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Abstract: The magnetic circuit of existing linear force motors does not consider the issue of energy
utilization of permanent magnets, and the structure is complicated. To achieve high energy utilization
and simplify the structure, this paper presents a novel magnetic circuit topology for the linear
force motors of electro-hydraulic servo-proportional valves. In order to rapidly and accurately
calculate the static characteristics of the force motor, an analytical model is established by using the
equivalent magnetic circuit method. The model comprehensively considers the magnetic leakage
effect, edge effect, and permeability nonlinearity. A prototype of the force motor is designed and
manufactured, and a special experimental platform is built. The prototype force motor has a linear
force-displacement characteristic and the output force increases with the increase of the excitation
currents, which can reach about 41 N at 2 A. This indicates that it is suitable as an electro-mechanical
converter for electro-hydraulic servo-proportional valves. Moreover, the analytical model is used
to perform parameter optimization and calculate the magnetic flux density in the working air gap
and the force-displacement characteristics under different excitation currents. The results are in
good agreement with the electromagnetic field finite element simulation and experimental results.
They indicate that the analytical model can rapidly and accurately predict the static characteristics
of the force motor. The research work provides good reference means for the design of magnetic
circuit topology with consideration of the high energy utilization of permanent magnets, and also
the accurate analytical modeling of valve electro-mechanical converters.

Keywords: linear force motor; magnetic circuit topology; energy utilization; analytical modeling

1. Introduction

Since its advent, electro-hydraulic control technology has occupied a high-end position
in electro-mechanical transmission and control technology with its high power-density,
large output force, and excellent static and dynamic characteristics. Therefore, it is widely
used in aerospace technology, mining machinery, large power stations, steel and material
testing machines, and other key applications [1–3]. As the core control components, the
electro-hydraulic servo valve and proportional valve play a decisive role in the performance
of the entire system [4,5]. The servo valve has excellent static and dynamic characteristics
since it was mainly invented for the aviation industry. However, it has shortcomings of high
manufacturing cost, complicated structure, and pilot stage leakage [6,7]. The proportional
valve features a simple structure, excellent anti-pollution ability, and low cost, but it has
disadvantages of low dynamic response, large hysteresis, and is usually used for open-loop
control [8,9]. In recent years, the servo-proportional valve has appeared [10,11]. This
valve features a direct action mechanism actuated by a linear electro-mechanical converter
(LEMC), and the spool position is a closed-loop controlled by the displacement sensor. The
servo-proportional valve has performance similar to the servo valve, while inheriting the
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advantages of a simple structure and good stability of the proportional valve. Therefore, it
is increasingly popular in the field of industrial servo control.

As the conversion interface between electrical and mechanical energy, the electro-
mechanical converter (EMC) has an important influence on the characteristics of the
servo and proportional valves. EMC can be further divided into LEMC and rotary EMC.
LEMC mainly includes moving the coil motor, proportional solenoid, and linear force
motor (LFM). The working principle of moving the coil motor is similar to that of the
voice coil in a loudspeaker, where a moving coil is placed in the external magnetic field
produced either by winding or a permanent magnet. When energized, the moving coil
is subjected to the magnetic force proportional to the current. The moving coil motor
features high linearity and a large stroke and has excellent dynamic characteristics under
large currents. However, a high current will cause serious heating, which usually requires
additional cooling measures. For example, the Hitachi moving coil servo valve adopts
a high current to ensure its dynamic characteristics, while compressed air is required to
forcibly dissipate heat [12–14]. The proportional solenoid is widely used as an EMC for
electro-hydraulic proportional valves. Figure 1a gives its magnetic circuit topology. To
realize proportional control, the magnetic circuit of the proportional solenoid is deliberately
divided into axial and radial components using a magnetic isolation ring, and then re-
superposed to obtain the flat force-displacement characteristics. The proportional solenoid
features a large thrust force and is easy to design as a “wet type” LEMC with high-
pressure oil-resistant ability. However, it was originally developed from the solenoid
electromagnet. Thus, it has a similar structure to the cylindrical shape armature, which
results in large inertia of the armature component and thus a slower dynamic response.
Since the welding of the magnetic isolation ring is cumbersome and quality issues such as
air holes are prone to occur, people have also explored magnetic circuit topology without the
magnetic isolation ring [15,16]. With the increasing demand for energy conservation, people
have put forward higher requirements for the EMC’s efficiency [17,18]. The magnetic
circuit of pure electric excitation has disadvantages of high power consumption and
prominent coil heating problems, which seriously affect the service life. Introducing a
permanent magnet to decrease the excitation level of the control coil and therefore reduce
heat generation and power consumption has become mainstream for the design of modern
electro-mechanical converters. Moog’s LFM is a typical representative in this regard. Figure
1b illustrates its magnetic circuit topology. Compared with the proportional solenoid, the
configuration of the LFM features a single coil and double permanent magnet to constitute
a differential magnetic circuit, which not only has large thrust force and fast dynamic
response, but also reduces the control current and coil heating [19]. Therefore, the LFM
has been successfully used as the EMC of Moog’s D633/634 series servo-proportional
valves. Moreover, people have also investigated the novel magnetic circuit topology of
the LFM. Two typical configurations are Li’s LFM [20] and Ding’s LFM [21], as shown in
Figure 1c,d, respectively. The former inherits the topology of Moog’s LFM. By reducing
the length of the axial non-working air gap and introducing the extra radial air gap, its
power consumption can be reduced by 36%. The latter is more similar to a bi-directional
proportional solenoid structure, which is characterized by a single permanent magnet and
double-coil winding. However, these LFM configurations have common shortcomings:
firstly, their structure is too complicated, with the yoke being composed of multiple parts;
secondly, the existence of radial working air gaps greatly increases the coaxiality between
armature and yoke components, which improves the manufacturing cost.

