Towards End-to-End Deep Learning Performance Analysis of Electric Motors
Abstract
:1. Introduction
2. FEA Analysis of IPMSMs
2.1. IPMSM Rotor Geometries in JMAG Designer
2.2. FEA Model Parameters
3. Preparing the Training Data
3.1. Arranging Rotor Images and Torque Curves for DL Training
3.2. Min-Max and Offset Torque Normalization Techniques
3.3. Data Balancing for Training and Testing
4. DL CNN Architectures and Training Parameters
4.1. Custom Simplistic Architecture
4.2. ResNets
4.3. DL CNN Training Parameters
4.4. Accuracy Metrics for Regression Models
5. DL CNN Torque Prediction Results
5.1. Comparison of Accuracy of Average Torque and Torque Curve Prediction by Different CNNs
5.2. Accuracy of Torque Curve Prediction
5.3. Analysis Time of CNNs and FEA
6. Discussion
6.1. Comparison of the Proposed End-to-End Method with Existing DL-Assisted Methods
6.2. Potential Application of DL Tools to Multiparameter Multiphysics Analysis
6.3. Current Limitations of DL Analysis Methods
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, H.I. Learning on robot skills: Motion adjustment and smooth concatenation of motion blocks. Eng. Appl. Artif. Intell. 2020, 91, 103619. [Google Scholar] [CrossRef]
- Fink, O.; Wang, Q.; Svensén, M.; Dersin, P.; Lee, W.-J.; Ducoffe, M. Potential, challenges and future directions for deep learning in prognostics and health management applications. Eng. Appl. Artif. Intell. 2020, 92, 103678. [Google Scholar] [CrossRef]
- Bousquet-Jette, C.; Achiche, S.; Beaini, D.; Law-Kam Cio, Y.S.; Leblond-Ménard, C.; Raison, M. Fast scene analysis using vision and artificial intelligence for object prehension by an assistive robot. Eng. Appl. Artif. Intell. 2017, 63, 33–44. [Google Scholar] [CrossRef]
- Mehta, P.; Bukov, M.; Wang, C.H.; Day, A.G.R.; Richardson, C.; Fisher, C.K.; Schwab, D.J. A high-bias, low-variance introduction to Machine Learning for physicists. Phys. Rep. 2019, 810, 1–124. [Google Scholar] [CrossRef]
- Yin, J.; Zhao, W. Fault diagnosis network design for vehicle on-board equipments of high-speed railway: A deep learning approach. Eng. Appl. Artif. Intell. 2016, 56, 250–259. [Google Scholar] [CrossRef]
- Dong, Y. Implementing Deep Learning for comprehensive aircraft icing and actuator/sensor fault detection/identification. Eng. Appl. Artif. Intell. 2019, 83, 28–44. [Google Scholar] [CrossRef]
- Chen, H.; Jiang, B.; Zhang, T.; Lu, N. Data-driven and deep learning-based detection and diagnosis of incipient faults with application to electrical traction systems. Neurocomputing 2020, 396, 429–437. [Google Scholar] [CrossRef]
- Carpenter, H.J.; Gholipour, A.; Ghayesh, M.H.; Zander, A.C.; Psaltis, P.J. A review on the biomechanics of coronary arteries. Int. J. Eng. Sci. 2020, 147, 103201. [Google Scholar] [CrossRef]
- Khan, A.; Mohammadi, M.H.; Ghorbanian, V.; Lowther, D. Efficiency map prediction of motor drives using Deep Learning. IEEE Trans. Magn. 2020, 56, 7511504. [Google Scholar] [CrossRef]
- Omari, M.A.; Almagableh, A.; Sevostianov, I.; Ashhab, M.S.; Yaseen, A.B. Modeling of the viscoelastic properties of thermoset vinyl ester nanocomposite using artificial neural network. Int. J. Eng. Sci. 2020, 150, 103242. [Google Scholar] [CrossRef]
- Soliman, H.M. Improve the performance characteristics of the IPMSM under the effect of the varying loads. IET Electr. Power Appl. 2019, 13, 1935–1945. [Google Scholar] [CrossRef]
- Strinić, T.; Silber, S.; Gruber, W. The flux-based sensorless field-oriented control of permanent magnet synchronous motors without integrational drift. Actuators 2018, 7, 35. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Zhang, G.; Li, G.; Zhang, B. Performance analysis and temperature field study of IPMSM for electric vehicles based on winding transformation strategy. IET Electr. Power Appl. 2020, 14, 1186–1195. [Google Scholar] [CrossRef]
- Madonna, V.; Giangrande, P.; Galea, M. Electrical power generation in aircraft: Review, challenges, and opportunities. IEEE Trans. Transp. Electrif. 2018, 4, 646–659. [Google Scholar] [CrossRef]
- Circosta, S.; Galluzzi, R.; Bonfitto, A.; Castellanos, L.M.; Amati, N.; Tonoli, A. Modeling and validation of the radial force capability of bearingless hysteresis drives. Actuators 2018, 7, 69. [Google Scholar] [CrossRef] [Green Version]
- Ilka, R.; Alinejad-Beromi, Y.; Yaghobi, H. Techno-economic design optimisation of an interior permanent-magnet synchronous motor by the multi-objective approach. IET Electr. Power Appl. 2018, 12, 972–978. [Google Scholar] [CrossRef]
