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Abstract: In this paper, sliding mode tracking control and its chattering suppression method are in-
vestigated for flexible-joint robot manipulators with only state measurements of joint actuators. First,
within the framework of singular perturbation theory, the control objective of the system is decoupled
into two typical tracking aims of a slow subsystem and a fast subsystem. Then, considering lumped
uncertainties (including dynamics uncertainties and external disturbances), a composite chattering-
suppressed sliding mode controller is proposed, where a smooth-saturation-function-contained
reaching law with adjustable saturation factor is designed to alleviate the inherent chattering phe-
nomenon, and a radial basis function neural network (RBFNN)-based soft computing strategy is
applied to avoid the high switching gain that leads to chattering amplification. Simultaneously, an
efficient extended Kalman filter (EKF) with respect to a new state variable is presented to enable the
closed-loop tracking control with neither position nor velocity measurements of links. In addition, an
overall analysis on the asymptotic stability of the whole control system is given. Finally, numerical
examples verify the superiority of the dynamic performance of the proposed control approach, which
is well qualified to suppress the chattering and can effectively eliminate the undesirable effects
of the lumped uncertainties with a smaller switching gain reduced by 80% in comparison to that
in the controller without RBFNN. The computational efficiency of the proposed EKF increased by
about 26%.

Keywords: flexible-joint robot manipulator; sliding mode control; chattering phenomenon; radial
basis function neural network; extended Kalman filter

1. Introduction

Robot manipulators with flexible joints are widely used in industrial applications due
to their light weight, reduced inertia, high speed and compact structure. Joint flexibility
generated from the elastic driving (by harmonic reducers, series elastic actuators or cables,
etc.) always leads to vibration problem and is unavoidable in modeling, especially in
applications with high-precision demands. The singularly perturbed approach has been
extensively studied to model and control flexible-joint robot manipulators since it was first
proven to be feasible in [1]. By such a method, the controller can be easily implemented
through developing sub-controllers for the two subsystems with precisely known system
dynamics, and full-state feedback [2]. Unfortunately, the actual situation is not so ideal.

It is always challenging to design controllers for robotic systems in the presence of
uncertainties and/or disturbances, despite the extensive so-called robust control methods,
such as robust adaptive control [3], repetitive control [4], back-stepping techniques [5],
iterative learning control [6], etc. Among them, sliding mode control [7], with its simplicity
in application, insensitivity to parameter variations and disturbances implicit in the input
channels and non-model based robustness, remains one of the most effective approaches
in handling bounded uncertainties and/or disturbances [8,9]. However, the existence
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of high-frequency oscillations, like chattering, restrict the application of the traditional
variable structure control schemes in practical situations and have a negative impact to all
chains of the feedback control loops (sensors, actuators etc.), which creates high demands
on smart system integration of mechatronic applications [10,11].

For chattering suppression, refs. [12,13] designed typical sliding mode controllers
(SMCs) as a second auxiliary controller that has switching gains to suppress time-delay
estimation errors to achieve robust tracking performance and to weaken the negative effects
of chattering. A second-order integral SMC was provided to mitigate the chattering by
ensuring finite time convergence in [14,15]. As an extension, a continuous sliding mode
control design was introduced in [16] to robotic systems with compliant actuators due to
its advantages of strong robustness and chattering attenuation.

To a certain extent, the approaches listed above alleviate the chattering from the
internal of SMC; whereas, regarding how to determinate the bounds of the unknown
lumped uncertainties and avoid high switching gains that may amplify the chattering
phenomenon, there are few general or effective solutions [17,18]. It was reported that the
design of a controller involving a disturbance observer can balance the chattering and
the switching gain. A novel integral sliding-mode-observer-based disturbance estimation
scheme was designed in [17] for Euler–Lagrangian systems, and a high-order disturbance
observer based sliding mode control method was designed in [18] to suppress both the
mismatched and matched disturbances of system through feedforward compensation with
disturbance estimation.

As an intelligent optimization mechanism, soft computing technologies include neural
networks (NN), fuzzy logic, and probabilistic reasoning (evolutionary computation, chaos
theory, etc.), and are preferentially considered to be integrated into the sliding mode control,
to weaken the shortcomings of the classical sliding mode control strategy [19]. Such works
provide some inspiration to form the proposed solution in this paper for the flexible-joint
robot manipulators.

The frequently used full-state feedback controller for flexible-joint robot manipulator
requires state measurements (such as angular position or velocity) from the link side, but
the corresponding sensors are sometimes absent for reasons including installation difficulty
or hardware cost reduction. Similar conditions also occur in the position output feedback
control of rigid robot manipulators, i.e., velocity or acceleration measurements by sensors
are liable to be contaminated with external noise, and are always abandoned. To handle this
issue, various estimation methods in terms of observation or filtering techniques [20] are
commonly incorporated to estimate the missing but required states in closed-loop control.

High-gain observers are frequently used in nonlinear feedback control, in particular
in output feedback control situations [20], for the reason that they are relatively simple to
design, robust to modeling uncertainty and external disturbances, and can easily achieve
global or semi-global stability results. However, they are sensitive to measurement noise,
and suffer from the peaking phenomenon that could even destabilize a closed-loop system
if the observer gain is driven sufficiently high [21]. Sliding mode observers inherit the good
robustness of the varied structure control, due to the insensitivity to uncertainties and the
capability of reconstructing the uncertainties based on the equivalent injection input con-
cept [22]. However, it is difficult to choose a filter time to suppress the high-frequency noise
of the system where the undesirable chattering will degrade the estimation performance.

As a nonlinear case of Kalman filter, extended Kalman filter (EKF), is typically adopted
to achieve noise rejection in the measurement process and to enhance estimation accuracy
through linearizing nonlinear systems (including robotic systems) [23]. In comparison to
the high-gain observer and sliding mode observer, EKF has neither peaking nor chattering
phenomenon, and the ability to tolerate noise is embodied in the principle design of the EKF.
However, the conventional use of EKF to observe the link states brings time-consuming
computing of Jacobian matrix and worsens the implementation feasibility of EKF. Such
issues are also discussed in this work.
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NNs have excellent ability of nonlinear fitting and complex mapping, furthermore,
their learning rules are simple and easy to implement on the digital controller [24]. Radial
basis function neural network (RBFNN), as a favorable forward-feedback NN, can approxi-
mate any continuous nonlinear function with arbitrary precision, and also features rapid
convergence, good adaptation and strong self-learning [25,26]; thus, it is utilized in this
paper as an external factor through feedforward compensation and a class of saturation
functions is applied as an internal factor in the reaching law of SMC to help suppress the
chattering phenomenon caused by SMC.