In addition to electro-mechanical converters based on electromagnetic principles,
some novel valves utilize modern functional materials, such as piezoelectric crystals [22],
giant magnetostrictive material [23], magnetorheological fluid, and shape memory alloy as
LEMC [24,25], which usually feature a very fast dynamic response of several kHz. However,
the properties of these materials are greatly affected by temperature variation and nonlinear
hysteresis. Also, it is usually necessary to design a mechanical amplification mechanism to
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compensate for the disadvantages of the small working stroke, which increases the whole
weight and volume.
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Figure 1. Four different magnetic circuit topologies. (a) The proportional solenoid; (b) Moog’s LFM; (c) Li’s LFM;
(d) Ding’s LFM.

Rare-earth permanent magnets are non-renewable strategic resources [26,27], and
some permanent magnets such as samarium cobalt permanent magnets are relatively
expensive. Therefore, they possess important economic implications for improving the
energy utilization of permanent magnets, especially for large-scale applications like valve
electro-mechanical converters. Figure 2 shows the schematic diagram of the magnetic
potential contribution to the external magnetic circuit of permanent magnets. Curves
1, 2, and 3 are the demagnetization curves of permanent magnet A, permanent magnet
B, and permanent magnet C, respectively, and curve 4 is the load curve of the external
magnetic circuit; lm1 is the length of permanent magnet B and permanent magnet C in
the magnetizing direction; lm2 is the length of permanent magnet A in the magnetizing
direction; Am1 is the cross-section area of permanent magnet A and permanent magnet
B; Am2 is the cross-section area of permanent magnet C; Mc1 is the magnetic potential of
permanent magnet B and permanent magnet C; Mc2 is the magnetic potential of permanent
magnet A. Although the length of permanent magnet A along the magnetization direction
is twice as long as that of permanent magnet B, the magnetic potential contributed to
the external magnetic circuit only increases by ∆M1. In addition, the cross-section area
of permanent magnet C is twice as much as permanent magnet B, and the magnetic
potential contributed to the external magnetic circuit increases by ∆M2. Obviously, ∆M2
is greater than ∆M1. This is because, when the length of the permanent magnet in the
magnetizing direction increases, not only does the magnetic potential provided to the
external magnetic circuit increase, but also the magnetic reluctance increases proportionally;
when the cross-section area of the permanent magnet increases, although the magnetic
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potential provided to the external magnetic circuit does not change, the magnetic resistance
decreases significantly. In addition, modern electro-mechanical converters generally work
with very small air gaps, which brings about a steep slope of the load curve, as shown
in Figure 2. This indicates that, in order to improve magnetic energy utilization and
save materials, the permanent magnet should be designed as a flat shape with a larger
cross-section area, where the dimension in the magnetizing direction shall be as small
as possible.
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Figure 2. The magnetic potential contribution to the external magnetic circuit of permanent magnets.

