
actuators

Article

A High-Order Load Model and the Control Algorithm for an
Aerospace Electro-Hydraulic Actuator †

Shoujun Zhao 1,2,*, Keqin Chen 1,2, Xiaosha Zhang 1,2, Yingxin Zhao 1,2, Guanghui Jing 1,2, Chuanwei Yin 1,2

and Xue Xiao 1,2

����������
�������

Citation: Zhao, S.; Chen, K.; Zhang,

X.; Zhao, Y.; Jing, G.; Yin, C.; Xiao, X.

A High-Order Load Model and the

Control Algorithm for an Aerospace

Electro-Hydraulic Actuator . Actuators

2021, 10, 53. https://doi.org/

10.3390/act10030053

Academic Editors: Tatiana Minav and

Jose Luis Sanchez-Rojas

Received: 4 February 2021

Accepted: 4 March 2021

Published: 7 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Laboratory of Aerospace Servo Actuation and Transmission, China Aerospace Science and Technology
Corporation, No.1 South DaHongMen Road, Fengtai District, Beijing 100076, China; ckq0315@163.com (K.C.);
zxs602wwyx@163.com (X.Z.); zyx_0@sina.com (Y.Z.); jingghhit@163.com (G.J.); yinchw_calt@163.com (C.Y.);
xiaoxue_ht@163.com (X.X.)

2 Beijing Institute of Precision Mechatronics and Controls, No.1 South DaHongMen Road, Fengtai District,
Beijing 100076, China

* Correspondence: shoujunzhao@vip.sina.com; Tel.: +86-10-8852-0124
† This paper is an extended version of the conference paper by Shoujun Zhao, Keqin Chen, Xiaosha Zhang,

Yingxin Zhao, Guanghui Jing, Chuanwei Yin, Xue Xiao. A Generalized Control Model and Its Digital
Algorithm for Aerospace Electrohydraulic Actuators. In Proceedings of the 1st International Electronic
Conference on Actuator Technology: Materials, Devices and Applications, 23–27 November 2020.

Abstract: It is difficult to describe precisely, and thus control satisfactorily, the dynamics of an
electro-hydraulic actuator to drive a high thrust liquid launcher engine, whose structural resonant
frequency is usually low due to its heavy inertia and complicated mass distribution, let alone one
to drive a heavy kerolox engine with high-order dynamics. By transforming classic control block
diagrams, a baseline two-mass-two-spring load model and a normalized actuator-engine system
model were developed for understanding the basic physics and methodology, where a fourth-order
transfer function is used to model the multi-resonance-frequency engine body outside of the rod
position loop, another fourth-order transfer function with two pairs of conjugated zeros and poles
to represent the composite hydro-mechanical resonance effect in the closed rod position loop. A
sixth-order model was thereafter proposed for even higher dynamics. The model parameters were
identified and optimized by a full factor search approach. To meet the stringent specification of static
and dynamic performances, it was demonstrated that a notch filter network combined with other
controllers is needed since the traditional dynamic pressure feedback (DPF) is difficult to handle the
high-order dynamics. The approach has been validated by simulation, experiments and successful
flights. The models, analysis, data and insights were elaborated.

Keywords: control model; control algorithm; high-order; electro-hydraulic actuator

1. Introduction

The electro-hydraulic servo actuation is a well-developed technology. Nonetheless,
most of its physical understanding and mathematical modeling, from as early as 1967, have
been referenced from the Hydraulic Control Systems by H.E. Merritt [1]. In most cases, it
was assumed that the driven load had sufficiently high structural resonance frequencies
which could be neglected, with only the hydraulic natural frequency remaining in the
control loop. However, in aerospace applications, such as rudders, fins and engines, due
to weight and space limitations, the structural stiffness is usually low but the required
dynamics is high, and moreover, sometimes even high-order dynamics exhibits in the
actuator loop. In such conditions, the model has to be modified and the load structural
resonance should be included. This was discussed in the classic book and a general
model with cascaded second-order transfer functions was used to depict loads with many
degree-of-freedoms (DOF), where, however, only the dynamics at the motor shaft point
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was elaborated with that at the load end left open for more work, and it was pointed out
that because mechanical structures are continuous systems, they are described in partial
differential equations of formidable complexity, and it is not presently possible to predict
all the quantities involved [1] (pp. 157–162).

J.W. Edward presented an appropriate one-mass-one-spring model for an aircraft
rudder control servo system [2]. A spring was inserted as the structural compliance into
the interface between the piston rod and the rudder. The structural natural frequency,
the hydraulic natural frequency and the derived composite hydro-mechanical natural
frequency were clearly depicted and incorporated into the model, based on which the
rudder surface dynamics was controlled by the dynamic pressure feedback (DPF) acting as
a first-order high-pass filter and matched well with the test results. K.E. Rydberg promoted
the concise approach in his Hydraulic Servo Systems [3] (pp. 35–37). However, in most
current publications on electro-hydraulics, only the hydraulic resonance is included [4,5].
Furthermore, in most papers studying various emerging electro-hydrostatic actuators,
where there are also hydraulic cylinders, only the hydraulic natural frequency is considered
too [6,7]. This approach might work well elsewhere but not in highly dynamic aerospace
actuators, especially for those to drive loads with high-order dynamics. J. Yoo demonstrated
there are rich structural dynamics in a launcher engine [8]. Usually there is only one load
resonance peak shown in the actuation loop and using one-mass-one-spring load model is
sufficient [9–11]. For those showing higher order dynamics with heavy impact on actuators,
there has been little literature.