To the best of our knowledge, few works have attempted to integrate the NN-based
soft computing technology and sliding mode theory to design composite controllers for
singularly perturbed systems. Furthermore, this is the first time in such situations to
address the chattering suppression problem in SMC from a combined respective via the
internal and the external of SMC. The main contributions of our work are summarized
as follows.

(1) A smooth saturation function that can obtain a sufficiently fast response characteristics
near the origin to guarantee robustness through an adjustable saturation factor, is
applied internally to replace the commonly used non-smooth switching function in the
design of smooth-saturation-function-contained reaching law to alleviate the inherent
chattering phenomenon of the sliding mode control. Simultaneously, NN-based soft
computing is designed externally to run online to avoid chattering amplification
caused by high value of switching gain required to cover the upper bound of the
dynamics uncertainties and external disturbances. Thus, these two factors enable a
chattering suppression strategy to work from both inside and outside the SMC and to
help achieve superior dynamic performance of the proposed controller.

(2) Different from the conventional treatment, by applying the concept of integral man-
ifold within the frame of singular perturbation theory, the fast subsystem of the
robot dynamics is reshaped into a typical tracking system to ensure the fast variable
converges to zero over time but without considering it in the system model, thus,
providing more flexibility on controller design.

(3) An efficient EKF with a new state variable that simplifies computing the Jacobian
matrix is applied to achieve closed-loop tracking control without angular position or
velocity measurements of links.

(4) Strict stability analyses on the proposed closed-loop control system in terms of two
singularly perturbed subsystems and the whole system with estimation error as well
as EKF are given.

In the remainder of this paper, Section 2 deals with the dynamics modeling of flexible-
joint robot manipulator in framework of singular perturbation theory. In Section 3, a
singularly perturbed SMC is proposed. RBFNN-based soft computing to assist the SMC
with handling the dynamics uncertainties and external disturbances of the system is
designed in Section 4, while Section 5 presents an EKF with new state variable to observe
the states of links. Section 6 provides an overall stability analysis of the whole system, and
validation examples are given in Section 7. Finally, our conclusions are given in Section 8.

2. Dynamics Model

The dynamics of an n-link flexible-joint robot manipulator can be written as [1]

M(q)q̈ + C(q, q̇)q̇ + G(q) + Z(q, θ) = 0 (1)

Jθ̈− Z(q, θ) = u (2)

Z(q, θ) = K(q− θ) (3)

where q, q̇, q̈ ∈ Rn and θ, θ̇, θ̈ ∈ Rn denote the angular position, velocity, and acceleration
of the links and motors, respectively. M(q) ∈ Rn×n is the positive definite inertia matrix,
C(q, q̇) ∈ Rn×n is the centripetal-Coriolis matrix, G(q) ∈ Rn is the gravitational of the
link dynamics, Z(q, θ) ∈ Rn is the elastic torque at flexible joints, and K, J ∈ Rn×n are
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positive definite constant diagonal matrices representing joint stiffness and motor inertia,
respectively. u ∈ Rn is the control input of motor torque. In brief, we use M, C, G and Z,
to represent M(q), C(q, q̇), G(q) and Z(q, θ), respectively, in the text that follows.

To simplify the expressions, without loss of generality, order K = kI (I ∈ Rn×n is an
identity matrix), and the perturbation coefficient µ can be set as µ = 1/k, substitute (2) and
(3) into (1); then, we obtain the whole system in original singularly perturbed form with
reference to the standard expression [27]

q̈ =−M−1(Cq̇ + G + Z) (4)

µZ̈ =− (M−1+J−1)Z−M−1(Cq̇ + G)− J−1u (5)

To facilitate the decoupling, the concept of an integral manifold [27] is utilized to
derive the slow subsystem and the fast subsystem.

We define the elastic torque Z as an integral manifold

Z = h(q, q̇, θ, θ̇, µ, u) (6)

where h(q, q̇, θ, θ̇, µ, u) (written as h for short) is assumed to be a sufficiently smooth
(continuously differentiable with sufficient times) function that depends on q, θ, q̇, θ̇ ∈ Rn

and µ.
The corresponding Taylor series expansions of h in (6) in powers of µ are given as

h =h0(q, q̇, θ, θ̇, u) + µh1(q, q̇, θ, θ̇, u) + · · ·+ µnhn(q, q̇, θ, θ̇, u) + . . . (7)

where hi(q, q̇, θ, θ̇, u) is the expansion with respect to µ and can be calculated iteratively.
Let u_s and u_f be the control inputs for the slow subsystem and the fast subsystem,

respectively, and the composite controller is given as follows:

u = u_s + u_f. (8)

2.1. Slow Subsystem

Define the slow variable as h(q, q̇, θ, θ̇, µ, u_s) (written as h_s for short) in slow-scaled
time t, when the joint stiffness coefficient k→ ∞, i.e., µ→ 0, we find q→ θ, h turns into
h_s, that is

h = h0(q, q̇, θ, θ̇, u) = h_s (9)

and u reduces to u_s; then, from (4) and (5), we find

q̈ = −M−1(Cq̇ + G + h_s) (10)

h_s=−(M−1+J−1)
−1

[M−1(Cq̇ + G) + J−1u_s] (11)

Substituting (11) into (10), the slow subsystem can be obtained as

(M + J)q̈ + Cq̇ + G = u_s (12)

Remark 1. The slow subsystem (12) can be recognized as the rigid part (which is essentially
equivalent to the model of rigid robot manipulators) of the flexible-joint robot manipulator, and thus
the existing control approaches based on the dynamics of rigid robot manipulators can be applied
directly to the slow subsystem.