However, for the existing magnetic circuit topology of LFMs, the issue of the energy
utilization of permanent magnets was not properly considered. For Moog’s LFM and
Li’s LFM (Figure 1b,c), the permanent magnets are both designed as axial magnetized
ring-shaped structures. Thus, the outer and inner diameters of such permanent ring
magnets are limited by both the cylindrical armature and excitation winding. For a fixed
volume, this would result in a small radius difference between the inner and outer ring, and
therefore large axial dimensions (magnetizing direction). This would result in low magnetic
energy utilization. For Ding’s LFM, it is impossible to further reduce the dimension of the
permanent magnet in the magnetizing direction; otherwise, there will be no space for the
control coils.

To achieve high energy utilization and also simplify the structure, this paper presents
a novel magnetic circuit topology for the LPM of electro-hydraulic servo-proportional
valves, where the structural simplicity and energy utilization of the permanent magnet
are properly considered together so that the magnetic potential contributed to the external
magnetic circuit can be maximized as much as possible. The rest of this paper is organized
as follows: in Section 2, the configuration and working principle of the novel linear force
motor (NLFM) are introduced. In Section 3, an accurate analytical model of the NLFM
is established by using the equivalent magnetic circuit method. The model comprehen-
sively considers the magnetic leakage effect, edge effect, and permeability nonlinearity. In
Section 4, finite element simulation is used to verify the working principle of the NLFM,
and also to study the influence of crucial parameters on its performance. In Section 5, a
prototype of the NLFM is designed and manufactured, and a special experimental platform
is built to test its static characteristics. The experimental results are then compared with
both the analytical results and FEM simulation. Besides, the main features of NLFM and
several LFM configurations from the literature are compared and discussed. Finally, some
conclusions of this work are drawn in Section 6.
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2. Configuration and Working Principle

Figure 3 shows the structural configuration of the NLFM, which is composed of
the yoke component and armature component. The yoke component is a holistic truss
structure with an excitation coil wound around its middle beam. The armature component
is composed of a permanent magnet and two claw-pole-shaped armatures. To improve
energy utilization, the permanent magnet is designed as a flat rectangular structure where
the magnetizing direction coincides with its height direction. Thus, the dimension in the
magnetizing direction can be kept as small as possible. Each armature has two pole shoes.
The permanent magnet is embedded between the upper and low armatures to form the
armature component, where the four pole shoes are distributed at 90◦ diagonally apart.
One end of the shaft is fixed between the permanent magnet and two armatures, and the
other end is inserted into a linear bearing. The spring is used to convert the output force
into linear displacement.
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Figure 3. The structural configuration of the NLFM. (a) A blow-up view of 3D parts; (b) the 2D
section view.

Figure 4 shows the magnetic circuit topology of the NLFM, where the magnetizing
direction of the permanent magnet is the positive direction of the Z axis. The permanent
magnet magnetizes the upper and lower armatures as the N pole and S pole, respectively.
Four working air gaps of the same length, δ1, δ2, δ3 and δ4, are formed between the armature
component and the yoke. When the control coil is de-energized, the armature is in the initial
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equilibrium position, and the lengths of the four air gaps are equal, as shown in Figure 4a.
When the control coil is energized, the control flux generated by the coil and the polarized
flux produced by the permanent magnet start to interact, where the magnetic flux of δ3 and
δ4 is superposed and therefore enhanced, and the magnetic flux of δ1 and δ2 is neutralized
and thus weakens. This causes the NLFM to generate a downward electromagnetic output
force whose magnitude and direction can be adjusted by controlling the current, as shown
in the Figure 4b.
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3. Analytical Modeling of NLFM
3.1. Equivalent Magnetic Circuit Modeling

FEM simulation can accurately calculate the magnetic fields, but the whole process
is computationally expensive. Varying the design parameters usually requires the model
to be reconstructed. In this paper, in order to rapidly and accurately calculate the static
characteristics of the NLFM, an analytical model is proposed by using the equivalent
magnetic circuit method. The model comprehensively considers the magnetic leakage
effect, edge effect, and permeability nonlinearity.