Zhang C. showed that DPF remains welcome to suppress resonances in electro-
hydraulic systems [12]. Nevertheless, with digital signal processors indispensable nowa-
days, a notch filter is preferred and proved effective [13–16], especially attractive in
aerospace uses where hardware reduction means higher reliability. Since the fixedness of
structural resonance frequencies can be guaranteed in aerospace engines, the application of
a digital notch filter network also brings great conveniences in designs. On the other hand,
the capacity of a traditional DPF is limited in dealing with the multiple load resonance
peaks since only one peak can be treated with a first-order DPF filter. Therefore, multiple
notch filters to regulate actuator dynamics need to be explored. Though Jang J. showed that
such a method is adopted in flight control systems [17], it is an emerging topic in aerospace
electro-hydraulic actuation systems.

Besides resonance suppression, superior static and tracking performances are required
in aerospace actuators. This point is highlighted when a high power electro-hydraulic
system shows heavier nonlinearity and its dynamics is not specified by a simple 3dB
or −45◦ bandwidth but by a set of amplitude and phase values at a series of selected
frequencies. Usually, proportional-integral-differential (PID) controllers, or feedforward
compensation, or the combination of both are used to deal with the problem [18–21].
Nonetheless, a more complex combination to include notch filters and these controllers is
challenging for actuation designers.

The author’s team has been working on actuators to gimbal non-toxic-non-pollution
launcher engines [22–27]. To deal with the thrust vector control (TVC) of an engine which
showed high-order structural dynamics, Yin C. introduced a two-mass-two-spring model
and found that a fourth-order notch filter network control algorithm brought more effective
results than DPF, nevertheless the process of developing the model was not explored and
it was found hard to satisfy all the amplitude and phase requirements at the selected
frequencies [26]. Zhao S. briefed a combined controller with satisfactory results in the
conference paper but without details [27]. Deriving the model and dissecting the algorithm
will be presented in this article.

The novel contributions of this paper are highlighted as follows: a baseline fourth-
order or two-mass-two-spring load model for an electro-hydraulic actuator was elaborated,
an even higher sixth-order model was thereafter proposed for the first time, its parameters
were identified by a simple full factor search method, a combined control algorithm
comprising cascaded notch filters, a feedforward compensation, a nonlinear PID controller
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was fabricated, and the underlying regulating mechanism directed to responses in high,
low and intermediate frequency bands was analyzed. It showcases the usefulness of a high-
order model and a sophisticated controller for actuation systems in delicate applications.

The remaining paper is organized as follows. Section 2 introduces an aerospace
electro-hydraulic actuation system and its modeling, including both a fourth-order and
sixth-order load model. Section 3 describes the combined control algorithm. Section 4
briefs the model identification and parameter optimization by a full factor search method.
Section 5 presents the experiment results. Finally, discussion and conclusions are given in
Sections 6 and 7, respectively.

2. The System and Its Modeling

The assembly of an electro-hydraulic actuator and the driven 1200 kN kerolox engine
is shown in Figure 1 [25,26]. The challenge is that the heavy turbo-pump assembly acts
as a non-negligible minor mass connected to the main nozzle body so that two dominant
resonance peaks emerge in the TVC loop and the traditional one-mass-one-spring model for
the engine as the load of the actuator no longer applies. Additionally, as can be seen, there
are some other smaller bodies outside of the main body, implying more minor resonance
peaks in high frequency band.

Actuators 2021, 10, 53 3 of 18 
 

 

controller was fabricated, and the underlying regulating mechanism directed to responses 
in high, low and intermediate frequency bands was analyzed. It showcases the usefulness 
of a high-order model and a sophisticated controller for actuation systems in delicate ap-
plications. 

The remaining paper is organized as follows. Section 2 introduces an aerospace elec-
tro-hydraulic actuation system and its modeling, including both a fourth-order and sixth-
order load model. Section 3 describes the combined control algorithm. Section 4 briefs the 
model identification and parameter optimization by a full factor search method. Section 5 
presents the experiment results. Finally, discussion and conclusion are given in Section 6 
and Section 7, respectively. 

2. The System and Its Modeling 
The assembly of an electro-hydraulic actuator and the driven 1200 kN kerolox engine 

is shown in Figure 1. [25,26]. The challenge is that the heavy turbo-pump assembly acts as 
a non-negligible minor mass connected to the main nozzle body so that two dominant 
resonance peaks emerge in the TVC loop and the traditional one-mass-one-spring model 
for the engine as the load of the actuator no longer applies. Additionally, as can be seen, 
there are some other smaller bodies outside of the main body, implying more minor res-
onance peaks in high frequency band. 

 
Figure 1. The assembly of the actuator and the driven kerolox engine. 

A simplified schematics of the electro-hydraulic actuation system is described in  
Figure 2, where QL is the load flowrate from the servo-valve to the actuator, PL is the dif-
ferential pressure across the piston, Ap is the acting piston area, Xc is the normalized com-
mand signal, Xp is the piston position, and XL1 is the normalized load position output of 
the main body in the equivalent linear form. Usually, the engine gimbaling angle is not 
measured in flight but in ground tests in the form of linear displacement which is con-
verted to the angular value. 

