Foetal Immune Response Activation and High Replication Rate during Generation of Classical Swine Fever Congenital Infection
Abstract
:1. Introduction
2. Results
2.1. Clinical Evaluation of Sows Infected with Pinar del Rio (PdR) vs. Margarita CSFV Strains
2.2. CSFV RNA Level Detected in Sows after Infection with Margarita or PdR Strains
2.3. The High Virulence CSFV Strain Margarita Elicited Faster and Higher Humoral Response than PdR Strain in the Infected Sows
2.4. IFN-α and IFN-γ Response in Sows Infected with High or Low Virulence CSFV Strains
2.5. Evaluation of the Foetuses from CSFV Infected Sows at Necropsy
2.6. Vertical Transmission and CSFV Replication in the Foetuses
2.7. Immune Response in the Foetuses from CSFV-Infected Sows
2.8. Phenotypical Profile in Foetal PBMCs after CSFV Infection
2.9. Infection with the CSFV Moderately Virulent Strain: Clinical Signs and CSFV Replication in Sows
2.10. Vertical Transmission and Congenital Viral Persistence Generated by the Moderate Virulence CSFV Strain
2.11. Immune Response Generated by the Moderately CSFV Strain in Sows and Their Litters
3. Discussion
4. Materials and Methods
4.1. Cells and Viruses
4.2. Experimental Design
4.3. Detection of CSFV RNA
4.4. Determination of E2-Specific and Neutralising Antibodies
4.5. IFN-α ELISA Test in Serum Samples
4.6. ELISA Detection of IFN-γ and sCD163
4.7. PBMCs Collection and Flow Cytometry Assay
Author Contributions
Funding
Conflicts of Interest
References
- Blome, S.; Staubach, C.; Henke, J.; Carlson, J.; Beer, M. Classical swine fever—An updated review. Viruses 2017, 9, 1–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aynaud, J.M.; Corthier, G.; Vannier, P.; Tillon, P.J. Swine fever: In vitro and in vivo properties of low virulent strains isolated in breeding farms having reproductive failures. In Proceedings of the Agricultural Research Seminar on Hog Cholera. Hog Cholera. Classical Swine Fever and African Swine Fever; Liess, B., Ed.; Commission of the European Communities, Publication EUR 5904 EN: Brussels, Belgium, 1977; pp. 273–277. [Google Scholar]
- Carbrey, E.A.; Stewart, W.C.; Kresse, J.I.; Snyder, M.L. Inapparent Hog Cholera infection following the inoculation of field isolates. In Proceedings of the Agricultural Research Seminar on Hog Cholera. Hog Cholera. Classical Swine Fever and African Swine Fever; Lies, B., Ed.; Commission of the European Communities, Publication EUR 5904 EN: Brussels, Belgium, 1977; pp. 214–230. [Google Scholar]
- Van Oirschot, J.T.; Terpstra, C. A congenital persistent swine fever infection. I. Clinical and virological observations. Vet. Microbiol. 1977, 2, 121–132. [Google Scholar] [CrossRef]
- Van Oirschot, J.T. Experimental production of congenital persistent swine fever infections. II. Effect on functions of the immune system. Vet. Microbiol. 1979, 4, 133–147. [Google Scholar] [CrossRef]
- Liess, B. Persistent infections of hog cholera: A review. Prev. Vet. Med. 1984, 2, 109–113. [Google Scholar] [CrossRef]
- Vannier, P.; Plateau, E.; Tillon, J.P. Congenital tremor in pigs farrowed from sows given hog cholera virus during pregnancy. Am. J. Vet. Res. 1981, 42, 135–137. [Google Scholar]
- Pérez, L.J.; Díaz de Arce, H.; Perera, C.L.; Rosell, R.; Frías, M.T.; Percedo, M.I.; Tarradas, J.; Dominguez, P.; Núñez, J.I.; Ganges, L. Positive selection pressure on the B/C domains of the E2-gene of classical swine fever virus in endemic areas under C-strain vaccination. Infect. Genet. Evol. 2012, 12, 1405–1412. [Google Scholar] [CrossRef]