3.1.1. Modeling of Permanent Magnet

Figure 5 shows the schematic of the permanent magnet and its demagnetization curve,
respectively, where Am is the flat surface area of the permanent magnet; lm is the length of
the magnetization direction; the Br − Hc line is the demagnetization curve of permanent
magnet; Kw(Hm, Bm) is the operating point on the permanent magnet demagnetization
curve; the slope of the demagnetization curve tanθ represents the permeability µm; Hc is the
coercive force; Br is the residual magnetic flux density. Figure 6 shows the equivalent mag-
netic circuit model of the permanent magnet, where Rm is the internal magnetic reluctance
of the permanent magnet; φm is the magnetic flux generated by the permanent magnet; M0
is the magnetic potential generated by the permanent magnet; M is the magnetic potential
provided to the external magnetic circuit, namely the polarized magnetic potential.
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The permeability µm can be written as

µm = tanθ =
Br

Hc
=

Br − Bm

Hm
(1)

where Hm and Bm are the magnetic flux density and the magnetic field intensity at point of
Kw, respectively.

From Equation (1), we have {
Hcµm = Br

Hm = Hc − Bm
Br

Hc
(2)

The relationship between the φm and the Bm can be written as

Bm =
φm

Am
(3)

Combining Equations (2) and (3), the Hm can be written as

Hm = Hc −
(

φm

µm Am

)
(4)

According to Equation (4), the M can be written as

M = Hmlm = Hclm − φmlm
µm Am

(5)

Therefore, the M0 can be written as

M0 = Hclm (6)

The Rm can be written as

Rm =
lm

µm Am
(7)

By combining Equations (5)–(7), we can have

M + Rmφm = M0 (8)
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Equation (8) shows that the magnetic potential generated by the permanent magnet
can be divided into two parts: one is provided to the external magnetic circuit, and the
other is consumed by the internal reluctance of the permanent magnet itself.

3.1.2. Analysis of Air Gap Reluctance

The reluctance of the working air gap has a crucial influence on the calculation
accuracy of the entire magnetic field of NLFM. When the magnetic flux flows through the
air gaps, it will diffuse. Such phenomena can be called edge effects. When the length of
the air gap increases, the ratio of the diffused magnetic flux to the total air gap magnetic
flux will also increase, and its influence cannot be ignored. According to the distribution
of the air gap magnetic fields between the poles of yoke and armatures, the entire air gap
magnetic field can be segmented into several magnetic flux tubes [28], as shown in Figure 7,
where the Ra–Ri are reluctances of diffused flux tubes, and the Rx is the reluctance of main
flux tubes. The reluctance of these flux tubes can be calculated by the relevant formulas
listed in Table 1.

Therefore, the reluctance of the air gap Ragx with consideration of the edge effect can
be written as

Ragx =
1

1
Rx

+ 4 1
Ra

+ 4 1
Rb

+ 2 1
Rc

+ 2 1
Rd

+ 1
Rf

+ 1
Rg

+ 1
Rh

+ 1
Ri

(9)

where, the Ra–Ri are reluctances of diffused flux tubes and the Rx is the reluctance of main
flux tubes, as shown in Table 1.
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Table 1. Reluctance calculation of segmented magnetic flux tubes [28].

Reluctance Calculation Formula Shape

Ra Ra =
Lδpa

µ0Sδpa
= 4

µ0m
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Furthermore, reluctance of the air gap Ragx without consideration of edge effect can
be written as

Ragx = Rx =
δ

µ0 Aag
(10)

By solving Equation (9), the reluctances Rag1, Rag2, Rag3 and Rag4 of the air gaps δ1, δ2,
δ3 and δ4 can be obtained as shown in Figure 8, where the blue line shows the reluctance
without consideration of the edge effect, and the red line illustrates the reluctance with
consideration of the edge effect. The parameters used for the reluctance calculation are
listed in Table 2. It can be seen that the result of the red line is much smaller than that of
the blue line, which verifies the necessity for considering the edge effect in the magnetic
circuit calculation.
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Table 2. The parameters used for the calculation of reluctance.