The control loop includes a digital controller, a servo-valve, a double acting piston 
actuator and a linear displacement sensor embedded inside the rod. The controller closes 
the negative feedback loop and performs digital algorithms for static and dynamic com-
pensations. The expected output is the engine’s gimbaling thrust vector angle, i.e., XL1. It 
is a classic aerospace actuator design, where the feedback signal is picked up via the sen-
sor inside the piston rod rather than via the angular output sensor [2,28]. 

For the high-order engine body’s structural dynamics, a baseline two-mass-two-
spring model was presented in Figure 3, where M1, KL1, BL1, XL1 and M2, KL2, BL2, XL2 are the 
equivalent mass, spring stiffness, viscous coefficient, linear displacement of the main en-
gine body and the minor body, respectively, and the connected hydraulic actuator is given 
together. 

Figure 1. The assembly of the actuator and the driven kerolox engine.

A simplified schematics of the electro-hydraulic actuation system is described in
Figure 2, where QL is the load flowrate from the servo-valve to the actuator, PL is the
differential pressure across the piston, Ap is the acting piston area, Xc is the normalized
command signal, Xp is the piston position, and XL1 is the normalized load position output
of the main body in the equivalent linear form. Usually, the engine gimbaling angle is
not measured in flight but in ground tests in the form of linear displacement which is
converted to the angular value.

The control loop includes a digital controller, a servo-valve, a double acting piston
actuator and a linear displacement sensor embedded inside the rod. The controller closes
the negative feedback loop and performs digital algorithms for static and dynamic com-
pensations. The expected output is the engine’s gimbaling thrust vector angle, i.e., XL1. It
is a classic aerospace actuator design, where the feedback signal is picked up via the sensor
inside the piston rod rather than via the angular output sensor [2,28].
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Figure 2. The simplified schematics for an aerospace electro-hydraulic actuation system.

For the high-order engine body’s structural dynamics, a baseline two-mass-two-spring
model was presented in Figure 3, where M1, KL1, BL1, XL1 and M2, KL2, BL2, XL2 are the
equivalent mass, spring stiffness, viscous coefficient, linear displacement of the main
engine body and the minor body, respectively, and the connected hydraulic actuator is
given together.

Actuators 2021, 10, 53 4 of 18 
 

 

 
Figure 2. The simplified schematics for an aerospace electro-hydraulic actuation system. 

 
Figure 3. The physical model of the hydraulic actuator and the driven kerolox engine. 

The mathematical equations are presented in Laplace-form Equations (1)–(7). 𝑄௩ = 𝐾𝑠𝜔௩ + 1 𝐼௩ (1) 

𝑄 = 𝑄௩ − 𝐾𝑃 (2) 

𝑄 = 𝐴𝑠𝑋 + 𝑉௧4𝛽 𝑠𝑃 (3) 

𝐴𝑃 = 𝐾ଵ(𝑋 − 𝑋ଵ) (4) 𝐾ଵ൫𝑋 − 𝑋ଵ൯ = 𝑀ଵ𝑠ଶ𝑋ଵ + 𝐵ଵ𝑠𝑋ଵ + 𝐾ଶ(𝑋ଵ − 𝑋ଶ) (5) 𝐾ଶ(𝑋ଵ − 𝑋ଶ) = 𝑀ଶ𝑠ଶ𝑋ଶ + 𝐵ଶ𝑠𝑋ଶ (6) 

𝑀 = 𝑀ଵ + 𝑀ଶ  , 𝑀 = 𝐽𝑅ଶ  (7) 

where s is the Laplace operator, Qv is the ideal servo-valve flowrate output, Kqi is the nom-
inal servo-valve flowrate gain, Iv is the electrical current applied, ωv is the first-order servo-
valve frequency bandwidth, Kc is the lumped leakage coefficient across the piston, includ-
ing the internal leakage of the servo-valve, Vt is the total control volume of the two actua-
tor chambers, β is the equivalent bulk modulus of the contained oil, J is the lumped rota-
tional load inertia, and R is the nominal rotation radius of the load. 

The servo-valve is modeled as a first-order transfer function as in Equation (1), whose 
bandwidth is chosen to be much higher than the structural resonance, and where nonlin-
earity is neglected first for a clearer presentation but accommodated later by the control 
algorithm, such as curved gains at the null spool region and the friction forces. Equation 
(2) gives the load flow from the servo-valve to the cylinder by subtracting the lumped 

Pilot stage Spool stage

Displacement 
sensor

Hydraulic Power 
Supply

actuator

Engine

servo valve

command +

amplifier

Controller

Linear 
output

-

Control 
Algorithm

 Electro-hydraulic Actuator

Main
Body

Minor
Body

Xc 

QL  PL 

Ap 
Xp XL1 

Figure 3. The physical model of the hydraulic actuator and the driven kerolox engine.

The mathematical equations are presented in Laplace-form Equations (1)–(7).