- Rios, L.; Coronado, L.; Naranjo-Feliciano, D.; Martínez-Pérez, O.; Perera, C.L.; Hernandez-Alvarez, L.; Díaz De Arce, H.; Núñez, J.I.; Ganges, L.; Pérez, L.J. Deciphering the emergence, genetic diversity and evolution of classical swine fever virus. Sci. Rep. 2017, 7, 17887. [Google Scholar] [CrossRef] [Green Version]
- Coronado, L.; Bohórquez, J.A.; Muñoz-González, S.; Pérez, L.J.; Rosell, R.; Fonseca, O.; Delgado, L.; Perera, C.L.; Frías, M.T.; Ganges, L. Investigation of chronic and persistent classical swine fever infections under field conditions and their impact on vaccine efficacy. BMC Vet. Res. 2019, 15, 247. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-González, S.; Ruggli, N.; Rosell, R.; Pérez, L.J.; Frías-Leuporeau, M.T.; Fraile, L.; Montoya, M.; Córdoba, L.; Domingo, M.; Ehrensperger, F.; et al. Postnatal persistent infection with classical swine fever virus and its immunological implications. PLoS ONE 2015, 10, e0125692. [Google Scholar] [CrossRef] [Green Version]
- Bohórquez, J.A.; Wang, M.; Pérez-Simó, M.; Vidal, E.; Rosell, R.; Ganges, L. Low CD4/CD8 ratio in classical swine fever postnatal persistent infection generated at 3 weeks after birth. Transbound. Emerg. Dis. 2019, 66, 752–762. [Google Scholar] [CrossRef]
- Beer, M.; Goller, K.V.; Staubach, C.; Blome, S. Genetic variability and distribution of Classical swine fever virus. Anim. Health Res. Rev. 2015, 16, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Ji, S.; Liu, Y.; Lei, J.-L.; Xia, S.-L.; Wang, Y.; Du, M.-L.; Shao, L.; Meng, X.-Y.; Zhou, M.; et al. Isolation and Characterization of a Moderately Virulent Classical Swine Fever Virus Emerging in China. Transbound. Emerg. Dis. 2017, 64, 1848–1857. [Google Scholar] [CrossRef] [PubMed]
- Henke, J.; Carlson, J.; Zani, L.; Leidenberger, S.; Schwaiger, T.; Schlottau, K.; Teifke, J.P.; Schröder, C.; Beer, M.; Blome, S. Protection against transplacental transmission of moderately virulent classical swine fever virus using live marker vaccine “CP7_E2alf”. Vaccine 2018, 36, 4181–4187. [Google Scholar] [CrossRef]
- Postel, A.; Nishi, T.; Kameyama, K.; Meyer, D.; Suckstorff, O.; Fukai, K.; Becher, P. Reemergence of Classical Swine Fever, Japan, 2018. Emerg. Infect. Dis. 2019, 25, 1228–1231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kameyama, K.-I.; Nishi, T.; Yamada, M.; Masujin, K.; Morioka, K.; Kokuho, T.; Fukai, K. Experimental infection of pigs with a classical swine fever virus isolated in Japan for the first time in 26 years. J. Vet. Med. Sci. 2019, 81, 1277–1284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmann, B.; Beer, M.; Schelp, C.; Schirrmeier, H.; Depner, K. Validation of a real-time RT-PCR assay for sensitive and specific detection of classical swine fever. J. Virol. Methods 2005, 130, 36–44. [Google Scholar] [CrossRef]
- Terpstra, C.; Bloemraad, M.; Gielkens, A.L. The neutralizing peroxidase-linked assay for detection of antibody against swine fever virus. Vet. Microbiol. 1984, 9, 113–120. [Google Scholar] [CrossRef]
- Coronado, L.; Liniger, M.; Muñoz-González, S.; Postel, A.; Pérez, L.J.; Pérez-Simó, M.; Perera, C.L.; Frías- Lepoureau, M.T.; Rosell, R.; Grundhoff, A.; et al. Novel poly-uridine insertion in the 3′UTR and E2 amino acid substitutions in a low virulent classical swine fever virus. Vet. Microbiol. 2017, 201, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Ganges, L.; Barrera, M.; Núñez, J.I.; Blanco, I.; Frías, M.T.; Rodríguez, F.; Sobrino, F. A DNA vaccine expressing the E2 protein of classical swine fever virus elicits T cell responses that can prime for rapid antibody production and confer total protection upon viral challenge. Vaccine 2005, 23, 3741–3752. [Google Scholar] [CrossRef]