Main Parameters Value

Initial length of air gap g = 1.6 mm
The length of air gap δ = (g − x) mm

The distance that the scattered magnetic flux extends
to the sidewall of the soft magnet material m = 1.5δ mm

Air permeability µ0 = 4π × 10−7 (H/m)

The length of the flux tube

Lc = 10 mm
Ld = 10 mm
Le = 10 mm
Lf = 15 mm
Lg = 15 mm
Lh = 15 mm
Li = 15 mm
Lw = 10 mm
Lh = 15 mm

From Figure 8, it can be seen that the variation of reluctance with the edge effect
has a slight nonlinear relationship with the length of the air gap. For convenience, in
the following analysis, they can be fitted into linear curve, as shown by the green line in
Figure 8, where the maximum difference does not exceed 3%. Therefore, the fitted linear
expression can be written as{

Rag1 = Rag2 = (kx + 1)Rg
Rag3 = Rag4 = (−kx + 1)Rg

(11)

where k = 0.478 × 103 (1/m); Rg is the magnetic reluctance of the air gap when the
armature is in the middle position, and Rg = 5.75 × 106 H.

3.1.3. Equivalent Magnetic Circuit Modeling

The leakage flux from the permanent magnet and control coil has a great influence
on magnetic circuit analysis, which would lead to inaccuracy in quantitative analysis.
In this paper, the concept of the utilization ratio of magnetic flux is introduced to the
phenomenon of leakage flux. Figure 9 shows the equivalent magnetic circuit diagram of
NLFM considering both the edge effect and the magnetic leakage. The leakage flux can be
written as

φlm = (1 − α) φ5 (12)

φlc = (1 − β) φ7 (13)
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where α and β are the utilization ratio of flux generated by the permanent magnet and the
control coil, respectively; φlm and φlc are the leakage flux of the permanent magnet and the
control coil, respectively.
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The reluctances of the remaining magnetic circuit of NLFM can be expressed as
Rac =

lac
µ1 Aac

Raf =
laf

µ1 Aaf

Ry =
ly

µ1 Ay

Rm = lm
µm Am

(14)

where lac is the length of the armature claw; laf is the length of the armature’s main plane;
ly is the total length of the yoke; µ is the magnetic permeability of soft magnetic material of
the armature and yoke; Aac is the area of the magnetic pole face of the armature claw; Aaf
is the contact area between the armature’s main plane and the permanent magnet; Ay is
the cross-sectional area of the armature along the vertical magnetic flux direction.

In the equivalent magnetic circuit modeling, the magnetic reluctance of the armature,
the yoke, and the air gap are similar to the resistance, the magnetic potential of the
permanent magnet and the control coil is similar to the voltage, and the magnetic flux
of each circuit is similar to the current. Therefore, using Kirchhoff’s Law of current
and voltage, the equivalent magnetic circuit model of the NLFM can be solved, and the
following equations can be obtained

αφ5 = φ1 + φ9
αφ5 = φ4 − φ8
αφ6 = φ3 − φ9
βφ7 = φ4 − φ1
βφ7 = φ3 − φ2

M = φ1R1 + φ4R4 + φ5Rm
M = φ2R2 + φ3R3 + φ6Rm

Nci = φ7Rp + φ9Raf + φ4R4 − φ1R1
Nci = φ7Rp + φ8Raf + φ3R3 − φ2R2

(15)
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where Nc is the number of turns of control coil; i is the excitation current; Rp, R1, R2, R3
and R4 can be further written as 

Rp = 1
1

Rac +
1

Re
R1 = Rp + Rag1
R2 = Rp + Rag2
R3 = Rp + Rag3
R4 = Rp + Rag4

(16)

3.2. Analysis of Nonlinear Permeability

Both the armature and the yoke of NLFM are made of soft magnetic material DT4,
whose permeability µ will vary with the magnetic flux density B. This leads to a nonlinear
relationship between B and H, as shown in Figure 10. Therefore, in order to obtain a high-
accuracy analytical model, the nonlinearity of permeability must be taken into account.
According to the B-H curve of DT4 and Equation (14), the non-linear value of µ is iteratively
calculated, as shown in Figure 11.
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Figure 11. The iterative steps for solving nonlinear magnetic circuit equations.