Qv =
Kqi

s
ωv

+ 1
Iv (1)

QL = Qv − KcPL (2)

QL = ApsXp +
Vt

4β
sPL (3)

ApPL = KL1
(
Xp − XL1

)
(4)

KL1
(
Xp − XL1

)
= M1s2XL1 + BL1sXL1 + KL2(XL1 − XL2) (5)

KL2(XL1 − XL2) = M2s2XL2 + BL2sXL2 (6)

M = M1 + M2 , M =
J

R2 (7)

where s is the Laplace operator, Qv is the ideal servo-valve flowrate output, Kqi is the
nominal servo-valve flowrate gain, Iv is the electrical current applied, ωv is the first-order
servo-valve frequency bandwidth, Kc is the lumped leakage coefficient across the piston,
including the internal leakage of the servo-valve, Vt is the total control volume of the two
actuator chambers, β is the equivalent bulk modulus of the contained oil, J is the lumped
rotational load inertia, and R is the nominal rotation radius of the load.

The servo-valve is modeled as a first-order transfer function as in Equation (1), whose
bandwidth is chosen to be much higher than the structural resonance, and where nonlin-
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earity is neglected first for a clearer presentation but accommodated later by the control
algorithm, such as curved gains at the null spool region and the friction forces. Equation (2)
gives the load flow from the servo-valve to the cylinder by subtracting the lumped leakages.
Equation (3) presents the load flow in the form of consumption by the cylinder, including
the effective flowrate to move the piston and the compressed terms by the hydraulic pres-
sure. Equation (4) is that of the force balance at the piston node, where the moving piston
mass is neglected due to its much smaller magnitude than the engine. Equation (5) is that
of the force balance at the main mass body node, where the inertia force, equivalent spring
forces and viscous forces are included, but with other minor items neglected, such as the
bearing friction, the bellows elastic load and the biased thrust torque, etc. Equation (6) is
that of the force balance at the minor mass body node. Equation (7) converts rotational
inertia to linear mass.

It is noteworthy that, in the real systems, there are not real connection springs, even
though real springs exist in load simulators. Additionally, in practice, the system is
designed in such a way that other structures, like the piston rod, the actuator body and the
fixed supporting structures, are so strong that only the stiffness inside the load needs to
be modeled.

To derive a final normalized model, the control block diagram reduction approach is
the most straightforward and clearest.

The first step is that Equations (5) and (6) are transformed into transition functions
as Equations (8) and (9), with structural natural frequencies and damping ratios given in
Equations (10) and (11), and the equivalent structural stiffness ratio in Equation (12).

Xp =

(
s2

ω2
L1

+
2ξL1

ωL1
s + 1

)
XL1 + α(XL1 − XL2) (8)

XL1 =

(
s2

ω2
L2

+
2ξL2

ωL2
s + 1

)
XL2 (9)

ωL1 =

√
KL1

M1
, ωL2 =

√
KL2

M2
(10)

ξL1 =
BL1

2KL1

√
KL1

M1
, ξL2 =

BL2

2KL2

√
KL2

M2
(11)

α =
KL2

KL1
(12)

where (ωL1, ξL1, ωL2, ξL2) are structural resonant frequencies and the corresponding
damping ratios arising for the main body and the minor body, respectively, and α is the
structural stiffness ratio.

Note that the engine’s structural resonant frequencies (ωL1, ωL2) and the damping
ratios (ξL1, ξL2) are independent of any other electro-hydraulic actuator design, except
for the installation geometry on which the rotation radius R depends. In ground testing,
there are two measurement points, one at the piston rod as Xp and the other at the engine
gimbaling angular output as XL1.

The next step is to present Equations (8) and (9) into a control block diagram, as
in Figure 4.

Since only XL1 is expected, with the minor body angular output XL2 eliminated, the
transfer function blocks from Xp to XL1 are derived into Figure 5, i.e., the engine thrust
vector output dynamics. With the feedback loop furtherly eliminated, the condensed form
is given in Figure 6.
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In Equation (13), a normalized transfer function from the piston position to the thrust
vector angular output is depicted and furtherly represented in the form of block diagram
as in the Figure 7, where the derived equivalent resonance frequencies and damping ratios
(ω′L1, ξ ′L1,ω′L2, ξ ′L2) replaced the original ones (ωL1, ωL2, ξL1, ξL2).
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To obtain the system dynamics that comprise the actuator and the engine, Equations (2)–(4)
are included to give Figure 8.
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With minor loops eliminated and some algebraic transformations, the condensed
actuator-engine diagram is represented in Figure 9, with the two measurement points Xp
and XL1 remained.
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Figure 9. The condensed control block diagram of the actuator-engine system.

In Figure 9, the composite hydro-mechanical resonance frequencies (ωc1, ωc2) are
coupled from the structural resonant frequencies (ω′L1, ω′L2) and hydraulic resonant fre-
quencies (ωh1, ωh2). Analogous to the one-mass-one-spring model [2,3,27], the first set
of hydraulic and composite frequencies (ωh1, ωc1) can be given in Equation (14), similar
forms of the second set of frequencies (ωh2, ωc2) are proposed in Equations (15) and (16),
where kωh2 is a correction factor, and the damping ratios (ξc1, ξc2) have to be presented
as (fξc1, fξc2) roughly, since a direct derivation is impossible. In fact, their precise alge-
braic representations are not cared much since they can be identified from experiment as
shown later.