- You, Y.M. Multi-objective optimal design of permanent magnet synchronous motor for electric vehicle based on deep learning. Appl. Sci. 2020, 10, 482. [Google Scholar] [CrossRef] [Green Version]
- Liang, L.; Liu, M.; Martin, C.; Sun, W. A deep learning approach to estimate stress distribution: A fast and accurate surrogate of finite-element analysis. J. R. Soc. Interface 2018, 15, 20170844. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Ghorbanian, V.; Lowther, D. Deep learning for magnetic field estimation. IEEE Trans. Magn. 2019, 55, 7202304. [Google Scholar] [CrossRef]
- Sasaki, H.; Igarashi, H. Topology optimization accelerated by deep learning. IEEE Trans. Magn. 2019, 55, 7401305. [Google Scholar] [CrossRef] [Green Version]
- Doi, S.; Sasaki, H.; Igarashi, H. Multi-objective topology optimization of rotating machines using deep learning. IEEE Trans. Magn. 2019, 55, 7202605. [Google Scholar] [CrossRef]
- Asanuma, J.; Doi, S.; Igarashi, H. Transfer Learning through Deep Learning: Application to Topology Optimization of Electric Motor. IEEE Trans. Magn. 2020, 56, 7512404. [Google Scholar] [CrossRef]
- Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Li, F-F. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Google Open Source, Open Images Dataset. Available online: https://opensource.google/projects/open-images-dataset (accessed on 22 May 2020).
- Kusne, A.G.; Gao, T.; Mehta, A.; Ke, L.; Nguyen, M.C.; Ho, K.M.; Antropov, V.; Wang, C.Z.; Kramer, M.J.; Long, C.; et al. On-the-fly machine-learning for high-throughput experiments: Search for rare-earth-free permanent magnets. Sci. Rep. 2014, 4, 6367. [Google Scholar] [CrossRef] [PubMed]
- Gusenbauer, M.; Oezelt, H.; Fischbacher, J.; Kovacs, A.; Zhao, P.; Woodcock, T.G.; Schrefl, T. Extracting Local Switching Fields in Permanent Magnets Using Machine Learning. 2019. Available online: http://arxiv.org/abs/1910.09279 (accessed on 6 July 2020).
- Exl, L.; Fischbacher, J.; Kovacs, A.; Özelt, H.; Gusenbauer, M.; Yokota, K.; Shoji, T.; Hrkac, G.; Schrefl, T. Magnetic microstructure machine learning analysis. J. Phys. Mater. 2018, 2, 014001. [Google Scholar] [CrossRef]
- Kwang, T.C.; Jamil, M.L.M.; Jidin, A. Torque improvement of PM motor with semi-cycle stator design using 2D-finite element analysis. Int. J. Electr. Comput. Eng. 2019, 9, 5060–5067. [Google Scholar] [CrossRef]
- JSOL Corporation, JMAG Designer. Available online: https://www.jmag-international.com/products/jmag-designer/ (accessed on 4 June 2020).
- Barmada, S.; Fontana, N.; Sani, L.; Thomopulos, D.; Tucci, M. Deep Learning and Reduced models for fast optimization in electromagnetics. IEEE Trans. Magn. 2020, 56, 7513604. [Google Scholar] [CrossRef]
- Gabdullin, N.; Ro, J.S. Novel Non-linear transient path energy method for the analytical analysis of the non-periodic and non-linear dynamics of electrical machines in the time domain. IEEE Access 2019, 7, 37833–37854. [Google Scholar] [CrossRef]
- PyTorch—An Open Source Machine Learning Framework. Available online: https://pytorch.org/ (accessed on 26 May 2020).
- Numpy—Open Source Numerical Computation Library. Available online: https://numpy.org/ (accessed on 28 May 2020).
- Sayed, E.; Yang, Y.; Bilgin, B.; Bakr, M.H.; Emadi, A. A comprehensive review of flux barriers in interior permanent magnet synchronous machines. IEEE Access 2019, 7, 149168–149181. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, C.; Yu, J.; Du, P.; Li, L. Analytical model of magnetic field of a permanent magnet synchronous motor with a trapezoidal halbach permanent magnet array. IEEE Trans. Magn. 2019, 55, 8105205. [Google Scholar] [CrossRef]
- Grus, J. Data Science from Scratch; O’Reilly: Sebastopol, CA, USA, 2015; ISBN 978-1-491-90142-7. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with Deep Convolutional Neural Networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Sun, J. Convolutional neural networks at constrained time cost. In Proceedings of the CVPR, Boston, MA, USA, 7–12 June 2015; pp. 5353–5360. [Google Scholar]
- Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. In Proceedings of the ICLR, San Diego, CA, USA, 7–9 May 2015; pp. 1–15. [Google Scholar]
- Duchi, J.C.; Hazan, E.; Singer, Y. Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 2011, 12, 2121–2159. [Google Scholar]
- CUDA—A parallel Computing Platform. Available online: https://developer.nvidia.com/cuda-zone (accessed on 31 May 2020).
