Impact of Bacteriophage-Supplemented Drinking Water on the E. coli Population in the Chicken Gut
Abstract
:1. Introduction
2. Results
2.1. No Reduction of E. coli in Feces Occurred during the Six-Phage Trial
2.2. A Delay in Fecal E. coli Colonization and Lower Fecal E. coli Load Occurred in the Phage Supplemented Group of the Four-Phage Trial
2.3. Phage Concentrations in Feces Exceeded the Phage Intake Dose on Individual Days
2.4. No Phage Resistant Subpopulation of the E. coli Model Strain E28 Was Detected
2.5. Data Suggest That E. coli E28 Did Not Show Changed Growth Characteristics or Metabolic Changes after Contact with Phages
3. Discussion
4. Materials and Methods
4.1. Animal Trials
4.1.1. Ethical Statement
4.1.2. Study Design and Experimental Procedures
4.1.3. Housing and Care
4.2. Laboratory Procedures
4.2.1. Bacteriophage Cocktail Composition and Concentration in Drinking Water
4.2.2. Selection of E. coli Model Strain E28 and Inoculation of Animals
4.2.3. Bacterial Enumeration
4.2.4. Bacteriophage Enumeration
4.2.5. Phage Susceptibility Testing
4.2.6. Carbon Source Utilization Testing
4.2.7. Growth Curves
4.2.8. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Huff, W.E.; Huff, G.R.; Rath, N.C.; Balog, J.M.; Donoghue, A.M. Therapeutic efficacy of bacteriophage and Baytril (enrofloxacin) individually and in combination to treat colibacillosis in broilers. Poult. Sci. 2004, 83, 1944–1947. [Google Scholar] [CrossRef] [PubMed]
- WHO Tackling Antibiotic Resistance from a Food Safety Perspective in Europe; World Health Organization: Copenhagen, Denmark, 2011.
- Aminov, R.I. A brief history of the antibiotic era: Lessons learned and challenges for the future. Front. Microbiol. 2010, 1, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Critically Important Antimicrobials for Human Medicine; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Blaak, H.; van Hoek, A.H.; Hamidjaja, R.A.; van der Plaats, R.Q.; Kerkhof-de Heer, L.; de Roda Husman, A.M.; Schets, F.M. Distribution, Numbers, and Diversity of ESBL-Producing E. coli in the Poultry Farm Environment. PLoS ONE 2015, 10, e0135402. [Google Scholar] [CrossRef] [PubMed]
- Mellata, M. Human and avian extraintestinal pathogenic Escherichia coli: Infections, zoonotic risks, and antibiotic resistance trends. Foodborne Pathog. Dis. 2013, 10, 916–932. [Google Scholar] [CrossRef] [Green Version]
- Dziva, F.; Stevens, M.P. Colibacillosis in poultry: Unravelling the molecular basis of virulence of avian pathogenic Escherichia coli in their natural hosts. Avian. Pathol. 2008, 37, 355–366. [Google Scholar] [CrossRef] [Green Version]
- Ginns, C.A.; Benham, M.L.; Adams, L.M.; Whithear, K.G.; Bettelheim, K.A.; Crabb, B.S.; Browning, G.F. Colonization of the respiratory tract by a virulent strain of avian Escherichia coli requires carriage of a conjugative plasmid. Infect. Immun. 2000, 68, 1535–1541. [Google Scholar] [CrossRef] [Green Version]
- Antao, E.M.; Glodde, S.; Li, G.; Sharifi, R.; Homeier, T.; Laturnus, C.; Diehl, I.; Bethe, A.; Philipp, H.C.; Preisinger, R.; et al. The chicken as a natural model for extraintestinal infections caused by avian pathogenic Escherichia coli (APEC). Microb. Pathog. 2008, 45, 361–369. [Google Scholar] [CrossRef]