ωh1 =

√
4A2

pβ

M1Vt
,

1
ω2

c1
=

1
ω
′2
L1

+
1

ω2
h1

(14)

ωh2 = kωh2

√
4A2

pβ

M2Vt
(15)

1
ω2

c2
=

1
ω
′2
L2

+
1

ω2
h2

(16)

ξc1 = fξc1
(
ω′L1, ω′L2, ξ ′L1, ξ ′L2, Vt, KL1, Kc, Ap, β

)
(17)

ξc2 = fξc2
(
ω′L1, ω′L2, ξ ′L1, ξ ′L2, Vt, KL1, Kc, Ap, β

)
(18)

With the servo-valve dynamics in Equation (1) and a controller added, as well as a
lumped open loop gain Ko, the final normalized system model is given in Figure 10, where
e(t) is the normalized position error between Xc and Xp.



Actuators 2021, 10, 53 8 of 18

Actuators 2021, 10, 53 7 of 18 
 

 

With minor loops eliminated and some algebraic transformations, the condensed ac-
tuator-engine diagram is represented in Figure 9, with the two measurement points Xp 

and XL1 remained. 

 
Figure 9. The condensed control block diagram of the actuator-engine system. 

In Figure 9, the composite hydro-mechanical resonance frequencies (ωc1, ωc2) are cou-
pled from the structural resonant frequencies (𝜔ଵᇱ , 𝜔ଶᇱ ) and hydraulic resonant frequen-
cies (ωh1, ωh2). Analogous to the one-mass-one-spring model [2,3,27], the first set of hy-
draulic and composite frequencies (ωh1, ωc1) can be given in Equation (14), similar forms 
of the second set of frequencies (ωh2, ωc2) are proposed in Equations (15) and (16), where 
kωh2 is a correction factor, and the damping ratios (ξc1, ξc2) have to be presented as (fξc1, fξc2) 
roughly, since a direct derivation is impossible. In fact, their precise algebraic representa-
tions are not cared much since they can be identified from experiment as shown later. 

𝜔ଵ = ඨ4𝐴ଶ𝛽𝑀ଵ𝑉௧  , 1𝜔ଵଶ = 1𝜔′ଵଶ + 1𝜔ଵଶ  (14) 

𝜔ଶ = 𝑘ఠଶඨ4𝐴ଶ𝛽𝑀ଶ𝑉௧  (15) 

1𝜔ଶଶ = 1𝜔′ଶଶ + 1𝜔ଶଶ  (16) 

𝜉ଵ = 𝑓కଵ(𝜔ଵᇱ , 𝜔ଶᇱ , 𝜉ଵᇱ , 𝜉ଶᇱ , 𝑉௧, 𝐾ଵ, 𝐾, 𝐴, 𝛽) (17) 𝜉ଶ = 𝑓కଶ(𝜔ଵᇱ , 𝜔ଶᇱ , 𝜉ଵᇱ , 𝜉ଶᇱ , 𝑉௧, 𝐾ଵ, 𝐾, 𝐴, 𝛽) (18) 

With the servo-valve dynamics in Equation (1) and a controller added, as well as a 
lumped open loop gain Ko, the final normalized system model is given in Figure 10, where 
e(t) is the normalized position error between Xc and Xp. 

 
Figure 10. A normalized block diagram of the aerospace electro-hydraulic actuation system. 

The open-loop Ko is represented in Equation (19). 𝐾 = 𝐾𝐾௩𝐾𝐾௫𝐴  (19) 

where Kp is the nominal error amplification gain, Kvi is the lumped voltage-to-ampere con-
version coefficient of the digital-to-analog (D/A) converter and the servo-valve coil driver, 
Kxf is the lumped conversion coefficient of the analog-to-digital (A/D) converter and the 
feedback displacement sensor. 

actuator load effect load

Xp XL11
A sp

Qv
' '2 2
1 2

' 2 ' ' 2 '
1 1 2 2

2 2
1 2

2 2
1 1 2 2

2 21 1

2 21 1

L L

L L L L

C C

C C C C

s s s

s ss s

ξ ξ
ω ω ω ω

ξ ξ
ω ω ω ω

+ + + +

+ + + +

（ )( )

（ )( )

2
2

2
2 2

' '2 2
1 2

' 2 ' ' 2 '
1 1 2 2

2 1

2 21 1

L

L L

L L

L L L L

s s

s ss s

ξ
ω ω

ξ ξ
ω ω ω ω

+ +

+ + + +（ )( )

Control 
Algorithm

1
1 1
v

sω +
Xc

oK

servo valveopen loop gain actuator

e(t)

load effect load

Xp XL11
s

' '2 2
1 2

' 2 ' ' 2 '
1 1 2 2
2 2

1 2
2 2

1 1 2 2

2 21 1

2 21 1

L L

L L L L

C C

C C C C

s ss s

s ss s

ξ ξ
ϖ ϖ ϖ ϖ

ξ ξ
ϖ ϖ ϖ ϖ

+ + + +

+ + + +

（ )( )

（ )( )

2
2

2
2 2

' '2 2
1 2

' 2 ' ' 2 '
1 1 2 2

2 1

2 21 1

L

L L

L L

L L L L

s s

s ss s

ξ
ϖ ϖ

ξ ξ
ϖ ϖ ϖ ϖ

+ +

+ + + +（ )( )＋ －

Figure 10. A normalized block diagram of the aerospace electro-hydraulic actuation system.