Remark 2. The perturbation coefficient µ is related to the spring coefficient K. The rule for selecting
µ relies on the K and the K should be sufficiently large so that the fast variables can be fast enough
in fast-scaled time µ−1t. However, in practical applications, K cannot be close to infinity, and
the order of its magnitude is often 104 or so, i.e., the value of µ is on the order of 10−4. Though
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µ is small, it is not so close to zero that a fast sub-controller for the fast subsystem is required to
constrain the error caused by ignoring higher-order terms of the expansion of h in (7).

2.2. Fast Subsystem

Considering the high-order terms (which are generated by the joint flexibility and
are neglected in slow subsystem) of the Taylor series expansions with respect to µ in slow
subsystem in (7), we define the fast variable η as

η = Z− h_s (13)

Recalling (5), when h turns into h_s and u turns into u_s, we find

µḧ_s=− (M−1+J−1)h_s−M−1(Cq̇+G)−J−1u_s (14)

From (5), (13) and (14), we find the fast subsystem

µη̈ = −(M−1 + J−1)η− J−1u_f (15)

Considering (9) and (13), (15) can be rewritten as a reshaped fast subsystem

µḧ0 = −(M−1 + J−1)h0 − J−1u
′
_f (16)

where u
′
_f = −u_f − JµZ̈− J(M−1 + J−1)Z.

Remark 3. Recalling the most commonly used expression of fast subsystem (15) proposed by
Spong [1], it is necessary to calculate η and η̈ or apply optimal control techniques [28] to work out
the u_f. In contrast, the reshaped fast subsystem (16) in this paper is actually a fast subsystem with
a new control aim (different from that in [1,28,29]), to enable Z to tend to h0, that is to make the
fast variable η converges to zero over time but without considering it in the system model, which
makes the fast controller design flexible.

Therefore, it is expected in the following part to design the control laws of u_s and u
′
_f

for the slow subsystem (12) and the reshaped fast subsystem (16), respectively, to make q
track qd (which is the desired link position) and Z track h0.

3. Singularly Perturbed Sliding Mode Controller

In this section, to deal with the dynamics model uncertainties and external torque
disturbances for flexible-joint robot manipulators, sliding mode control strategy is adopted
in the controller design for both the slow and the fast subsystems, where a class of smooth
and saturation function is applied in each of the corresponding reaching law to alleviate
the inherent chattering phenomenon of the sliding mode control.

3.1. Control Objective

The control objective is to design a controller that guarantees the actual link position
q(t) ∈ Rn converges asymptotically to the desired qd(t) ∈ Rn, where we assume that,
qd(t) is twice differentiable, qd(t), and its first two derivatives are bounded for all t ≥ 0.
For any desired qd(t) that does not satisfy such assumption, it can be processed with the
high smooth trajectory planning method proposed in [30].

In brief, the control objective can be expressed as

∀e(0) ∈ Rn, lim
t→∞

e(t) = 0 (17)

where the tracking error of the link position e(t) is defined as

e(t) = qd(t)− q(t) (18)
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3.2. Controller of Slow Subsystem

For the slow subsystem, we define a sliding surface s_s as

s_s = A_se + ė (19)

where A_s is a positive definite constant diagonal matrix, ė is the derivative of e with
respect to time.

Substitute (18) and (19) into (12), we find

ṡ_s=A_s(q̇d − q̇)+q̈d+(M+J)−1(Cq̇ + G− u_s) (20)

As indicated in [31], the switching control law in sliding mode is not instantaneous,
and the sliding surface is usually not rigorously known; this often results in a high control
activity, known as chattering, which is undesirable in most systems as it can excite high-
frequency dynamics that could bring the possibilities of system instability.

To reduce the chattering phenomenon from the internal of SMC, a reaching law
motivated by [31] is designed as

ṡ_s = −ε_ssat(s_s)− B_ss_s (21)

where B_s and ε_s are positive definite constant diagonal matrices, sat(·) is a monotone
increasing smooth saturation function with adjustable saturation factor, passing through
the origin of coordinate, continuously differentiable. More details can be found in [32].
Importantly, the smooth saturation function sat(·) applied retains the fast response char-
acteristics of the most commonly used switching function sign(·) nearby the origin to
ensure sufficient robust performance, as long as the zero-crossing slope is sufficiently large.
Theoretically, it can be infinitely close to the switching function sign(·) by adjusting the
saturation factor but avoids discontinuous transition during switching, which is the main
cause of chattering.

Through (20) and (21), the control law for the slow subsystem is presented as

u_s = (M + J)[ε_ssat(s_s) + B_ss_s + A_s(q̇d − q̇) + q̈d] + Cq̇ + G (22)

3.3. Controller of Fast Subsystem

Define a sliding surface for the fast subsystem as

s_f = A_fη+ η̇ (23)

where A_f is a positive definite constant diagonal matrix, η is previously defined by (13).
Substitute (23) into (16), we find

ṡ_f = A_fη̇+ Z̈ + K[(M−1 + J−1)h0 + J−1u
′
_f] (24)

Similarly to (21), the reaching law for the fast subsystem controller is designed as

ṡ_f = −ε_fsat(s_f)− B_fs_f (25)

where B_f and ε_f are positive definite constant diagonal matrices.
Substitute (25) into (24), then the control law is derived as

u
′
_f = −Jµ[ε_fsat(s_f) + B_fs_f + A_fη̇+ Z̈]− J(M−1 + J−1)h0 (26)

Considering the definition of u
′
_f in (16), and combining with (13), (23) and (26), the

control input u_f of the fast subsystem is then obtained as

u_f =ε
′
sat(s_f) + Kpη+ Kdη̇ (27)
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where ε
′
= Jµε_f, Kp = JµB_f A_f − J(M−1 + J−1), Kd = Jµ(A_f + B_f).

Remark 4. Formula (27) can be recognized as a proportional-derivative (PD) control law relating
to the error term η, with a sliding mode term ε

′
sat(s_f), then the performance of the fast system can

be optimized by the parameters tuning rules for PD controllers. It is not necessary to involve Z̈ or η̈
as [1], which improves the computation efficiency and engineering practicality. The sliding mode
term increases the robustness of the boundary layer and makes the fast subsystem more stable.