- Ewers, C.; Janssen, T.; Kiessling, S.; Philipp, H.C.; Wieler, L.H. Molecular epidemiology of avian pathogenic Escherichia coli (APEC) isolated from colisepticemia in poultry. Vet. Microbiol. 2004, 104, 91–101. [Google Scholar] [CrossRef]
- Ewers, C.; Li, G.; Wilking, H.; Kiessling, S.; Alt, K.; Antao, E.M.; Laturnus, C.; Diehl, I.; Glodde, S.; Homeier, T.; et al. Avian pathogenic, uropathogenic, and newborn meningitis-causing Escherichia coli: How closely related are they? Int. J. Med. Microbiol. 2007, 297, 163–176. [Google Scholar] [CrossRef]
- Moulin-Schouleur, M.; Reperant, M.; Laurent, S.; Bree, A.; Mignon-Grasteau, S.; Germon, P.; Rasschaert, D.; Schouler, C. Extraintestinal pathogenic Escherichia coli strains of avian and human origin: Link between phylogenetic relationships and common virulence patterns. J. Clin. Microbiol. 2007, 45, 3366–3376. [Google Scholar] [CrossRef] [Green Version]
- Dho-Moulin, M.; Fairbrother, J.M. Avian pathogenic Escherichia coli (APEC). Vet. Res. 1999, 30, 299–316. [Google Scholar] [PubMed]
- Zhang, C.; Li, W.; Liu, W.; Zou, L.; Yan, C.; Lu, K.; Ren, H. T4-like phage Bp7, a potential antimicrobial agent for controlling drug-resistant Escherichia coli in chickens. Appl. Environ. Microbiol. 2013, 79, 5559–5565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huff, W.E.; Huff, G.R.; Rath, N.C.; Balog, J.M.; Donoghue, A.M. Alternatives to antibiotics: Utilization of bacteriophage to treat colibacillosis and prevent foodborne pathogens. Poult. Sci. 2005, 84, 655–659. [Google Scholar] [CrossRef] [PubMed]
- Cisek, A.A.; Dabrowska, I.; Gregorczyk, K.P.; Wyzewski, Z. Phage Therapy in Bacterial Infections Treatment: One Hundred Years After the Discovery of Bacteriophages. Curr. Microbiol. 2017, 74, 277–283. [Google Scholar] [CrossRef] [Green Version]
- Kittler, S.; Fischer, S.; Abdulmawjood, A.; Glünder, G.; Klein, G. Effect of bacteriophage application on Campylobacter jejuni loads in commercial broiler flocks. Appl. Environ. Microbiol. 2013, 79, 7525–7533. [Google Scholar] [CrossRef] [Green Version]
- Barrow, P.; Lovell, M.; Berchieri, A., Jr. Use of lytic bacteriophage for control of experimental Escherichia coli septicemia and meningitis in chickens and calves. Clin. Diagn. Lab. Immunol. 1998, 5, 294–298. [Google Scholar] [CrossRef] [Green Version]
- Huff, W.E.; Huff, G.R.; Rath, N.C.; Balog, J.M.; Donoghue, A.M. Prevention of Escherichia coli infection in broiler chickens with a bacteriophage aerosol spray. Poult. Sci. 2002, 81, 1486–1491. [Google Scholar] [CrossRef]
- Huff, W.E.; Huff, G.R.; Rath, N.C.; Balog, J.M.; Donoghue, A.M. Evaluation of aerosol spray and intramuscular injection of bacteriophage to treat an Escherichia coli respiratory infection. Poult. Sci. 2003, 82, 1108–1112. [Google Scholar] [CrossRef]
- Lau, G.L.; Sieo, C.C.; Tan, W.S.; Hair-Bejo, M.; Jalila, A.; Ho, Y.W. Efficacy of a bacteriophage isolated from chickens as a therapeutic agent for colibacillosis in broiler chickens. Poult. Sci. 2010, 89, 2589–2596. [Google Scholar] [CrossRef]
- El-Gohary, F.A.; Huff, W.E.; Huff, G.R.; Rath, N.C.; Zhou, Z.Y.; Donoghue, A.M. Environmental augmentation with bacteriophage prevents colibacillosis in broiler chickens. Poult. Sci. 2014, 93, 2788–2792. [Google Scholar] [CrossRef]