The open-loop Ko is represented in Equation (19).

Ko =
KpKviKqiKx f

Ap
(19)

where Kp is the nominal error amplification gain, Kvi is the lumped voltage-to-ampere
conversion coefficient of the digital-to-analog (D/A) converter and the servo-valve coil
driver, Kxf is the lumped conversion coefficient of the analog-to-digital (A/D) converter
and the feedback displacement sensor.

As can be seen in Figure 10, for the expected output XL1, it is only a half-closed loop.
It needs to note that the half-closed loop is a classic aerospace design [2,28], where the
actuator acts as an integrated control device for the simplest design and therefore the most
reliable reasons in a higher system perspective, rather than another angular sensor needed
in flight, though D.V. Lazić studied the approach [4]. Inside the piston position Xp loop, the
fourth-order transfer function with two pairs of zeros and poles is dominant, both poorly
damped, representing the effect of the outside fourth-order load dynamics on the closed
position loop, called “load effect”, which is more complicated than that of an ordinary
one-mass-one-spring modeled system [2,3,26].

Additionally, as can be imagined, there should be higher order models for some
actuation systems, like sixth or eighth order, which are conceivably much harder to derive
directly. As an analogy to the above fourth-order, a system block diagram incorporating
a sixth-order or three-mass-three-spring load model was proposed in Figure 11, where
(ω′L3, ξ ′L3) are the third derived load structural resonance frequency and its damping
ratio, (ωc3, ξc3) are the corresponding third hydro-mechanical resonance frequency and
its damping ratio, and (ω′′L2, ξ

′′
L2, ω

′′
L3, ξ

′′
L3) are the derived resonance frequencies and their

damping ratios in the numerator, which are different from (ωL2, ξL2) as in a two-mass-two-
spring model, since they can be not directly derived as in preceding Equation (10).
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For the high dynamics, a big acting area Ap is needed to guarantee the composite
hydro-mechanical frequencies are only slightly smaller than the structural frequencies, e.g.,
10%. However, as for the heavy kerolox engine, since its structural natural frequencies are
inevitably low, their effect on the system cannot be neglected as in common applications.

Moreover, in such a highly demanding system, the dynamics is not evaluated by a
simple −3 dB or −45◦ bandwidth but by a set of amplitude and phase values at a series
of specified frequencies. Therefore, this clear understanding and precise depiction of the
system dynamics are indispensable and a simple control approach to use only separate
DPF, notch filter or PID controller cannot satisfy the stringent requirements.

3. The Combined Control Algorithm

A combined control strategy was developed as in Figure 12, where Gn,
Kp(e(t)) − Ki(e(t)) − Kd(e(t)) and F(Xc) represent the notch filter network, PID and feed-
forward controller, respectively.

Actuators 2021, 10, 53 9 of 18 
 

 

 
Figure 12. The combined control strategy. 

The control algorithm comprises three parts: a notch filter network, a nonlinear PID 
and a feedforward compensation. 

A baseline two-notch-filter network Gn is shown as Equation (20). 

𝐺 = 1𝜔ଵଶ 𝑠ଶ + 2𝜉ଵ𝜔ଵ 𝑠 + 11𝜔ௗଵଶ 𝑠ଶ + 2𝜉ௗଵ𝜔ௗଵ 𝑠 + 1 . 1𝜔ଶଶ 𝑠ଶ + 2𝜉ଶ𝜔ଶ 𝑠 + 11𝜔ௗଶଶ 𝑠ଶ + 2𝜉ௗଶ𝜔ௗଶ 𝑠 + 1 (20)

The rationale is that the poorly damped poles (ωc1, ξc1) and (ωc2, ξc2) are cancelled out 
by a pair of nearby poorly damped zeros (ωn1, ξn1) and (ωn2, ξn2) and replaced with a pair 
of better damped poles (ωd1, ξd1) and (ωd2, ξd2). In aerospace applications, the structural 
quality is guaranteed so that the resonance frequencies are controlled well within toler-
ances and notch filters can be applied in faith. On the other hand, the parameters can be 
optimized to change the width and depth of the notch window to accommodate permitted 
model variations, even to control a three resonance peak model as later shown. For non-
stationary natural frequencies, Yao J. recommended adaptive notch filters [16]. 

Yin C. indicated that the capacity of a traditional DPF is limited in dealing with this 
kind of high-order load dynamics since only one resonance peak can be treated with the 
first-order DPF high-pass filter as in Figure 13. [26], where Kdpf is the gain and τ is the time 
constant. Therefore, a multiple-notch-filter network is an indispensable choice rather than 
a replaceable one. 

 
Figure 13. The dynamic pressure feedback (DPF) controlled system model illustration. 