- Tarradas, J.; de la Torre, M.E.; Rosell, R.; Pérez, L.J.; Pujols, J.; Muñoz, M.; Muñoz, I.; Muñoz, S.; Abad, X.; Domingo, M.; et al. The impact of CSFV on the immune response to control infection. Virus Res. 2014, 185, 82–91. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Liniger, M.; Muñoz-González, S.; Bohórquez, J.A.; Hinojosa, Y.; Gerber, M.; López-Soria, S.; Rosell, R.; Ruggli, N.; Ganges, L. A Polyuridine Insertion in the 3′ Untranslated Region of Classical Swine Fever Virus Activates Immunity and Reduces Viral Virulence in Piglets. J. Virol. 2019, 94. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-González, S.; Sordo, Y.; Pérez-Simó, M.; Suárez, M.; Canturri, A.; Rodriguez, M.P.; Frías-Lepoureau, M.T.; Domingo, M.; Estrada, M.P.; Ganges, L. Efficacy of E2 glycoprotein fused to porcine CD154 as a novel chimeric subunit vaccine to prevent classical swine fever virus vertical transmission in pregnant sows. Vet. Microbiol. 2017, 205, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Suradhat, S.; Damrongwatanapokin, S.; Thanawongnuwech, R. Factors critical for successful vaccination against classical swine fever in endemic areas. Vet. Microbiol. 2007, 119, 1–9. [Google Scholar] [CrossRef] [PubMed]
- van Oirschot, J.T. Vaccinology of classical swine fever: From lab to field. Vet. Microbiol. 2003, 96, 367–384. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-González, S.; Pérez-Simó, M.; Muñoz, M.; Bohórquez, J.A.; Rosell, R.; Summerfield, A.; Domingo, M.; Ruggli, N.; Ganges, L. Efficacy of a live attenuated vaccine in classical swine fever virus postnatally persistently infected pigs. Vet. Res. 2015, 46, 78. [Google Scholar] [CrossRef] [Green Version]
- Collins, C.L.; Pluske, J.R.; Morrison, R.S.; McDonald, T.N.; Smits, R.J.; Henman, D.J.; Stensland, I.; Dunshea, F.R. Post-weaning and whole-of-life performance of pigs is determined by live weight at weaning and the complexity of the diet fed after weaning. Anim. Nutr. 2017, 3, 372–379. [Google Scholar] [CrossRef]
- Bohórquez, J.A.; Muñoz-González, S.; Pérez-Simó, M.; Revilla, C.; Domínguez, J.; Ganges, L. Identification of an Immunosuppressive Cell Population during Classical Swine Fever Virus Infection and Its Role in Viral Persistence in the Host. Viruses 2019, 11, 822. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, J.; Scheckenbach, V.; Kugel, H.; Spring, B.; Pagel, J.; Härtel, C.; Pauluschke-Fröhlich, J.; Peter, A.; Poets, C.F.; Gille, C.; et al. Granulocytic myeloid-derived suppressor cells (GR-MDSC) accumulate in cord blood of preterm infants and remain elevated during the neonatal period. Clin. Exp. Immunol. 2018, 191, 328–337. [Google Scholar] [CrossRef] [Green Version]
- Rieber, N.; Gille, C.; Köstlin, N.; Schäfer, I.; Spring, B.; Ost, M.; Spieles, H.; Kugel, H.A.; Pfeiffer, M.; Heininger, V.; et al. Neutrophilic myeloid-derived suppressor cells in cord blood modulate innate and adaptive immune responses. Clin. Exp. Immunol. 2013, 174, 45–52. [Google Scholar] [CrossRef]
- Serrano-Villar, S.; Moreno, S.; Fuentes-Ferrer, M.; Sánchez-Marcos, C.; Ávila, M.; Sainz, T.; de Villar, N.G.P.; Fernández-Cruz, A.; Estrada, V. The CD4: CD8 ratio is associated with markers of age-associated disease in virally suppressed HIV-infected patients with immunological recovery. HIV Med. 2014, 15, 40–49. [Google Scholar] [CrossRef]