- Huff, W.E.; Huff, G.R.; Rath, N.C.; Balog, J.M.; Donoghue, A.M. Bacteriophage treatment of a severe Escherichia coli respiratory infection in broiler chickens. Avian Dis. 2003, 47, 1399–1405. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.; Sereno, R.; Azeredo, J. In vivo efficiency evaluation of a phage cocktail in controlling severe colibacillosis in confined conditions and experimental poultry houses. Vet. Microbiol. 2010, 146, 303–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korf, I.; Bierbrodt, A.; Kittler, S.; Mengden, R.; Rohde, C.; Rohde, M.; Lehnherr, T.; Fruth, A.; Flieger, A.; Lehnherr, H.; et al. In vitro evaluation of a phage cocktail to prevent infections with Escherichia coli. Viruses 2020. in preparation. [Google Scholar]
- Maura, D.; Galtier, M.; Le Bouguenec, C.; Debarbieux, L. Virulent bacteriophages can target O104:H4 enteroaggregative Escherichia coli in the mouse intestine. Antimicrob. Agents Chemother. 2012, 56, 6235–6242. [Google Scholar] [CrossRef] [Green Version]
- Galtier, M.; De Sordi, L.; Maura, D.; Arachchi, H.; Volant, S.; Dillies, M.A.; Debarbieux, L. Bacteriophages to reduce gut carriage of antibiotic resistant uropathogens with low impact on microbiota composition. Environ. Microbiol. 2016, 18, 2237–2245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, B.K.; Abedon, S.T. Phage therapy pharmacology phage cocktails. Adv. Appl. Microbiol. 2012, 78, 1–23. [Google Scholar]
- Tanji, Y.; Shimada, T.; Yoichi, M.; Miyanaga, K.; Hori, K.; Unno, H. Toward rational control of Escherichia coli O157:H7 by a phage cocktail. Appl. Microbiol. Biotechnol. 2004, 64, 270–274. [Google Scholar] [CrossRef]
- Barnes, H.J.; Nolan, L.K.; Vaillantcourt, J.P. Colibacillosis; Blackwell Publishing: Ames, IA, USA, 2008. [Google Scholar]
- Ewers, C.; Antao, E.M.; Diehl, I.; Philipp, H.C.; Wieler, L.H. Intestine and environment of the chicken as reservoirs for extraintestinal pathogenic Escherichia coli strains with zoonotic potential. Appl. Environ. Microbiol. 2009, 75, 184–192. [Google Scholar] [CrossRef] [Green Version]
- Tsonos, J.; Oosterik, L.H.; Tuntufye, H.N.; Klumpp, J.; Butaye, P.; De Greve, H.; Hernalsteens, J.P.; Lavigne, R.; Goddeeris, B.M. A cocktail of in vitro efficient phages is not a guarantee for in vivo therapeutic results against avian colibacillosis. Vet. Microbiol. 2014, 171, 470–479. [Google Scholar] [CrossRef]
- Weiss, M.; Denou, E.; Bruttin, A.; Serra-Moreno, R.; Dillmann, M.L.; Brussow, H. In vivo replication of T4 and T7 bacteriophages in germ-free mice colonized with Escherichia coli. Virology 2009, 393, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Kasman, L.M.; Kasman, A.; Westwater, C.; Dolan, J.; Schmidt, M.G.; Norris, J.S. Overcoming the phage replication threshold: A mathematical model with implications for phage therapy. J. Virol. 2002, 76, 5557–5564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abedon, S.T. Phage therapy dosing: The problem(s) with multiplicity of infection (MOI). Bacteriophage 2016, 6, e1220348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abedon, S.T. Phage Therapy: Various Perspectives on How to Improve the Art. Methods Mol. Biol. 2018, 1734, 113–127. [Google Scholar] [PubMed]