A nonlinear PID is used to improve the tracking accuracy in the low frequency band, 
i.e., around 1~5 rad/s, with a piecewise proportional gain presented as Equation (21). 𝐾൫𝑒(𝑡)൯ = ൜𝑓 ∙ 𝐾 (𝑓 > 1) |𝑒(𝑡)| ≤ 𝑒 𝐾           |𝑒(𝑡)| > 𝑒     (21)

where fK is the bigger portion factor of the piecewise proportional gain and en is prescribed 
error threshold under which the bigger gain is used. 

feedforward

+
+
-

( )( )ep tK

1( ( ))i e t
s

K ⋅

( )( )ed t sK ⋅

+ + notch filter 
network

Xc +

( )cF X

Nonlinear PID

nG
e(t)

XP

Figure 12. The combined control strategy.

The control algorithm comprises three parts: a notch filter network, a nonlinear PID
and a feedforward compensation.

A baseline two-notch-filter network Gn is shown as Equation (20).

Gn =

1
ω2

n1
s2 + 2ξn1

ωn1
s + 1

1
ω2

d1
s2 + 2ξd1

ωd1
s + 1

.

1
ω2

n2
s2 + 2ξn2

ωn2
s + 1

1
ω2

d2
s2 + 2ξd2

ωd2
s + 1

(20)

The rationale is that the poorly damped poles (ωc1, ξc1) and (ωc2, ξc2) are cancelled
out by a pair of nearby poorly damped zeros (ωn1, ξn1) and (ωn2, ξn2) and replaced with
a pair of better damped poles (ωd1, ξd1) and (ωd2, ξd2). In aerospace applications, the
structural quality is guaranteed so that the resonance frequencies are controlled well within
tolerances and notch filters can be applied in faith. On the other hand, the parameters
can be optimized to change the width and depth of the notch window to accommodate
permitted model variations, even to control a three resonance peak model as later shown.
For non-stationary natural frequencies, Yao J. recommended adaptive notch filters [16].

Yin C. indicated that the capacity of a traditional DPF is limited in dealing with this
kind of high-order load dynamics since only one resonance peak can be treated with the
first-order DPF high-pass filter as in Figure 13 [26], where Kdpf is the gain and τ is the time
constant. Therefore, a multiple-notch-filter network is an indispensable choice rather than
a replaceable one.
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Figure 13. The dynamic pressure feedback (DPF) controlled system model illustration.

A nonlinear PID is used to improve the tracking accuracy in the low frequency band,
i.e., around 1~5 rad/s, with a piecewise proportional gain presented as Equation (21).

KP(e(t)) =
{

fK·KP ( fK > 1) |e(t)| ≤ en
KP |e(t)| > en

(21)

where fK is the bigger portion factor of the piecewise proportional gain and en is prescribed
error threshold under which the bigger gain is used.

A higher gain near zero is used to deal with the nonlinearity at the servo-valve spool
center that is not modeled here. The differential factor is usually small and helps to
overcome the un-modeled stiction in the system.

As to the integral factor, it helps to improve the positioning precision but needs to be
designed elaborately as in Equations (22)–(25).

Ki = Ki1Ki2Ki3Kin (22)

Ki1 =

{
0 |Ps(t)| ≤ 0.9Psn
1 |Ps(t)| > 0.9Psn

(23)

Ki2 =

{
1

∣∣Xp(t)
∣∣ ≤ 0.95Xpmax

0
∣∣Xp(t)

∣∣ > 0.95Xpmax
(24)

Ki3 =


1 |e(t)| ≤ a

a+b−e(t)
b a ≤ |e(t)| < b
0 |e(t)| > b

(25)

where Kin is the nominal integral gain, Ki1 is the on-off switch triggered by the hydraulic
power supply, Ps(t) and Psn are the instant and nominal supply pressure, respectively, Ki2
is the on-off switch triggered by the maximum piston stroke, Xpmax is the maximum piston
stroke, Ki3 is the piecewise gain, and a and b are the constants to regulate the integral gain
near and far from zero.

Equation (23) is used to set the integral active only when the hydraulic power is on so
that an integration saturation and thus a jittering at the startup can be avoided. Similarly,
Equation (24) is used to close the integral function at the maximum stroke so that a jittering
at the position reversal near the rod ends can be prevented. Equation (25) is used to set the
integral factor bigger near zero position error but smaller even zero in fast movements to
exploit its maximum benefits and eliminate its side effects simultaneously.

An ideal feedforward compensation for the fourth-order system is the inverse plant
model as given in Equation (26). However, due to the high-order differentiation, too much
unwelcome noise would be introduced. Therefore, a reduced-order feedforward function
is used as in Equation (27), where Kf is the feedforward gain.

F(Xc) =

(
1

ωv
s + 1

)
·
(

1
ω2

c1
s2 + 2ξc1

ωc1
s + 1

)(
1

ω2
c2

s2 + 2ξc2
ωc2

s + 1
)

Ko.
(

s2

ω
′2
L1
+

2ξ ′L1
ω′L1

s + 1
)(

s2

ω
′2
L2
+

2ξ ′L2
ω′L2

s + 1
) ·s·Xc (26)
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F = K f ·s·Xc (27)

It is to point out that, also due to the existing higher order dynamics, to prevent high
gains to emerge in high frequency band which would drive unwanted resonances, a large
feedforward factor cannot be used. Therefore, a reasonably small gain K f helps to improve
tracking precision in the intermediate frequency band.

