Stull, T.L. Reduced severity of middle ear infection caused by nontypeable Haemophilus influenzae lacking the hemoglobin/hemoglobin–haptoglobin binding proteins (Hgp) in a chinchilla model of otitis media. Microb. Pathog. 2004, 36, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Morton, D.J.; Seale, T.W.; Bakaletz, L.O.; Jurcisek, J.A.; Smith, A.; VanWagoner, T.M.; Whitby, P.W.; Stull, T.L. The heme-binding protein (HbpA) of Haemophilus influenzae as a virulence determinant. Int. J. Med. Microbiol. 2009, 299, 479–488. [Google Scholar] [CrossRef] [Green Version]
- Seale, T.W.; Morton, D.J.; Whitby, P.W.; Wolf, R.; Kosanke, S.D.; VanWagoner, T.M.; Stull, T.L. Complex role of hemoglobin and hemoglobin-haptoglobin binding proteins in Haemophilus influenzae virulence in the infant rat model of invasive infection. Infect. Immun. 2006, 74, 6213–6225. [Google Scholar] [CrossRef] [Green Version]
- Ahearn, C.P.; Gallo, M.C.; Murphy, T.F. Insights on persistent airway infection by non-typeable Haemophilus influenzae in chronic obstructive pulmonary disease. Pathog. Dis. 2017, 75. [Google Scholar] [CrossRef] [Green Version]
- Stites, S.W.; Plautz, M.W.; Bailey, K.; O’Brien-Ladner, A.R.; Wesselius, L.J. Increased concentrations of iron and isoferritins in the lower respiratory tract of patients with stable cystic fibrosis. Am. J. Respir. Crit. Med. 1999, 160, 796–801. [Google Scholar] [CrossRef]
- White, D.C.; Granick, S. Hemin biosynthesis in Haemophilus. J. Bacteriol. 1963, 85, 842–850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sgheiza, V.; Novick, B.; Stanton, S.; Pierce, J.; Kalmeta, B.; Holmquist, M.F.; Grimaldi, K.; Bren, K.L.; Michel, L.V. Covalent bonding of heme to protein prevents heme capture by nontypeable Haemophilus influenzae. FEBS Open Biol. 2017, 7, 1778–1783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skaar, E.P. The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog. 2010, 6, e1000949. [Google Scholar] [CrossRef] [PubMed]
- Latham, R.D.; Gell, D.A.; Fairbairn, R.L.; Lyons, A.B.; Shukla, S.D.; Cho, K.Y.; Jones, D.A.; Harkness, N.M.; Tristram, S.G. An isolate of Haemophilus haemolyticus produces a bacteriocin-like substance that inhibits the growth of nontypeable Haemophilus influenzae. Int. J. Antimicrob. Agents 2017, 49, 503–506. [Google Scholar] [CrossRef]
- Latham, R.D.; Torrado, M.; Atto, B.; Walshe, J.L.; Wilson, R.; Guss, J.M.; Mackay, J.P.; Tristram, S.; Gell, D.A. A heme-binding protein produced by Haemophilus haemolyticus inhibits non-typeable Haemophilus influenzae. Mol. Microbiol. 2019, 626416, in press. [Google Scholar] [CrossRef]
- Anderson, R.; Wang, X.; Briere, E.C.; Katz, L.S.; Cohn, A.C.; Clark, T.A.; Messonnier, N.E.; Mayer, L.W. Haemophilus haemolyticus isolates causing clinical disease. J. Clin. Microbiol. 2012, 50, 2462–2465. [Google Scholar] [CrossRef] [Green Version]
- Fenger, M.G.; Ridderberg, W.; Olesen, H.V.; Nørskov-Lauritsen, N. Low occurrence of ‘non-haemolytic Haemophilus haemolyticus’ misidentified as Haemophilus influenzae in cystic fibrosis respiratory specimens, and frequent recurrence of persistent H. influenzae clones despite antimicrobial treatment. Int. J. Med. Microbiol. 2012, 302, 315–319. [Google Scholar] [CrossRef]
- Hotomi, M.; Kono, M.; Togawa, A.; Arai, J.; Takei, S.; Ikeda, Y.; Ogami, M.; Murphy, T.F.; Yamanaka, N. Haemophilus influenzae and Haemophilus haemolyticus in tonsillar cultures of adults with acute pharyngotonsillitis. Auris Nasus Larynx 2010, 37, 594–600. [Google Scholar] [CrossRef]
- Zhang, B.; Kunde, D.; Tristram, S. Haemophilus haemolyticus is infrequently misidentified as Haemophilus influenzae in diagnostic specimens in Australia. Diagn. Microbiol. Infect. Dis. 2014, 80, 272–273. [Google Scholar] [CrossRef]
- Reischl, U.; Linde, H.-J.; Metz, M.; Leppmeier, B.; Lehn, N. Rapid identification of methicillin-resistantStaphylococcus aureus and simultaneous species confirmation using real-time fluorescence PCR. J. Clin. Microbiol. 2000, 38, 2429–2433. [Google Scholar] [CrossRef]
- Reischl, U.; Pulz, M.; Ehret, W.; Wolf, H.J. PCR-based detection of mycobacteria in sputum samples using a simple and reliable DNA extraction protocol. BioTechniques 1994, 17, 844–845. [Google Scholar] [PubMed]