Remark 5. The control aim of the fast subsystem is to enable the elastic torque of the joint Z to
track the h0, which can be taken as further fine tuning to the torque control input of the slow
subsystem u_s. Note that, although according to (27), Kp is a time-varying gain that varies as the
inertia matrix M changes, M is bounded by property 1 in [20] and the corresponding bounded
value of Kp is not so sensitive to the control performance. Hence, Kp can be selected properly as a
constant diagonal matrix to simplify the control law.

4. RBFNN-Based Soft Computing Strategy

Considering the uncertainties of the dynamics model and disturbances of the torque
control input, the expressions (12) and (15) for flexible-joint robot manipulators can be
rewritten as

(M + J)q̈ + Cq̇ + G + ∆(M + J)q̈ + ∆Cq̇ + ∆G = u_s + d1 (28)

µη̈ = −(M−1 + J−1)η− J−1u_f − ∆(M−1 + J−1)η− ∆J−1u_f + d2 (29)

where ∆(M + J), ∆C, ∆G, ∆(M−1 + J−1) and ∆J−1 denote the uncertainties of each term
of the model, d1 and d2 are the disturbance terms of the control inputs to slow subsystem
and fast subsystem, respectively.

From (28) and (29), we find

q̈ = (M + J)−1(u_s − Cq̇−G)− δ_s (30)

η̈ = K[−(M−1 + J−1)η− J−1u_f] + δ_f (31)

where δ_s = (M + J)−1[∆(M + J)q̈ + ∆Cq̇ + ∆G− d1], and δ_f = −K[∆(M−1 + J−1)η +
∆J−1u_f − d2] are the uncertainties and disturbances of the slow subsystem and the fast
subsystem, respectively.

Remark 6. The robustness of sliding mode is closely related to its switching gain. When the model
parameters are uncertain due to inaccuracy of parameter identification, and the switching gain
needs to be adjusted in response. The gains (especially ε_s) of the proposed SMC should be adjusted
to be large enough to cover the bounds (which are susceptible to changes in model parameters) of
the system uncertainties and external disturbances (in (30) and (31)) and to reject the resulted
undesirable effects. Although the chattering phenomenon is reduced greatly by the reaching law
involving smooth saturation function, such high coefficients in the switching control (by (21) and
(25)) will still enlarge the influence of chattering. Meanwhile, the bounds of the system uncertainties
and/or external disturbances are always unknown and difficult to determine. Hence, RBFNN-based
soft computing strategy is applied subsequently to provide feedforward compensation to alleviate
the pressure of SMC to process lumped uncertainties and to help enhance the overall performance of
SMC, which will be verified in Section 7.

RBF-based soft computing is designed for each subsystem individually, and is run-
ning online. According to [25], we define the input layer of the RBFNN as error term
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E = [ET
1 , ET

2 , . . . , ET
n ]

T, where Ei(i = 1, 2, . . . , n) is the error vector of either the slow subsys-
tem Ei_s or the fast subsystem Ei_f of the i-th joint:

Ei =

{
Ei_s = [ei ėi]

T, for slow subsystem
Ei_f = [ηi η̇i]

T, for fast subsystem
(32)

and the hidden layer as the radial basis function Φ = [φT
1 , φT

2 , . . . , φT
n ]

T, where
φi(i = 1, 2, . . . , n) is the radial basis function (Gaussian kernal) of either the slow sub-
system φi_s or the fast subsystem φi_f of the i-th joint, the j-th activation function φij (φij_s
or φij_f) of φi (φi_s or φi_s) is given as

φij = exp(
||Ei − Tij||2

2U2
i

) (33)

where j = 1, 2, . . . , m, m is the node number of the hidden layer. Ti and Ui are the center
matrix and base width of the i-th joint, respectively. Tij is the center vector corresponding
to the j-th weight value of the i-th joint.

Suppose the fitting error is small enough, and the i-th joint error δi (δi_s or δi_f) of the
(slow or fast) subsystem can be expanded into δi = WT

i φi, where Wi (Wi_s or Wi_f) is the
ideal connecting weight value between the hidden layer and the output layer. Thus, the
actual i-th joint output layer δ̂i of the NN can be designed as

δ̂i = ŴT
i φi (34)

where Ŵi (Ŵi_s or Ŵi_f) is the approximate value of the ideal connecting weight matrix Wi.
The adaptive control law is designed as

˙̂Wi = γisiφi (35)

where γi (γi_s or γi_f) is a constant and si (si_s or si_f) is the sliding surface of the i-th joint.

Remark 7. Unlike the traditional NNs [33–35] that have to rely on time-consuming off-line
training to optimize the model, the RBFNN-based compensator designed in this paper is in online
self-adjusting working mode with simple structure and small computing burden. It is a three-layer
forward network. The mapping from input to output is nonlinear, while the mapping from hidden
layer to output layer is linear. Importantly, the RBFNN is a local approximation NN that can greatly
speed up the learning and is suitable for real-time control requirements. Its operational structure is
sketched by Figure 1, where the Ei(i = 1, 2, . . . , n) in the input layer is the error term defined by
(32), the Gaussian kernel by (33) is chosen in the hidden layer for the RBF, and the δ̂i in the output
layer is the approximation of the error of i-th joint caused by dynamics model uncertainties and
joint torque disturbances and is updated by (34) with the adaptive control law (35).

Finally, the control law (22) and (27) can be rewritten as

u_s = (M + J)[ε_ssat(s_s) + B_ss_s + A_s(q̇d − q̇) + q̈d] + Cq̇ + G + (M + J)δ̂_s (36)

u_f = ε
′
sat(s_f) + Kpη+ Kdη̇+ Jµδ̂_f (37)

where δ̂_s = [δ̂1_s, δ̂2_s, . . . , δ̂n_s]T is the output layer of the RBFNN for the slow subsystem,
and (M + J)δ̂_s is the compensation term of its control input, while for the fast subsystem,
δ̂_f = [δ̂1_f, δ̂2_f, . . . , δ̂n_f]

T is the output layer of its RBFNN and Jµδ̂_f is the compensation
term of its control input.
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Figure 1. Online operational structure of the RBFNN.