3.3. Electromagnetic Force Calculation

According to Equation (14) and the diagram of the equivalent magnetic circuit
(Figure 9), it can be seen that when the coil is not energized, the armature is in the middle
position, and the magnetic flux of the working air gap φg can be written as

φg =
αM

2αRp + 2αRg + Rm
(17)
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Similarly, by only considering the magnetic field generated by the control coil, the
corresponding magnetic flux of the working air gap φc can be obtained

φc =
βNci

2Ry + 2βRg + 2βRp + βRaf
(18)

Due to the symmetry of the magnetic circuit, we can have
Rag1 = Rag2
Rag3 = Rag4

φ1 = φ2
φ3 = φ4

(19)

According to Equations (15) and (19), the following equation can be written as
φ5 = φ6 = φ1+φ3

2α

φ7 = φ3−φ1
β

φ8 = φ9 = φ3−φ1
2

(20)

According to Equation (15), the polarized magnetic potential and the controlled
magnetic potential of the NFLM can be written as

M = φ3

[
Rp + (−kx + 1)Rg +

Rm

2α

]
+ φ1

[
Rp + (kx + 1)Rg +

Rm

2α

]
(21)

Nci = φ3

[
Rp + (−kx + 1)Rg +

Ry

β
+

Raf
2

]
− φ1

[
Rp + (kx + 1)Rg +

Ry

β
+

Raf
2

]
(22)

The total flux at the four air gaps can thus be obtained from Equations (15)–(20)

φ1 = φ2 =

[(
1 −

2βkxRg

2Ry + 2βRg + 2βRp + βRaf

)
φg +

(
2αkxRg

2αRp + 2αRg + Rm
− 1
)

φc

]
γ

γ − k2x2 (23)

φ3 = φ4 =

[(
1 +

2βkxRg

2Ry + 2βRg + 2βRp + βRaf

)
φg +

(
2αkxRg

2αRp + 2αRg + Rm
+ 1
)

φc

]
× γ

γ − k2x2 (24)

The constant γ in Equations (22) and (23) can be written as

γ =

(
2αRp + 2αRg + Rm

)(
2Ry + 2βRg + 2βRp + βRaf

)
4αβR2

g
(25)

The length of the working air gap g is very small, so the magnetic flux of the working
air gap can be regarded as uniformly distributed. According to Maxwell’s equations, the
total output force of NLFM can be written as

F = 2(F3 − F1) =
1

µ0 Aag

[
φ3

2 − φ1
2
]

(26)

where F1 and F3 are the electromagnetic force generated by the air gap δ1 and δ3, respectively.
Substituting Equations (23) and (24) into (26), we can have

F =

[
Kf

(
1 + ξ2ηk2x2

)
i + Km

(
1 + η

φ2
c

φ2
g

)
x

](
γ

γ − k2x2

)2
(27)

where Kf, Km, ξ and η can be written as
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Kf =

1
g φgNcξ

Km = 2Rgk 1
g φ2

gξ

ξ =
2Rgφc

Nci

η =
Nciφg
φc M

(28)

Equations (1)–(27) constitute the full analytical model of NLFM, which will be used to
perform parameter optimization, calculate force-displacement characteristics and magnetic
flux densities in the following analysis.

4. Finite Element Simulation

Though computationally expensive, the finite element method can directly calculate
the magnetic field accurately and provide an in-depth understanding of the magnetic field
distribution. In this paper, it is employed to validate the analytical model of the NLFM.
The FEM model of NLFM is established using electromagnetic-field finite-element software
Ansoft Maxwell. Figure 12 shows the simulated magnetic field vector diagram of NLFM
with a current of 1 A and armature displacement of 1.4 mm. When the control coil is
energized, the control flux generated by the coil and the polarized flux produced by the
permanent magnet begin to interact, where the magnetic flux of δ3 and δ4 is superposed
and enhanced, and the magnetic flux of δ1 and δ2 is neutralized and thus weakens. There-
fore, a downward electromagnetic force is generated. The results of the finite-element
simulation are consistent with the working principle of Section 3. In addition, the diffusion
phenomenon arises when the magnetic flux enters the air gap from the end face of the
magnetic pole. Therefore, the edge effect must be taken into account in the calculation of
the reluctance.
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Figure 13 shows the simulated magnetic field cloud diagram with different excitation
currents. It can be observed that when the current increases, magnetic saturation always
occurs at the ends of the upper and lower armatures and the middle beam of the yoke,
which indicates that the output force can be further improved by increasing the dimensions
of these locations. The magnetic saturation level also changes when the current direction is
reversed. In addition, when current increases, the magnetic flux density in the peripheral
corner area of the yoke does not vary significantly, which shows that these areas could be
removed to improve the power to weight ratio of the NLFM.
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Some key parameters have a significant influence on the performance of NLFM. In this
paper, four parameters, namely, the width of rectangular pole shoe l, the length of working
air gap g, the coil current I, and the width of permanent magnet lw, are selected to perform
parametric design based on both analytical modeling and FEM simulation. It can be seen
that the FEM simulated results are quite close to the analytical ones, which verifies the
correctness of the analytical model. Varying l actually changes the effective area of the
working air gap. Figure 14a shows the influence of l on force-displacement characteristics.
The output force increases with the increase of l, which means l should be as large as
possible. Figure 14b shows the influence of g on the force-displacement characteristics.
Relatively speaking, reducing g is very effective since it can greatly increase the output
force. However, the slope of the curve will become steeper, and the working stroke of
the NLFM will be limited if g is too small. This indicates that the working stability needs
to be considered and the choice of g needs to be compromised. Figure 14c shows the
influence of i on force-displacement characteristics. The output force can be increased by
properly increasing i. The force increased from 1 A to 1.5 A is greater than the counterpart
increased from 1.5 A to 2 A, which indicates that the magnetic field of the NLFM is
gradually saturated, and such a trend is demonstrated more clearly through the FEM
simulation. Besides, a large current would also result in a heating dissipation problem.
Figure 14d shows the influence of lw on force-displacement characteristics. An increase
of lw will slightly increase the output force. However, this would also increase the size of
the armature, which indicates that a proper compromise also needs to be made.
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5. Experimental Study