- Hagens, S.; Loessner, M.J. Bacteriophage for biocontrol of foodborne pathogens: Calculations and considerations. Curr. Pharm. Biotechnol. 2010, 11, 58–68. [Google Scholar] [CrossRef]
- Oakley, B.B.; Lillehoj, H.S.; Kogut, M.H.; Kim, W.K.; Maurer, J.J.; Pedroso, A.; Lee, M.D.; Collett, S.R.; Johnson, T.J.; Cox, N.A. The chicken gastrointestinal microbiome. FEMS Microbiol. Lett. 2014, 360, 100–112. [Google Scholar] [CrossRef]
- Clavijo, V.; Florez, M.J.V. The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review. Poult. Sci. 2018, 97, 1006–1021. [Google Scholar] [CrossRef]
- Maura, D.; Morello, E.; du Merle, L.; Bomme, P.; Le Bouguenec, C.; Debarbieux, L. Intestinal colonization by enteroaggregative Escherichia coli supports long-term bacteriophage replication in mice. Environ. Microbiol. 2012, 14, 1844–1854. [Google Scholar] [CrossRef]
- Galtier, M.; De Sordi, L.; Sivignon, A.; de Vallee, A.; Maura, D.; Neut, C.; Rahmouni, O.; Wannerberger, K.; Darfeuille-Michaud, A.; Desreumaux, P.; et al. Bacteriophages Targeting Adherent Invasive Escherichia coli Strains as a Promising New Treatment for Crohn’s Disease. J. Crohns Colitis 2017, 11, 840–847. [Google Scholar] [CrossRef] [Green Version]
- Denou, E.; Bruttin, A.; Barretto, C.; Ngom-Bru, C.; Brussow, H.; Zuber, S. T4 phages against Escherichia coli diarrhea: Potential and problems. Virology 2009, 388, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Chibani-Chennoufi, S.; Sidoti, J.; Bruttin, A.; Kutter, E.; Sarker, S.; Brussow, H. In vitro and in vivo bacteriolytic activities of Escherichia coli phages: Implications for phage therapy. Antimicrob Agents Chemother 2004, 48, 2558–2569. [Google Scholar] [CrossRef] [Green Version]
- De Sordi, L.; Khanna, V.; Debarbieux, L. The Gut Microbiota Facilitates Drifts in the Genetic Diversity and Infectivity of Bacterial Viruses. Cell Host Microbe 2017, 22, 801–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roach, D.R.; Leung, C.Y.; Henry, M.; Morello, E.; Singh, D.; Di Santo, J.P.; Weitz, J.S.; Debarbieux, L. Synergy between the Host Immune System and Bacteriophage Is Essential for Successful Phage Therapy against an Acute Respiratory Pathogen. Cell Host Microbe 2017, 22, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Krut, O.; Bekeredjian-Ding, I. Contribution of the Immune Response to Phage Therapy. J. Immunol. 2018, 200, 3037–3044. [Google Scholar] [CrossRef] [PubMed]
- Oakley, B.B.; Morales, C.A.; Line, J.; Berrang, M.E.; Meinersmann, R.J.; Tillman, G.E.; Wise, M.G.; Siragusa, G.R.; Hiett, K.L.; Seal, B.S. The poultry-associated microbiome: Network analysis and farm-to-fork characterizations. PLoS ONE 2013, 8, e57190. [Google Scholar] [CrossRef] [Green Version]
- Maura, D.; Debarbieux, L. On the interactions between virulent bacteriophages and bacteria in the gut. Bacteriophage 2012, 2, 229–233. [Google Scholar] [CrossRef] [Green Version]
- Lusiak-Szelachowska, M.; Weber-Dabrowska, B.; Jonczyk-Matysiak, E.; Wojciechowska, R.; Gorski, A. Bacteriophages in the gastrointestinal tract and their implications. Gut Pathog. 2017, 9, 44. [Google Scholar] [CrossRef] [Green Version]