Remark 8. As presented by (8), (36), and (37), inheriting the idea of decomposing the whole dy-
namics of an n-degree-of-freedom flexible-joint robot manipulator by (1) and (2) into two subsystems
in the framework of singular perturbation theory, u_s acts on the slow subsystem (rigid part), while
u_f acts on the fast subsystem (flexible part) to depress the influence caused by the joint flexibility.
Both sub-controllers are designed with the sliding mode control strategy, where the q and q̇ involved
are obtained from the EKF proposed in Section 5, making the closed-loop control without measuring
link states. Moreover, an RBFNN-based error compensator is included in the proposed SMC. The
block diagram of the proposed control approach is shown in Figure 2.
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Figure 2. Block diagram of the proposed controller.

5. Extended Kalman Filter

Considering the control law presented by (36) and (37), at least four feedback variables
q, q̇, θ and θ̇ are required to accomplish the closed-loop tracking control. Actually, the
corresponding sensors to measure the states of the links are usually missing. In this section,
an efficient EKF based on a new state variable is proposed to estimate the position and
velocity of the links.

5.1. EKF with Conventional State Variable

First, let us recall the design process of an EKF based on a conventional state variable,
in terms of flexible-joint robot manipulator [23].
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The most commonly used state variable x is defined as

x = [qT q̇T θT θ̇T]T = [xT
1 xT

2 xT
3 xT

4 ]
T (38)

The time derivative function f (x) of the state variable x is obtained as

f (x) = ẋ =


q̇

−M−1[Cq̇ + G + K(q− θ)]
θ̇

J−1[u + K(q− θ)]

 (39)

and the partial derivative of the state function with respect to the states can be written as:

∂ f (x)
∂x

= F(t) =


0 I 0 0
F1 F2 F3 0
0 0 0 I
F4 0 F5 0

 (40)

where

F1 = −M−1[
∂M
∂q

q̈ +
∂C
∂q

q̇ +
∂G
∂q

+ K],

F2 = −M−1(
∂C
∂q̇

+ C),

F3 = −M−1K,

F4 = −F5 = J−1K.

Define observation vector as h(x) = [θT θ̇T]T = [xT
3 xT

4 ]
T, the partial differential

equation of the observation vector with respect to the states is

∂h(x)
∂x

= H(t) =
[

0 0 I 0
0 0 0 I

]
(41)

Considering (39)-(41), the EKF based on a conventional state variable defined by (38)
is expressed as

˙̂x = f (x̂, u) + L(t)[y(t)− h(x̂)] (42)

Ṗ(t)=F(t)P(t)+P(t)FT(t)+Q(t)−L(t)H(t)P(t) (43)

L(t) = P(t)HT(t)R−1(t) (44)

where x̂ is the estimation of x, u is defined by (8), y(t) = h(x) is the output, L(t) is a time-
varying matrix and denotes the Kalman filtering gain, P(t) is a positive definite symmetric
matrix and denotes the covariance under state x, Q(t) and R(t) are positive definite
symmetric matrices and denote the covariances of the process noise and observation
noise, respectively.

5.2. EKF with New State Variable

As presented, it is complicate to calculate the Jacobian matrix F(t) expressed by (40),
where large amounts of time-consuming calculations of partial derivatives with respect to
q and q̇ are needed.

To simplify the EKF algorithm, a new state variable definition is given in this paper as

x = [ZT ŻT θT θ̇T]T = [xT
1 xT

2 xT
3 xT

4 ]
T (45)

where q and q̇ are implicitly contained in Z and Ż, respectively.
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Now, the time derivative function f (x) of the state variable x can be expressed as

f (x) = ẋ =


Ż

−K[(M−1 + J−1)Z
+M−1(Cq̇ + G) + J−1u]

θ̇

J−1(u + Z)

 (46)

and the partial derivative of the state function with respect to the new states is obtained as

∂ f (x)
∂x

=F(t)=


0 I 0 0

−K(M−1 + J−1) 0 0 0
0 0 0 I

J−1 0 0 0

 (47)

After Z and Ż are observed by the proposed EKF with new state variable, we finally
find the estimations of q and q̇ through (3), respectively.

Remark 9. It can be found that, in the EKF with conventional state variable [23], q and q̇
are involved explicitly in the state variable x, which results in complicated calculations of the
corresponding partial derivatives, as well as computing Ṁ−1, Ċ and Ġ. While in the proposed EKF
with new state variable, instead of q and q̇, Z and Ż are adopted as the states, then the corresponding
partial derivatives of M−1, C and G are all zero, which improves the computing efficiency greatly.

6. Stability Analysis

The overall stability of the closed-loop system in terms of two singularly perturbed
subsystems and also whole system with the proposed EKF and RBFNN-based soft comput-
ing involved sliding mode control approach is analyzed by the following steps.

Step 1: The stability analysis of the slow subsystem.

Theorem 1. Consider the dynamics of the slow subsystem described by (30) with the proposed
sub-controller (36), it results in asymptotic convergence of the state and output tracking errors in
the sense that ||e||, ||ė|| → 0, as t→ ∞.

Proof. Considering the approximation error of the connecting weight value caused by RBF
based soft computing in slow subsystem, a Lyapunov function candidate V1 is defined as

V1 =
1
2

sT
_ss_s +

n

∑
i=1

1
2γi_s

W̃T
i_sW̃i_s (48)

where the approximation error of connecting weight in slow subsystem is defined as
W̃i_s = Ŵi_s −Wi_s. Clearly, V1 is positive definite.

Take the derivative of V1 with respect to time t, and substitute (30) and (36) into it,
we find

V̇1 = −sT
_s[ε_ssat(s_s) + B_ss_s] +

n

∑
i=1

W̃T
i_s(

1
γi_s

˙̂Wi_s − si_sφi_s) (49)

Substitute (35) into (49)

V̇1 = −sT
_s[ε_ssat(s_s) + B_ss_s] (50)

By recalling the definitions of sliding surface (19) and the reaching law (21) for slow
subsystems, as well as the monotonicity of saturation function sat(·), we find that V̇1 is
negative definite, and the slow subsystem is asymptotic stable in the sense that ||e||, ||ė|| →
0 as t→ ∞, due to the positive definiteness of V1 and the negative definiteness of V̇1.
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Step 2: The stability analysis of the fast subsystem.