Based on the analytical modelling and FEM simulation, the key structural parame-
ters and material of NLFM are determined, as shown in Tables 3–6. Then, a prototype
of NLFM is designed and manufactured, as shown in Figure 15. A special experimen-
tal platform for static characteristics of NLFM is also designed and built, as shown in
Figure 16. The experimental platform mainly consists of a signal amplifier, voltage source,
linear micrometer, gauss probe, force sensor, and current source. The yoke of the prototype
is fixed on a linear micrometer, whose measuring range is from –30 mm to 30 mm with an
accuracy of 0.01 mm, and its output shaft is connected with the force sensor. By manually
adjusting the linear micrometer, the yoke can move axially relative to the armature, and its
displacement can be recorded. The output force can be measured by the force sensor. In
this way, the force-displacement characteristics can be obtained. Besides, the gauss meter
is used to measure the magnetic flux density by inserting its probe into the working air gap
of the NLFM.

Figure 17 shows a comparison between analytical, FEM simulated and experimental
results of the force-displacement characteristics of the NLFM. Table 7 summarize the
maximum output forces. It can be seen that the curves show a monotonous upward trend
with the increase of armature displacement. When i is 2 A, the maximum output force
from analytical modeling, FEM simulation and experiment are 44.9 N, 41.3 N and 40.1
N, respectively. Figure 18 illustrates the comparison between analytical, FEM simulated
and experimental results of the magnetic flux density of air gap δ1 and δ3. Table 8 lists the
magnetic flux densities of δ1 and δ3 when the armature displacement x = 0.8 mm. It can
be found that the curves for B of δ1 show a linear downward trend with the increase of x,
indicating the magnetic flux of δ1 superposes and therefore enhances. While the curves for
B of δ3 show a linear upward trend with the increase of x, indicating the magnetic flux of
δ1 neutralizes and thus weakens. When x = 0.8 mm, the B of δ3 from analytical modeling,



Actuators 2021, 10, 32 17 of 21

FEM simulation and experiment are 0.412 T, 0.425 T and 0.402 T, respectively. And the
B of δ1 are 0.120 T, 0.111 T and 0.132 T, respectively. The differential variation of B again
validates the working principle of the NLFM discussed in Section 2. Besides, the analytical,
FEM simulated and experimental results are in good agreement, which also verifies the
accuracy of analytical model of the NLFM.

Table 3. Key structural parameters of the NLFM prototype.

Parameter Value

Armature length l (mm) 10
Armature height h (mm) 15
Armature width w (mm) 5

Permanent magnet length ll (mm) 5
Permanent magnet height lh (mm) 35
Permanent magnet width lw (mm) 20

Yoke length lyl (mm) 60
Upper height of yoke lyh1 (mm) 15
Lower height of yoke lyh2 (mm) 20

Yoke width lyw (mm) 60

Table 4. The materials used for the key structure.

Component Material

Control coil Copper
Yoke DT4

Upper armature DT4
Lower armature DT4

Permanent magnet NdFeB 35

Table 5. Magnetic properties of DT4 [29].