- Kasman, L.M. Barriers to coliphage infection of commensal intestinal flora of laboratory mice. Virol. J. 2005, 2, 34. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, I.; Riedel, T.; Schober, I.; Bunk, B.; Spröer, C.; Bierbrodt, A.; Lehnherr, H.; Wittmann, J. Genome Sequence of Escherichia coli E28, a Multidrug-Resistant Strain Isolated from a Chicken Carcass, and Its Spontaneously Inducible Prophage. Genome Announc. 2017, 5, e00348-17. [Google Scholar] [CrossRef] [Green Version]
- Posse, B.; De Zutter, L.; Heyndrickx, M.; Herman, L. Novel differential and confirmation plating media for Shiga toxin-producing Escherichia coli serotypes O26, O103, O111, O145 and sorbitol-positive and -negative O157. FEMS Microbiol. Lett. 2008, 282, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Kerangart, S.; Douellou, T.; Delannoy, S.; Fach, P.; Beutin, L.; Sergentet-Thevenot, D.; Cournoyer, B.; Loukiadis, E. Variable tellurite resistance profiles of clinically-relevant Shiga toxin-producing Escherichia coli (STEC) influence their recovery from foodstuffs. Food Microbiol. 2016, 59, 32–42. [Google Scholar] [CrossRef]
- Fischer, S.; Kittler, S.; Klein, G.; Glunder, G. Impact of a single phage and a phage cocktail application in broilers on reduction of Campylobacter jejuni and development of resistance. PLoS ONE 2013, 8, e78543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, S.; Kittler, S.; Klein, G.; Glunder, G. Microplate-test for the rapid determination of bacteriophage-susceptibility of Campylobacter isolates-development and validation. PLoS ONE 2013, 8, e53899. [Google Scholar] [CrossRef] [PubMed]
- Aviagen. ROSS 308 AP Performance Objectives 2017; 0217-AVNR-077; Aviagen Group: Huntsville, AL, USA, 2017. [Google Scholar]
Six-Phage Trial | 6 dph | 7 dph | 9 dph | 14 dph | 21 dph | 28 dph | 35 dph | |
---|---|---|---|---|---|---|---|---|
E. coli | control | 8.0 ± 0.1 | 6.2 ± 0.5 | 6.2 ± 0.3 | 6.6 ± 0.3 | 6.7 ± 0.3 | 6.3 ± 0.3 | 6.5 ± 0.4 |
phage group | 8.5 ± 0.1 | 7.1 ± 0.3 | 7.6 ± 0.2 | 6.7 ± 0.5 | 6.8 ± 0.2 | 6.9 ± 0.2 | 6.8 ± 0.2 | |
Model strain E28 | control | 8.4 ± 0.1 | 6.1 ± 0.3 | 4.2 ± 0.4 | 4.0 ± 0.4 | 3.9 ± 0.4 | 3.7 ± 0.3 | 3.7 ± 0.4 |
phage group | 7.7 ± 0.5 | 6.6 ± 0.3 | 6.7 ± 0.2 | 5.6 ± 0.3 | 5.2 ± 0.3 | 5.6 ± 0.4 | 5.8 ± 0.3 | |
Four-phage trial | 6 dph | 8 dph | - | 15 dph | 22 dph | 29 dph | 36 dph | |
E. coli | control | 6.5 ± 0.3 | 6.5 ± 0.4 | - | 6.3 ± 0.3 | 6.5 ± 0.3 | 7.0 ± 0.2 | 5.9 ± 0.3 |
phage group | 1.7 ± 0.3 | 3.6 ± 0.5 | - | 6.0 ± 0.2 | 5.8 ± 0.2 | 6.0 ± 0.2 | 6.0 ± 0.3 | |
Model strain E28 | control | 0.0 ± 0.0 | 0.4 ± 0.2 | - | 2.7 ± 0.4 | 4.1 ± 0.4 | 5.7 ± 0.4 | 3.8 ± 0.4 |
phage group | 0.0 ± 0.0 | 2.6 ± 0.7 | - | 4.9 ± 0.3 | 5.2 ± 0.2 | 5.1 ± 0.3 | 5.3 ± 0.4 |
Six-Phage Trial | 6 dph | 7 dph | 9 dph | 14 dph | 21 dph | 28 dph | 35 dph |
---|---|---|---|---|---|---|---|
Phage counts (log10 PFU/g feces) | 7.3 | 6.1 | 4.8 | n.d. c | 4.1 | n.d. c | 5.1 |
Exp. without replication (max. log10 PFU/g feces) a | 4.1 | 4.7 | 4.1 | ||||
Intake dose (log10 PFU/mL water) b | n.d. c | 4.2 | n.d. c | 4.8 | n.d. c | 4.2 | n.d. c |
Four-phage trial | 6 dph | 8 dph | - | 15 dph | 22 dph | 29 dph | 36 dph |
Phage counts (log10 PFU/g feces) | n.d. c | 3.5 | n.d. c | 6.4 | 6.9 | 6.3 | 6.3 |