Theorem 2. Consider the dynamics of the fast subsystem described by (31) with the proposed
sub-controller (37): if

2λmin(B_f)λmin(A_f)−
1
4

σ2
max(A_f) > 0 (51)

is satisfied, where λmin(·) and σmax(·) are the minimum eigenvalue and the maximum singular
value of matrix, respectively, then it results in asymptotic convergence of the state and output
tracking errors in the sense that ||η||, ||η̇|| → 0, as t→ ∞.

Proof. Considering the approximation error of the connecting weight value caused by RBF
based soft computing in fast subsystem, a Lyapunov function candidate V2 is defined as

V2 = µ−1[sT
_fs_f +

n

∑
i=1

1
γi_f

W̃T
i_fW̃i_f +

1
2
(A_fη)

T(A_fη)] (52)

where the approximation error of connecting weight in fast subsystem is defined
W̃i_f = Ŵi_f −Wi_f. Clearly, V2 is positive definite.

Substitute (23) and (31) into (52), then take the derivative of V2 with respect to the
fast-scaled time µ−1t, we find

V̇2 = 2sT
_f{A_fη̇− K[(M−1 + J−1)η+ J−1u_f] + δ_f}+

n

∑
i=1

2
γi_f

W̃T
i_f

˙̂Wi_f + sT
_f A_fη̇− η̇T A_fη̇ (53)

Substitute (37) and (35) into (53) in sequence, and we have

V̇2 ≤− 2sT
_fε_fsat(s_f)− [sT

_f η̇T]D1[sT
_f η̇T]T (54)

where

D1 =

[
2λmin(B_f) − 1

2 σmax(A_f)

− 1
2 σmax(A_f) λmin(A_f)

]
.

To ensure V̇2 is negative definite, together with considering the monotonicity of
saturation function sat(·), D1 should be positive definite, i.e., inequality (51) is to be
satisfied by proper selection of positive definite constant diagonal matrices A_f and B_f.
Thus the asymptotic stability of the fast subsystem is achieved if constraint condition (51)
is satisfied.

Step 3: The stability analysis of the whole system.
Note that, the slow subsystem (30) involved in Step 1 is an approximate model based

on (12), which is derived by assuming the joint stiffness coefficient k→ ∞, it is not qualified
to present the complete dynamics by (10). Thus, in the stability analysis of the whole system,
we need an updated expression of (30) from (10) with considering uncertainties of dynamics
model and disturbance of the torque control input:

¨̄q =−M−1(h_s + η+ Cq̇ + G) + δ̄_s (55)

where δ̄_s = M−1(∆Mq̈ + ∆Cq̇ + ∆G− d1).
Substitute (11) and (36) into (55), we find

¨̄q = ε_ssat(s_s) + B_ss_s + A_s(q̇d − q̇) + q̈d + δ̂_s −M−1η+ δ̄_s (56)



Actuators 2021, 10, 288 13 of 24

Theorem 3. Consider the dynamics of the whole system described by (55) and (31) with the
proposed sub-controller (8), (36) and (37), if the following inequalities

λmin(B_s)λmin(B_f)λ
2
min(A_f)−σ2

max(M−1) > 0 (57)

λ2
min(B_f)−

1
4

σ2
max(A_f) > 0 (58)

3
4

λmin(B_f)λ
3
min(A_f)− σ2

max(B_f)σ
2
max(A_f) > 0 (59)

are satisfied, then it results in asymptotic convergence of the whole system and the control objective
(17) is achieved.

Proof. Consider a Lyapunov function candidate V as

V = aV1 + bV2 (60)

where a and b are both positive constant. Similar to [29], we also select a = b = 1. It is easy
to find that V is positive definite.

Substitute (56), (23), (31), (37) into V̇ in sequence, we have

V̇ = V̇1 + V̇2 ≤ −sT
_sεsat(s_s)− 2sT

_fεsat(s_f)− [sT
_s ηT]D2[sT

_s ηT]T − [sT
_f η̇T]D3[sT

_f η̇T]T−[ηT η̇T]D4[η
T η̇T]T (61)

where

D2 =

[
λmin(B_s) − 1

2 σmax(M−1)

− 1
2 σmax(M−1) 1

4 λmin(B_f)λ
2
min(A_f)

]
,

D3 =

[
λmin(B_f) − 1

2 σmax(A_f)

− 1
2 σmax(A_f) λmin(B_f)

]
,

D4 =

[ 3
4 λmin(B_f)λ

2
min(A_f) σmax(B_f)σmax(A_f)

σmax(B_f)σmax(A_f) λmin(A_f)

]
.

It can be found that, V̇ will be negative definite if D2, D3 and D4 are all positive
definite, i.e., the inequalities (57)–(59) are to be satisfied by proper selection of positive
definite constant diagonal matrices A_f, B_s and B_f.

Thus, the whole system yields asymptotic stability through the positive definitiveness
of V and the negative definitiveness of V̇, and the control goal (17) is achieved.