- Serrano-Villar, S.; Sainz, T.; Lee, S.A.; Hunt, P.W.; Sinclair, E.; Shacklett, B.L.; Ferre, A.L.; Hayes, T.L.; Somsouk, M.; Hsue, P.Y.; et al. HIV-Infected Individuals with Low CD4/CD8 Ratio despite Effective Antiretroviral Therapy Exhibit Altered T Cell Subsets, Heightened CD8+ T Cell Activation, and Increased Risk of Non-AIDS Morbidity and Mortality. PLoS Pathog. 2014, 10, e1004078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dustin, L.B. Innate and Adaptive Immune Responses in Chronic HCV Infection. Curr. Drug Targets 2017, 18, 826–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gandhi, R.T.; McMahon, D.K.; Bosch, R.J.; Lalama, C.M.; Cyktor, J.C.; Macatangay, B.J.; Rinaldo, C.R.; Riddler, S.A.; Hogg, E.; Godfrey, C.; et al. Levels of HIV-1 persistence on antiretroviral therapy are not associated with markers of inflammation or activation. PLoS Pathog. 2017, 13, e1006285. [Google Scholar] [CrossRef] [PubMed]
- Summerfield, A.; Ruggli, N. Immune responses against classical swine fever virus: Between ignorance and lunacy. Front. Vet. Sci. 2015, 2, 10. [Google Scholar] [CrossRef] [Green Version]
- Smirnova, N.P.; Webb, B.T.; McGill, J.L.; Schaut, R.G.; Bielefeldt-Ohmann, H.; Van Campen, H.; Sacco, R.E.; Hansen, T.R. Induction of interferon-gamma and downstream pathways during establishment of fetal persistent infection with bovine viral diarrhea virus. Virus Res. 2014, 183, 95–106. [Google Scholar] [CrossRef]
- Chen, J.; Liang, Y.; Yi, P.; Xu, L.; Hawkins, H.K.; Rossi, S.L.; Soong, L.; Cai, J.; Menon, R.; Sun, J. Outcomes of Congenital Zika Disease Depend on Timing of Infection and Maternal-Fetal Interferon Action. Cell Rep. 2017, 21, 1588–1599. [Google Scholar] [CrossRef] [Green Version]
- Cabezón, O.; Muñoz-González, S.; Colom-Cadena, A.; Pérez-Simó, M.; Rosell, R.; Lavín, S.; Marco, I.; Fraile, L.; de la Riva, P.M.; Rodríguez, F.; et al. African swine fever virus infection in Classical swine fever subclinically infected wild boars. BMC Vet. Res. 2017, 13, 227. [Google Scholar] [CrossRef]
- Lacasta, A.; Monteagudo, P.L.; Jiménez-Marín, Á.; Accensi, F.; Ballester, M.; Argilaguet, J.; Galindo-Cardiel, I.; Segalés, J.; Salas, M.L.; Domínguez, J.; et al. Live attenuated African swine fever viruses as ideal tools to dissect the mechanisms involved in viral pathogenesis and immune protection. Vet. Res. 2015, 46, 135. [Google Scholar] [CrossRef] [Green Version]
- Alfonso, P.; Rivera, J.; Hernáez, B.; Alonso, C.; Escribano, J.M. Identification of cellular proteins modified in response to African swine fever virus infection by proteomics. Proteomics 2004, 4, 2037–2046. [Google Scholar] [CrossRef]
- Wensvoort, G.; Terpstra, C.; Boonstra, J.; Bloemraad, M.; Zaane, D. Van Production of monoclonal antibodies against swine fever virus and their use in laboratory diagnosis. Vet. Microbiol. 1986, 12, 101–108. [Google Scholar] [CrossRef]
- Reed, L.J.; Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Hyg. 1938, 27, 493–497. [Google Scholar]
- Díaz De Arce, H.; Núñez, J.I.; Ganges, L.; Barrera, M.; Frías, M.T.; Sobrino, F. Molecular epidemiology of classical swine fever in Cuba. Virus Res. 1999, 64, 61–67. [Google Scholar] [CrossRef]
- Postel, A.; Schmeiser, S.; Perera, C.L.; Pérez Rodríguez, L.J.; Frías-Lepoureau, M.T.; Becher, P. Classical swine fever virus isolates from Cuba form a new subgenotype 1.4. Vet. Microbiol. 2013, 161, 334–338. [Google Scholar] [CrossRef] [PubMed]
- OIE Classical Swine Fever (Infection with Classical Swine Fever Virus). Available online: https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/3.08.03_CSF.pdf (accessed on 16 February 2020).