Material
Coercivity

Hc
(A/M)

Saturated Magnetic
Flux Density Bs

(T)

Relative
Permeability µ

(H/m)

Conductivity
ρ

(µΩ×cm)

DT4 92 2. 14 3500~6000 10~11

Table 6. Magnetic properties of NdFeB 35 [29].

Material
Coercivity

Hc
(kA/M)

Remanence
Br
(T)

Maximum Magnetic
Energy Area (BH)max

(kJ/m3)

Maximum
Operating

Temperature T
(◦C)

NdFeB 35 955 1.13~1.18 247~270 80
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Figure 16. The experimental platform for the prototype of the NLFM. 
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Table 7. Summary of the maximum output force.

Current/A 0.5 1 1.5 2

Output force F
(when x = 1

mm)/N

Analytical 33.7 43.1 44.1 44.9
FEM 31.2 37.9 40.1 41.3

Experimental 29.0 35.1 38.3 40.1
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Table 8. Summary of the magnetic flux density of δ1 and δ3 (x = 0.8 mm).

Current/A 0.5 1 1.5 2

Magnetic flux
density B (when
x = 0.8 mm)/T

Analytical (δ1) 0.148 0.142 0.133 0.120
FEM (δ1) 0.139 0.134 0.125 0.111

Experiment (δ1) 0.160 0.150 0.138 0.132

Analytical (δ3) 0.364 0.381 0.398 0.412
FEM (δ3) 0.380 0.404 0.413 0.425

Experiment (δ3) 0.356 0.372 0.390 0.402

Finally, an overall comparison between existing LFMs in the Figure 1 and the NLFM
are performed, as shown in Table 9. For the working stroke range, all four configurations
in the table are quite close. The output force of the NLFM is relatively small due to
the magnetic saturation in the armature pole shoe, as shown in Figure 13. This also
indicates that further structure optimization is needed in future research. With the proposed
novel magnetic circuit topology, the NLFM features high magnetic energy utilization ratio
over existing LFMs. Besides, the NLFM also has several advantages over the existing
configurations. Firstly, since it only needs single permanent magnet and single control
coil, the NLFM has features of simple structure and fewer parts, while the existing LFMs
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configuration needs either dual permanent magnets or dual control coils. Secondly, the
yoke of the NLFM is a simple and integral truss structure, which is relatively easy to be
machined and assembled. Thirdly, all existing LFMs have radial working air gap due to
their cylindrical armature structure, and the existence of radial working air gaps increases
the coaxiality between armature and yoke components, which improves the manufacturing
and assembly cost. While for the NLFM, there is only an axial working air gap, which
makes unnecessary to maintain high machining accuracy between yoke and armature
components, thus greatly reducing the manufacturing and assembly cost.

Table 9. Comparison between the NLFM and existing LFMs.

Moog’s
LFM [19]

Li’s
LFM [20]

Ding’s
LFM [21] NLFM

working stroke range ±1.2 mm ±1 mm ±1 mm ±1 mm
maximum output force 100 N 100 N 60 N 41 N

number of control coil winding 1 1 2 1
number of permanent magnets 2 2 1 1

magnetic energy utilization low low lowlow high
structure simplicity complicated complicated complicated simple

cost of manufacturing and
assembly high high high medium

6. Conclusions

(1) In order to improve magnetic energy utilization and save materials, the permanent
magnet of a valve electro-mechanical converter should be designed as a flat shape with
a larger cross-section area, where the dimension in the magnetizing direction shall be as
small as possible.

(2) A novel magnetic circuit topology for a linear force motor is proposed. To improve
energy utilization, the permanent magnet is designed as a flat rectangular structure, where
the magnetizing direction coincides with its height direction. Thus, the dimension in the
magnetizing direction can be kept as small as possible. In addition, such configuration
has advantages of a simple structure, few parts, and easy machining and assembly. Ex-
perimental results show that the prototype has linear force-displacement characteristics
with a thrust force of 41 N at 2 A, which is suitable for the electro-mechanical converter for
electro-hydraulic servo-proportional valves.

(3) An analytical model is established by using the equivalent magnetic circuit method.
The model comprehensively considers magnetic leakage effect, edge effect, and perme-
ability nonlinearity. The results are in good agreement with the FEM simulation and
experimental results, which indicate that the analytical model can rapidly and accurately
predict the static characteristics of the NLFM.
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