Step 4: The stability analysis of the EKF with new state variable.
For the proposed EKF, we first expand f (x) and h(x) by

f (x)− f (x̂) = F(t)(x− x̂) +ϕ (62)

h(x)− h(x̂) = H(t)(x− x̂) + χ (63)

where ϕ and χ are the terms of the second and higher orders in (x− x̂).
We define the observation error as

ζ = x− x̂ (64)

and then, from (39), (42), (62) and (63), we find

ζ̇ = [F(t)− L(t)H(t)]ζ +ϕ− L(t)χ (65)

The proof of exponential stability of the proposed EKF is equivalent to certifying that
the differential Equation (65) for the observation error is exponentially stable at 0 [36]. To
facilitate the expressions, F, H, L, P and Q are used to represent F(t), H(t), L(t), P(t) and
Q(t), respectively.
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Theorem 4. Consider the nonlinear system of flexible-joint robot manipulator by (55), (31) and
the proposed EKF by (42)–(45), without loss of generality, let the following assumptions: |ϕ|| ≤
kϕ||ζ||2, ||χ|| ≤ kχ||ζ||2, ||H|| ≤ h̄, pI ≤ P ≤ p̄I, qI ≤ Q and rI ≤ R hold, where kϕ, kχ, h̄,
p, p̄, q and r are all positive constants, I is the identity matrix with the same dimensions as P, Q
and R, then there are positive constants ε, α and β such that the proposed EKF is exponentially
stable, i.e.,

||ζ(t)|| ≤ α||ζ(0)||e−βt (66)

holds for every t ≥ 0 and for every solution ζ(·) of (65) with ζ(0) ∈ Bε(Bε = υ ∈ R4n : ||υ|| ≤ ε).

Proof. Define Y as

Y = P−1(t) (67)

Consider a Lyapunov function candidate as

V3 = ζTYζ (68)

where Y is positive definite due to that P(t) is positive definite; therefore, the positive
definiteness of V3 is guaranteed.

After taking the time derivative of V3, considering PT = P, Ẏ = −YṖY , (43), (44) and (65),
we obtain

V̇3 = −ζT[YQY + HT(R−1)TH]ζ + (ϕ− Lχ)TYζ + ζTY(ϕ− Lχ) (69)

Note that the term HT(R−1)TH in (69) is positive definite, then we have

V̇3 ≤ [−
q

p̄2 + (
2kϕ

p
+

2h̄kχ

r
)||ζ||]||ζ||2 (70)

Hence, for all ||ζ|| ≤ ε′ with ε′ = min(ε,
rpq

4p̄2(rkϕ+ph̄kχ)
), where ε is defined in (66),

we have

V̇3(t) ≤ −
q

2p̄2 ||ζ(t)||
2 ≤ −

qp

2p̄2 V3(t) (71)

and the solution of (71) is

V3(t) ≤ V3(0)e
− qp

2p̄2 t
(72)

From (68) and (72), it leads to

||ζ(t)|| ≤
√

p̄
p
||ζ(0)||e

− qp

4p̄2 t
, (73)

i.e., the inequality (66) is achieved with α =
√

p̄
p and β =

qp
4p̄2 , and thus the exponential

stability of the EKF with new state variable is guaranteed.

Finally, the asymptotic stability of the whole system with the proposed EKF is achieved
if (51), (57)–(59), and the assumptions in Theorem 4 hold.
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7. Validation Example

The proposed scheme is verified on a two-link flexible-joint robot manipulator shown
in Figure 3. Its parameters are given as

M =

[
9.77 + 2.02 cos q2 1.26 + 1.01 cos q2
1.26 + 1.01 cos q2 1.12

]
,

C =

[
−1.01q̇2 sin q2 −1.01(q̇2 + q̇1) sin q2
1.01q̇1 sin q2 0

]
,

G =

[
79.38 sin q1 + 11.074 sin(q1 + q2)

11.074 sin(q2 + q1)

]
,

K = diag(10000, 10000), J = diag(0.1, 0.1),

and the model uncertainties ∆M, ∆C and ∆G set as 20% of M, C and G, respectively, as well
as the joint torque disturbances d1 and d2 set as diag(15, 15) N·m to the slow subsystem
and diag(5, 5) N·m to the fast subsystem during 5.5 s to 6.5 s.

Figure 3. Model of the flexible-joint robot manipulator.

Considering the stability constraints of the control system by (30) and (31), the parame-
ters in the proposed control scheme are finally set as A_s=diag(7, 7), B_s=diag(10, 10), ε_s=
diag(10, 10), A_f= diag(400,400), B_f= diag(250, 250), Kp= diag(1, 1), Kd =diag(0.065,
0.065), ε

′
= diag(0.0001, 0.0001), γ1_s=γ2_s=2000, γ1_f=γ2_f= 1, T1_s= T2_s =T1_f=T2_f=

[−1,−0.5, 0, 0.5, 1;−1,−0.5, 0, 0.5, 1], U1_s =U2_s= U1_f=U2_f= 3, and the saturation func-
tion sat(·) is selected to be arc tangent atan(·). The desired trajectories of two links are
given by

qld =
1

5π

[
sin(5πt + π

6 )
sin(5πt + π

7 )

]
(rad) (74)

7.1. Verification of the Proposed Sliding Mode Control Strategy

To verify the proposed scheme in presence of dynamics uncertainties and joint torque
disturbances under full-state feedback, comparisons between the proposed controller
without EKF (named as SMC+RBF) and the proposed controller without EKF or RBF
(named as SMC) are made, where two additional sets, i.e., diag(40, 40) and diag(50, 50) of
ε_s are added for controller SMC.

As shown in Figures 4–7, in controller SMC, when ε_s becomes larger, the influence of
uncertainty and disturbance on the system is smaller and the trajectory tracking accuracy of
the SMC becomes higher. However, the chattering phenomenon previously suppressed by
the proposed switching control becomes worse. Especially when the parameter is changed
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from 40 to 50, the trajectory tracking effect is not significantly improved, but the chattering
phenomenon is extremely deteriorated.

With RBFNN-based soft computing to avoid such problem, the controller SMC+RBF
shows superior tracking performance with smaller value of ε_s (which is reduced by 80%).
It is worth mentioning that the RBF-based soft computing can assist the proposed SMC to
better eliminate adverse effects caused by lumped uncertainties and achieve better control
performance through generating torque compensation of feedforward type as shown in
Figure 7, without increasing the value of ε_s or determining the bounds of the system
uncertainties and external disturbances.
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5.5 6 6.5
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Figure 4. Trajectory tracking error e.

Figure 5. Time history of the slow sliding surface s_s.
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Figure 6. Time history of the fast sliding surface s_f.

Figure 7. RBF compensation of torque input.