- Leifer, I.; Blome, S.; Blohm, U.; König, P.; Küster, H.; Lange, B.; Beer, M. Characterization of C-strain “Riems” TAV-epitope escape variants obtained through selective antibody pressure in cell culture. Vet. Res. 2012, 43, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mellor, D.J.; Diesch, T.J.; Gunn, A.J.; Bennet, L. The importance of “awareness” for understanding fetal pain. Brain Res. Rev. 2005, 49, 455–471. [Google Scholar] [CrossRef] [PubMed]
- Ahrens, U.; Kaden, V.; Drexler, C.; Visser, N. Efficacy of the classical swine fever (CSF) marker vaccine Porcilis Pesti in pregnant sows. Vet. Microbiol. 2000, 77, 83–97. [Google Scholar] [CrossRef]
- Tarradas, J.; Monsó, M.; Fraile, L.; de la Torre, B.G.; Muñoz, M.; Rosell, R.; Riquelme, C.; Pérez, L.J.; Nofrarías, M.; Domingo, M.; et al. A T-cell epitope on NS3 non-structural protein enhances the B and T cell responses elicited by dendrimeric constructions against CSFV in domestic pigs. Vet. Immunol. Immunopathol. 2012, 150, 36–46. [Google Scholar] [CrossRef]
- Tarradas, J.; Argilaguet, J.M.; Rosell, R.; Nofrarías, M.; Crisci, E.; Córdoba, L.; Pérez-Martín, E.; Díaz, I.; Rodríguez, F.; Domingo, M.; et al. Interferon-gamma induction correlates with protection by DNA vaccine expressing E2 glycoprotein against classical swine fever virus infection in domestic pigs. Vet. Microbiol. 2010, 142, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Pérez, C.; Ezquerra, A.; Ortuño, E.; Gómez, N.; García-briones, M.; Martínez de la Riva, P.; Alonso, F.; Revilla, C.; Domínguez, J. Cloning and expression of porcine CD163: Its use for characterization of monoclonal antibodies to porcine CD163 and development of an ELISA to measure soluble CD163 in biological fluids. Spanish J. Agric. Res. 2008, 6, 59. [Google Scholar] [CrossRef]
Time after CSFV Infection | |||||
---|---|---|---|---|---|
Sow ID | 0 dpi | 8 dpi | 14 dpi | 22 dpi | |
Margarita infection group | 1 | 0 | 0 | 1:640 | 1:1280 * |
2 | 0 | 0 | 1:320 | 1:960 | |
PdR infection group | 3 | 0 | 0 | 0 | 1:60 |
4 | 0 | 0 | 0 | 0 |
Margarita Infection Group A | CSFV RT-qPCR (Ct Value) | PdR Infection Group B | CSFV RT-qPCR (Ct Value) | ||||||
---|---|---|---|---|---|---|---|---|---|
Foetus ID | Serum | Tonsil | Spleen | Thymus | Foetus ID | Serum | Tonsil | Spleen | Thymus |
Foetus from Sow 1 | Foetus from Sow 3 | ||||||||
1 | 19.65 | 18.52 | 17.91 | 16.54 | 1 | Undet. | Undet. | 34.65 | Undet. |
2 | 23.13 | 20.61 | 19.56 | 25.86 | 2 | Undet. | Undet. | Undet. | Undet. |
3 | 20.40 | 21.96 | 19.11 | 15.70 | 3 | Undet. | 32.73 | 29.94 | 35.45 |
4 | 21.35 | 26.58 | 18.95 | 16.85 | 4 | Undet. | Undet. | 32.44 | Undet. |
5 | 18.48 | 19.69 | 17.00 | 19.18 | 5 | Undet. | Undet. | 37.43 | Undet. |