- Myttenaere, A. De; Golden, B.; Grand, B. Le; Rossi, F.; Myttenaere, A. De; Golden, B.; Grand, B. Le; Rossi, F. Mean Absolute percentage error for regression models. Neurocomputing 2016, 192, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Ruder, S. An Overview of Multi-Task Learning in Deep Neural Networks. 2017. Available online: http://arxiv.org/abs/1706.05098.
- Tan, Z.; De, G.; Li, M.; Lin, H.; Yang, S.; Huang, L.; Tan, Q. Combined electricity-heat-cooling-gas load forecasting model for integrated energy system based on multi-task learning and least square support vector machine. J. Clean. Prod. 2020, 248, 119252. [Google Scholar] [CrossRef]
- Li, M.; Chen, D.; Liu, S.; Liu, F. Grain boundary detection and second phase segmentation based on multi-task learning and generative adversarial network. Measurement 2020, 162, 107857. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
Number of poles | 4 | Number of slots | 24 |
PM grade | N35 | Coil current | 3 A |
Rotor inner diameter | 13.6 mm | Stator inner diameter | 47.7 mm |
Rotor outer diameter | 46.7 mm | Stator outer diameter | 93.4 mm |
PM position | 10 ÷ 20 mm | Slot depth | 12 mm |
PM thickness | 1 ÷ 4 mm | Slot opening width | 0.85 mm |
PM width | 2 ÷ 8 mm | Tooth width | 2.8 mm |
Slit depth | 0.5 ÷ 3 mm | Tooth depth | 0.7 mm |
Slit angle | 30 ÷ 150 deg | Back iron width | 32 mm |
Characteristic | Simplistic CNN | ResNet-10 | ResNet-18 | ResNet-50 |
---|---|---|---|---|
ResNet blocks | - | Basic, [1,1,1,1] | Basic, [2,2,2,2] | Bottleneck, [3,3,4,6] |
Conv. layers | 3 | 9 | 17 | 49 |
Total layers | 5 | 10 | 18 | 50 |
Num. param. | 0.89 m | 5.8 m | 11.4 m | 23.9 m |
CNN Architecture | Average τ, conv. | AVERAGE τ, cust. | τ Curve, conv. | τ Curve, cust. |
---|---|---|---|---|
Simplistic | 20 | 29 | 34 | 64 |
ResNet-10 | 29 | 58 | 59 | 89 |
ResNet-50 | 36 | 60 | 62 | 93 |
Accuracy Metric | Simplistic CNN | ResNet-10 | ResNet-18 | ResNet-50 |
---|---|---|---|---|
A1 1 | 64 | 88 | 90 | 93 |
A1 2 | 30 | 86 | 92 | 96 |
A2, 20% marg. 1 | 24 | 82 | 89 | 92.5 |
A2, 20% marg. 2 | 10 | 67 | 74 | 86 |
A2, 10% marg. 1 | 0 | 63 | 81 | 90 |
A2, 10% marg. 2 | 0 | 57 | 66 | 77 |
Architectures | Single Sample | Complete Dataset |
---|---|---|
JMAG FEA | 180 s | 200 h |
Simplistic CNN | 1.2 ms | 5 s |
ResNet-10 | 6.2 ms | 25 s |
ResNet-18 | 10.5 ms | 42 s |
ResNet-50 | 14.5 ms | 58 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabdullin, N.; Madanzadeh, S.; Vilkin, A. Towards End-to-End Deep Learning Performance Analysis of Electric Motors. Actuators 2021, 10, 28. https://doi.org/10.3390/act10020028
Gabdullin N, Madanzadeh S, Vilkin A. Towards End-to-End Deep Learning Performance Analysis of Electric Motors. Actuators. 2021; 10(2):28. https://doi.org/10.3390/act10020028
Chicago/Turabian StyleGabdullin, Nikita, Sadjad Madanzadeh, and Alexey Vilkin. 2021. "Towards End-to-End Deep Learning Performance Analysis of Electric Motors" Actuators 10, no. 2: 28. https://doi.org/10.3390/act10020028
APA StyleGabdullin, N., Madanzadeh, S., & Vilkin, A. (2021). Towards End-to-End Deep Learning Performance Analysis of Electric Motors. Actuators, 10(2), 28. https://doi.org/10.3390/act10020028