7.2. Verification of the Proposed EKF

To test the proposed EKF, comparisons to the EKF with conventional state variable [23]
were made, where the process noise and observation noise to every state variable of each
link were assumed to be independent and constant, i.e., Q = I, R = I, where I is the
identity matrix. The initial P is set as P(0) = I. In addition, the random noise within
amplitude of 0.001 rad is assumed to be mixed in the position observations of each link by
the proposed EKF with new state variables. The trajectories of two links to be observed are
given as

qd =
1

10π

[
sin(10πt)
sin(10πt)

]
(rad) (75)

Figures 8 and 9 (where the two EKFs are named as EKF-Conventional state and EKF-
New state for short) show the estimation results of the two EKFs for each link position. In
Table 1, the RMS value is defined as root mean square of the estimation (tracking) error
on a trip of time T (T = 0.6 s). The Computation period is the average time cost by EKF
computing for the two links in every sampling period (closed-loop cycle), on a laptop
platform equipped with Intel(R) Core(TM) i3 CPU M 380 @ 2.53 GHz, 4GB RAM, 32-bit
Windows OS.

The RMS values of the two EKF observers are very close to each other, both of them
are qualified to implement the observation with nearly equal dynamic performance. The
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computation period is shortened from 6.8 to 5.0 ms, and the efficiency increased by about
26%. That is, the proposed EKF is more efficient and requires a shorter computation period,
but without sacrificing the observation accuracy. Such a result was confirmed by large
amounts of tests with other different trajectories. As shown in Figures 10 and 11, the
controller involving the EKF-New state (named as SMC + RBF + EKF) can achieve almost
the same control performance as the controller SMC + RBF, and it can also alleviate the
torque vibration caused by chattering to a certain degree.

Table 1. Comparison of two EKFs.

EKF-Conventional State EKF-New State

RMS value (10−2 rad)
e1 0.951 0.998
e2 0.998 0.934
e 1.379 1.367

Computation period (ms) 6.8 5.0
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Figure 8. Position estimated by EKF of link 1.
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Figure 9. Position estimated by EKF of link 2.
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Figure 10. Trajectory tracking error e.

7.3. Controller Performance Comparisons

To evaluate the proposed scheme in presence of dynamics uncertainties and joint
torque disturbances, comparisons with the other two controllers are made. The controller
in [37] is a combination of the nonlinear feedforward control and the linear singular
perturbation control (named as SPC-FFC). Controller SMC+DO is the proposed controller
SMC combined with the disturbance observer in [38].

To perform overall quantitative evaluation of the controllers, together with the pre-
viously mentioned RMS value, we adopt another four criteria defined in [39]: Adjusting
time, Recovery time, Steady-state error and Maximum deviation.

As shown in Figure 12, in the presence of model uncertainties and joint torque dis-
turbances, the controller SPC+FFC with a feedforward term based on the accurate model,
presents a lower tracking accuracy than the other two controllers of SMC type. Due to
the feedforward compensation based on a disturbance observer, the switching gain of the
controller SMC+DO required needs to be set larger than the upper bound of the disturbance
estimation error, and thus that the tracking accuracy and strong robustness of the controller
as well as chattering attenuation can all be guaranteed.

As shown in Figures 12–15 and Table 2, with the feedforward torque compensation
caused by the proposed RBF compensator based on tracking error, the proposed con-
troller SMC+RBF+EKF cannot only achieve superior performance similar to that of the
controller SMC+DO, but also can improve the dynamic performance of the control system,
with shorter adjusting time and recovery time, and smaller maximum deviation, steady-
state error and RMS value, as well as better chattering attenuation. Furthermore, state
measurements of links are eliminated.

Remark 10. The simulation results obtained above can provide a priori judgments on real experi-
ments. In particular, this has important guiding significance for the practical application of SMC
and for addressing its chattering problem. Furthermore, the proposed controller with EKF-New
state provides a feasible solution for these robots without sensors on the link side to achieve the
closed-loop tracking control with neither position nor velocity measurements of links, instead of
consuming large amounts of hardware transformation costs.
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Table 2. Performance comparisons.

SMC + RBF + EKF SMC + DO SPC + FFC

Adjusting time (s) Link 1 0.771 0.948 1.377
Link 2 0.847 0.860 1.275

Recovery time (s) Link 1 0.199 0.213 1.773
Link 2 0.187 0.191 1.876

Steady-state error (10−4 rad) Link 1 0.38 1.8 22.6
Link 2 1.1 3.6 30.2

Maximum deviation (10−4 rad) Link 1 0.4 2.2 39
Link 2 1.3 4.3 72

RMS value (rad) e1 0.0558 0.0624 0.1666
e2 0.0458 0.0905 0.1840
e 0.0721 0.0859 0.2072
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Figure 11. Torque control input.
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8. Conclusions

This paper discusses sliding mode control and its chattering suppressing method
for flexible-joint robot manipulators with neither position nor velocity measurements of
links, within the frame of the singular perturbation theory. We have shown that, within
the framework of singular perturbation theory, the slow and the fast subsystems are
transformed into two typical tracking systems without calculating Z̈ or η̈. The slow
subsystem is to make q track qd, while the fast is to make Z track h0. This makes the
controller design easy and flexible. Furthermore, asymptotic stability of the whole control
system is proved by comprehensive and strict analysis.

The EKF with respect to a new state variable simplifies calculating the Jacobian matrix,
and is validated to be qualified to observe the position and velocity of links, with a nearly
equal dynamic performance with higher computing efficiency, in comparison to the EKF
with conventional state variable. After the smooth-saturation-function-contained reaching
law is dedicated in a proactive way to alleviate the inherent chattering internally in the
proposed SMC, online operational RBFNN-based soft computing as an external chattering-
suppressed method is validated to be effective to avoid requiring large switching gain
to cover the upper bound of the lumped uncertainties that may cause severe chattering.
This enables a superior dynamic performance without state measurements of links for the
proposed approach than the benchmark controllers with full-state feedback.

Experimental verification of the proposed SMC on physical platform will be pursued in
future work. Furthermore, future researches can attempt to extend the proposed SMC with
an NN-based soft computing strategy to robots via a data-driven way that is model-free to,
thus, omit the complicated process of identification and verification of model parameters.
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