6 | 17.65 | 19.59 | 16.14 | 15.92 | 6 | Undet. | 35.32 | 33.82 | Undet. |
7 | 18.71 | 20.53 | 16.59 | 16.46 | 7 | 22.42 | 22.75 | 15.86 | 17.69 |
8 | 23.23 | 19.92 | 17.75 | 15.56 | 8 | Undet. | 36.67 | Undet. | Undet. |
9 | 18.73 | 16.13 | 16.24 | 14.70 | 9 | Undet. | Undet. | Undet. | Undet. |
10 | 19.55 | 18.78 | 16.85 | 17.31 | 10 | Undet. | 36.60 | 34.56 | Undet. |
11 | 20.56 | 23.52 | 18.45 | 17.18 | 11 | 24.76 | 23.18 | 18.30 | 21.15 |
12 | 17.58 | 18.05 | 16.62 | 16.31 | 12 | 32.36 | 23.37 | 23.68 | 24.85 |
13 | 17.27 | 18.61 | 16.62 | 16.37 | 13 | Undet. | 33.91 | 31.51 | 36.33 |
Mean | 19.72 | 20.33 | 17.49 | 17.28 | Mean | 38.50 | 37.19 | 33.28 | 36.33 |
Desvest | 2.05 | 2.72 | 1.22 | 2.92 | Desvest | 7.16 | 5.88 | 9.89 | 9.02 |
Foetus from Sow 2 | Foetus from Sow 4 | ||||||||
1 | 20.30 | 25.16 | 17.84 | 20.28 | 1 | Undet. | Undet. | Undet. | Undet. |
2 | 18.68 | 17.92 | 17.44 | 15.79 | 2 | 28.26 | 28.36 | 18.37 | 21.79 |
3 | 18.50 | 19.28 | 17.43 | 16.95 | 3 | Undet. | 35.01 | 28.32 | 28.24 |
4 | 27.06 | 28.74 | 25.01 | 24.94 | 4 | Undet. | 34.59 | 36.29 | Undet. |
5 | 18.94 | 16.87 | 17.36 | 15.70 | 5 | Undet. | Undet. | Undet. | 36.54 |
6 | 19.51 | 18.93 | 17.44 | 16.78 | 6 | Undet. | Undet. | Undet. | Undet. |
7 | 16.81 | 18.01 | 16.93 | 16.78 | 7 | Undet. | Undet. | Undet. | Undet. |
8 | 16.60 | 17.25 | 23.57 | 17.51 | 8 | Undet. | Undet. | Undet. | 36.58 |
9 | 18.65 | 18.36 | 16.47 | 16.85 | 9 | Undet. | Undet. | Undet. | Undet. |
10 | 20.67 | 22.67 | 17.22 | 16.97 | 10 | Undet. | Undet. | 34.36 | Undet. |
11 | 16.91 | 18.37 | 17.26 | 16.92 | 11 | 34.54 | 29.63 | 26.51 | 25.84 |
12 | 16.94 | 18.37 | 18.96 | 17.66 | 12 | Undet. | 36.52 | Undet. | Undet. |
13 | 15.67 | 16.88 | 16.41 | 16.26 | 13 | 21.52 | 20.59 | 18.58 | 18.32 |
Mean | 18.75 | 19.30 | 18.46 | 17.43 | Mean | 38.87 | 36.88 | 35.16 | 36.70 |
Desvest | 2.99 | 3.34 | 2.81 | 2.44 | Desvest | 6.69 | 7.01 | 9.21 | 8.55 |
Margarita Infection Group A | PdR Infection Group B | ||
---|---|---|---|
Foetus ID | IFN-α | Foetus ID | IFN-α |
Foetus from Sow 1 | Foetus from Sow 3 | ||
1 | 48.5 | 1 | 0.0 |
2 | 0.0 | 2 | 0.0 |
3 | 0.0 | 3 | 60.3 |
4 | 237.7 | 4 | 0.0 |
5 | 0.0 | 5 | 0.0 |
6 | 18.7 | 6 | 0.0 |
7 | 0.0 | 7 | 116.7 |
8 | 0.0 | 8 | 0.0 |
9 | 0.0 | 9 | 0.0 |
10 | 31.3 | 10 | 0.0 |
11 | 0.0 | 11 | 102.7 |
12 | 8.0 | 12 | 209.6 |
13 | 0.0 | 13 | 0.0 |
Foetus from Sow 2 | Foetus from Sow 4 | ||
1 | 0.0 | 1 | 0.0 |
2 | 25.5 | 2 | 227.8 |
3 | 26.7 | 3 | 239.5 |
4 | 49.3 | 4 | 0.0 |
5 | 0.0 | 5 | 0.0 |
6 | 0.0 | 6 | 0.0 |
7 | 0.0 | 7 | 0.0 |
8 | 14.3 | 8 | 0.0 |
9 | 0.0 | 9 | 0.0 |
10 | 12.2 | 10 | 0.0 |
11 | 43.2 | 11 | 173.4 |
12 | 0.0 | 12 | 0.0 |
13 | 0.0 | 13 | 126.9 |