Exp. without replication (max. log10 PFU/g feces) a | d | 7.1 | 6.8 | ||||
Intake dose (log10 PFU/mL water) b | n.d. c | n.d. c | n.d. c | 5.6 | 7.3 | 7.0 | n.d. c |
Six-Phage Trial a | Cocktail | EW2 | KRA2 | TB49 | AB27 | TriM | G28 |
---|---|---|---|---|---|---|---|
Phage group | 2 | 12 | 10 | 0 | 4 | 2 | 0 |
Control | 0 | 0 | 0 | 2 | 0 | 0 | 0 |
Four-phage trial b | Cocktail | EW2 | - | TB49 | AB27 | - | G28 |
Phage group | 0 | 20 | - | 10 | 7 | - | 0 |
Control | 0 | 0 | - | 4 | 0 | - | 0 |
Characteristics | ||||
---|---|---|---|---|
Isolate | Phage Susceptibility Pattern b | Reduced Utilization Carbon Sources (%) c | Increased Utilization Carbon Sources (%) c | Growth Curve in Broth (24 h, OD 600 nm) d |
Wildtype E28 | - | - | - | >1; <1.2 |
Re-isolates six-phage trial | ||||
134 a | - | - | - | >1; <1.2 |
154 | - | - | - | >1; <1.2 |
183 | (TB49) | - | 1 | >1; <1.2 |
116 | (TB49) | 38 | 7 | <1 |
179 | EW2, (TB49), (KRA2) | - | 2 | >1; <1.2 |
185 | TriM, AB27, EW2, KRA2 | - | 1 | >1; <1.2 |
210 | TriM, AB27, EW2, KRA2 | - | 2 | >1; <1.2 |
156 | TriM, AB27, EW2, TB49, KRA2 | 8 | 22 | <1 |
Re-isolates four-phage trail | ||||
22 a | - | - | 1 | >1; <1.2 |
16 | - | - | 1 | >1; <1.2 |
106 | (TB49) | - | 1 | >1; <1.2 |
120 | (TB49) | - | 1 | >1; <1.2 |
118 | TB49 | - | - | >1; <1.2 |
178 | AB27, EW2 | - | 1 | >1; <1.2 |
198 | AB27, EW2 | 1 | 1 | >1; <1.2 |
196 | AB27, (EW2), (TB49) | 2 | 1 | <1 |
Non-E28 six-phage trial | ||||
617 a | TriM, AB27, EW2, TB49, KRA2, (G28) | - | 24 | >1; <1.2 |
630 a | TriM, AB27, EW2, TB49, KRA2, (G28) | 1 | 17 | >1.2 |
640 a | TriM, AB27, EW2, TB49, KRA2, (G28) | 2 | 13 | >1.2 |
650 a | TriM, (AB27), EW2, TB49, KRA2, G28 | 1 | 19 | >1.2 |
Non-E28 four-phage trial | ||||
253 | AB27, EW2, TB49, G28 | - | 27 | >1.2 |
283 | AB27, (EW2), TB49, G28 | - | 26 | >1.2 |
311 | AB27, (EW2), TB49, G28 | - | 26 | >1; <1.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kittler, S.; Mengden, R.; Korf, I.H.E.; Bierbrodt, A.; Wittmann, J.; Plötz, M.; Jung, A.; Lehnherr, T.; Rohde, C.; Lehnherr, H.; et al. Impact of Bacteriophage-Supplemented Drinking Water on the E. coli Population in the Chicken Gut. Pathogens 2020, 9, 293. https://doi.org/10.3390/pathogens9040293
Kittler S, Mengden R, Korf IHE, Bierbrodt A, Wittmann J, Plötz M, Jung A, Lehnherr T, Rohde C, Lehnherr H, et al. Impact of Bacteriophage-Supplemented Drinking Water on the E. coli Population in the Chicken Gut. Pathogens. 2020; 9(4):293. https://doi.org/10.3390/pathogens9040293
Chicago/Turabian StyleKittler, Sophie, Ruth Mengden, Imke H. E. Korf, Anna Bierbrodt, Johannes Wittmann, Madeleine Plötz, Arne Jung, Tatiana Lehnherr, Christine Rohde, Hansjörg Lehnherr, and et al. 2020. "Impact of Bacteriophage-Supplemented Drinking Water on the E. coli Population in the Chicken Gut" Pathogens 9, no. 4: 293. https://doi.org/10.3390/pathogens9040293
APA StyleKittler, S., Mengden, R., Korf, I. H. E., Bierbrodt, A., Wittmann, J., Plötz, M., Jung, A., Lehnherr, T., Rohde, C., Lehnherr, H., Klein, G., & Kehrenberg, C. (2020). Impact of Bacteriophage-Supplemented Drinking Water on the E. coli Population in the Chicken Gut. Pathogens, 9(4), 293. https://doi.org/10.3390/pathogens9040293