- Sweeney, R.W.; Whitlock, R.H.; McAdams, S.C. Comparison of three DNA preparation methods for real-time polymerase chain reaction confirmation of Mycobacterium avium subsp. paratuberculosis growth in an automated broth culture system. J. Vet. Diagn. Investig. 2006, 18, 587–590. [Google Scholar] [CrossRef] [PubMed]
- Van Tongeren, S.; Degener, J.; Harmsen, H. Comparison of three rapid and easy bacterial DNA extraction methods for use with quantitative real-time PCR. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 30, 1053–1061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, D.A.; Yen-Lieberman, B.; Reischl, U.; Gordon, S.M.; Procop, G.W. Detection of Legionella pneumophila by real-time PCR for the mip gene. J. Clin. Microbiol. 2003, 41, 3327–3330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freschi, C.R.; Oliveira, C.J.B.d. Comparison of DNA-extraction methods and selective enrichment broths on the detection of Salmonella Typhimurium in swine feces by polymerase chain reaction (PCR). Brazilian J. Microbiol. 2005, 36, 363–367. [Google Scholar] [CrossRef]
- Coyne, S.R.; Craw, P.D.; Norwood, D.A.; Ulrich, M.P. Comparative analysis of the Schleicher and Schuell IsoCode Stix DNA isolation device and the Qiagen QIAamp DNA mini kit. J. Clin. Microbiol. 2004, 42, 4859–4862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rantakokko-Jalava, K.; Jalava, J. Optimal DNA isolation method for detection of bacteria in clinical specimens by broad-range PCR. J. Clin. Microbiol. 2002, 40, 4211–4217. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.K.; Kim, R.Y.; Karim, R.; Mayall, J.R.; Martin, K.L.; Shahandeh, A.; Abbasian, F.; Starkey, M.R.; Loustaud-Ratti, V.; Johnstone, D.; et al. Role of iron in the pathogenesis of respiratory disease. Int. J. Biochem. Cell Biol. 2017, 88, 181–195. [Google Scholar] [CrossRef]
- Vogel, A.R.; Szelestey, B.R.; Raffel, F.K.; Sharpe, S.W.; Gearinger, R.L.; Justice, S.S.; Mason, K.M. SapF-mediated heme-iron utilization enhances persistence and coordinates biofilm architecture of Haemophilus. Front. Cell. Infect. Microbiol. 2012, 2, 42. [Google Scholar] [CrossRef] [Green Version]
- Mason, K.M.; Raffel, F.K.; Ray, W.C.; Bakaletz, L.O. Heme utilization by nontypeable Haemophilus influenzae is essential and dependent on Sap transporter function. J. Bacteriol. 2011, 193, 2527–2535. [Google Scholar] [CrossRef] [Green Version]
- Price, E.P.; Harris, T.M.; Spargo, J.; Nosworthy, E.; Beissbarth, J.; Chang, A.B.; Smith-Vaughan, H.C.; Sarovich, D.S. Simultaneous identification of Haemophilus influenzae and Haemophilus haemolyticus using real-time PCR. Future Microbiol. 2017, 12, 585–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiser, M.J.; Lenski, R.E. A comparison of methods to measure fitness in Escherichia coli. PLoS ONE 2015, 10, e0126210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef]
- Pfaffl, M.W.; Horgan, G.W.; Dempfle, L. Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002, 30, e36. [Google Scholar] [CrossRef]
Primers and Probes | Sequence | Amplicon Size (bp) |
---|---|---|
hypD Forward | 5′- GGCAATCAGATGGTTTACAACG | 187 |
hypD Reverse | 5′- CAGCTTAAAGYAAGYAGTGAATG | |
hypD LNA-probe | /5HEX/CCA+C+AA+C+GA+G+AATTAG/3IABkFQ/ | |
siaT Forward | 5′- AATGCGTGATGCTGGTTATGAC | 138 |
siaT Reverse | 5′- AATGCGTGATGCTGGTTATGAC | |
siaT LNA-probe | /56-FAM/A+GA+A+GCAGC+A+G+TAATT/3IABkFQ/ | |
HPL Forward | 5′- TATTCCTAATGATCCCGCT | 120 |
HPL Reverse | 5′ - TCTTTTTTCGCTACCCCT | |
HPL LNA-probe | /5Cy5/AT+CCATTTA+TCGG+CACGTTCT/3IAbRQSp/ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atto, B.; Latham, R.; Kunde, D.; Gell, D.A.; Tristram, S. In Vitro Anti-NTHi Activity of Haemophilin-Producing Strains of Haemophilus haemolyticus. Pathogens 2020, 9, 243. https://doi.org/10.3390/pathogens9040243
Atto B, Latham R, Kunde D, Gell DA, Tristram S. In Vitro Anti-NTHi Activity of Haemophilin-Producing Strains of Haemophilus haemolyticus. Pathogens. 2020; 9(4):243. https://doi.org/10.3390/pathogens9040243
Chicago/Turabian StyleAtto, Brianna, Roger Latham, Dale Kunde, David A Gell, and Stephen Tristram. 2020. "In Vitro Anti-NTHi Activity of Haemophilin-Producing Strains of Haemophilus haemolyticus" Pathogens 9, no. 4: 243. https://doi.org/10.3390/pathogens9040243
APA StyleAtto, B., Latham, R., Kunde, D., Gell, D. A., & Tristram, S. (2020). In Vitro Anti-NTHi Activity of Haemophilin-Producing Strains of Haemophilus haemolyticus. Pathogens, 9(4), 243. https://doi.org/10.3390/pathogens9040243