CSFV qRT-PCR (Ct Value) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Day of Birth | 7 dpb | 15 dpb | 23 dpb | 27 dpb | 32 dpb | |||||||||||
Piglet ID | Rectal Swab | Serum | Nasal Swab | Rectal Swab | Serum | Nasal Swab | Rectal Swab | Serum | Nasal Swab | Rectal Swab | Serum | Nasal Swab | Rectal Swab | Serum | Nasal Swab | Rectal Swab |
1 | 25 | 17.06 | 24.77 | 23.77 | 16.88 | 16.87 | 24.52 | 16.55 | 23.03 | 22.38 | 16.51 | 24.70 | 23.62 | 17.30 | 18.80 | 22.47 |
2 | 23.94 | 16.10 | 26.09 | 20.42 | 16.34 | 25.76 | 23.91 | 16.06 | 20.82 | 25.53 | 15.96 | 21.16 | 23.52 | 17.28 | 20.59 | 27.20 |
3 | 24.01 | 16.01 | 23.15 | 21.46 | 16.36 | 25.88 | 23.36 | 16.80 | 27.16 | 24.49 | 17.29 | 21.66 | 23.74 | 19.27 | 19.25 | 24.42 |
4 | 22.63 | 16.31 | 22.30 | 20.86 | 16.74 | 19.26 | 26.91 | 17.01 | 18.02 | 25.36 | 16.73 | 22.20 | 25.44 | 16.36 | 23.53 | 22.86 |
5 | 23.44 | 15.71 | 27.94 | 22.81 | 16.68 | 27.00 | 24.38 | 16.61 | 20.42 | 24.77 | 16.89 | 20.41 | 25.83 | 17.64 | 19.30 | 25.99 |
6 | 24.55 | 15.39 | 23.20 | 23.79 | 25.52 | 22.65 | 26.56 | 16.56 | 21.28 | 23.19 | 16.66 | 20.57 | 22.70 | 16.74 | 19.86 | >22.42 |
Mean | 23.93 | 16.10 | 24.58 | 22.19 | 18.09 | 22.90 | 24.94 | 16.60 | 21.79 | 24.29 | 16.67 | 21.78 | 24.14 | 17.43 | 20.22 | 24.23 |
Desvest | 0.83 | 0.57 | 2.13 | 1.47 | 3.65 | 4.09 | 1.45 | 0.32 | 3.09 | 1.25 | 0.44 | 1.58 | 1.22 | 1.01 | 1.73 | 2.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bohórquez, J.A.; Muñoz-González, S.; Pérez-Simó, M.; Muñoz, I.; Rosell, R.; Coronado, L.; Domingo, M.; Ganges, L. Foetal Immune Response Activation and High Replication Rate during Generation of Classical Swine Fever Congenital Infection. Pathogens 2020, 9, 285. https://doi.org/10.3390/pathogens9040285
Bohórquez JA, Muñoz-González S, Pérez-Simó M, Muñoz I, Rosell R, Coronado L, Domingo M, Ganges L. Foetal Immune Response Activation and High Replication Rate during Generation of Classical Swine Fever Congenital Infection. Pathogens. 2020; 9(4):285. https://doi.org/10.3390/pathogens9040285
Chicago/Turabian StyleBohórquez, José Alejandro, Sara Muñoz-González, Marta Pérez-Simó, Iván Muñoz, Rosa Rosell, Liani Coronado, Mariano Domingo, and Llilianne Ganges. 2020. "Foetal Immune Response Activation and High Replication Rate during Generation of Classical Swine Fever Congenital Infection" Pathogens 9, no. 4: 285. https://doi.org/10.3390/pathogens9040285
APA StyleBohórquez, J. A., Muñoz-González, S., Pérez-Simó, M., Muñoz, I., Rosell, R., Coronado, L., Domingo, M., & Ganges, L. (2020). Foetal Immune Response Activation and High Replication Rate during Generation of Classical Swine Fever Congenital Infection. Pathogens, 9(4), 285. https://doi.org/10.3390/pathogens9040285