As described, with the accurate depiction of the plant dynamics and the delicate use
of a combined control strategy, the system vibration due to structural resonance should
be well suppressed while a satisfactory frequency response in the whole frequency region
from low to high be obtained.

4. Model Identification

For an electro-hydraulic servo actuator system to drive a high thrust kerolox launcher
engine, the main parameters are shown in Table 1. Since the sampling time (digital
control cycle) 0.001 second is so small compared to the system response that the negative
digitization effect is neglected here.

Table 1. The main parameters of an actuation system.

Parameter Symbol Value Unit

Lumped engine rotational inertia J 1304 kg.m2

Engine rotational arm R 845 mm
Actuator acting piston area Ap 4398 mm2

System pressure Ps 24 MPa
Servo-valve bandwidth (−45◦) ωv ≥180 rad/s

Nominal open loop gain Ko ≈20 rad/s
Maximum angular output - 8 degree

Digital Control Cycle - 0.001 second

With an open loop gain as small as 15 rad/s and without any other compensation,
given a series of sinusoidal commands, the system was tested to investigate the load
resonance, with the amplitude bode plot of XL1 and Xp shown in Figure 14.
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Figure 14. The dynamics of an uncompensated electro-hydraulic actuator and its engine load.

It is worth noting that, without compensations, with a relatively small open loop gain,
the system vibrates seriously, as shown by the amplitude peaks of the load response XL1 in
Figure 14. It is clear that the system has to be compensated for a bigger gain and hence
better dynamics.

The engine’s structural resonance dynamics can be obtained by directly subtracting
the response of Xp at the piston point from that of XL1 at the load output. The resulted
amplitude curve is plotted in Figure 15, where both an approximate fourth-order and
sixth-order model are plotted together.
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In the curves, there are two obvious denominator resonance frequencies as indicated
by the two peaks (A′L1 , A′L2) with ω′L1 = 70 rad/s and ω′L2 = 100 rad/s, and two obvi-
ous numerator resonance frequencies as indicated by the two bottoms (A′′L2 , A′′L3) with
ω
′′
L2 = 80 rad/s and ω

′′
L3 = 130 rad/s. Additionally, a third resonance frequency ω′L3 is

implied by the upwardly bent curve above 130 rad/s, though its peak is not shown due to
untested higher frequency points.

To identify the parameters, a simplest full factor search optimization method was used
since it is the most straightforward and the computing time is acceptable, in spite of other
advanced methods available. With the approximate fourth-order model as an example, the
method is given as follows.

Firstly, the resonance frequencies can be easily found at the peaks and the bottoms,
and the remaining three damping ratio parameters

(
ξ ′L1, ξ ′L2, ξ

′′
L2
)

are given three sets of
discrete values in an estimated scope around the guessed points as follows:

ξ ′L1= (0.03~0.06), the interval is 0.001;
ξ ′L2 = (0.10~0.16), the interval is 0.001;
ξ
′′
L2 = (0.01~0.04), the interval is 0.001.

Each model choice is computed by programming to give the amplitude values at the
selected frequencies.

Secondly, a set of amplitude difference tolerances are chosen, to judge the differences
between the model and the experiment in the interested frequencies as in Table 2.

As long as its amplitude differences are located in the specified scope, a model is
picked out, collected into the second but smaller set of models.

Thirdly, the smallest composite amplitude difference as in Equation (28) is chosen as
the final criteria to select out the optimized model (ξ ′L1, ξ ′L2, ξ

′′
L2) from the second set.

∆ALc = 0.5∆A′L1 + 0.2∆A′′L2 + 0.3∆A′L2 (28)

where ∆ALc is the composite amplitude difference, ∆A′L1, ∆A′′L2 and ∆A′L2 are the amplitude
differences at peak and bottom frequencies, namely 70 rad/s, 80 rad/s and 100 rad/s, and
0.5, 0.2 and 0.3 are the weighting factors.



Actuators 2021, 10, 53 13 of 18

Table 2. The amplitude value tolerances at the selected frequencies.

Frequency (rad/s) Amplitude Value Tolerance (dB)

60 1
70 2
75 2
80 3
90 3
100 2
110 3
130 5
140 8
150 8
160 8

Similarly, the model parameters for the sixth-order model can also be decided.
The identified parameters of the fourth-order and sixth-order model are listed in

Tables 3 and 4, respectively, also with composite hydro-mechanical resonance frequencies
and damping ratios given. It is to note that in the fourth-order model, (ω′′L2, ξ

′′
L2) are used

same as in the sixth-order rather than (ωL2, ξL2) in the original fourth-order as in the
preceding Figure 7, because it is a reduced form from the sixth-order.

Table 3. The identified parameters of the fourth-order load model.

Parameter Symbol Value Unit

Derived equivalent main structural resonance frequency ω′L1 70 rad/s
Derived equivalent main resonance damping ratio ξ ′L1 0.05 –

Derived equivalent minor structural resonance frequency ω′L2 100 rad/s
Derived equivalent minor resonance damping ratio ξ ′L2 0.186 –

Numerator resonance frequency ω′′L2 80 rad/s
Numerator resonance damping ratio ξ ′′L2 0.034 –

First composite hydro-mechanical resonance frequency ωc1 67 rad/s
First composite hydro-mechanical damping ratio ξc1 0.055 –

Second composite hydro-mechanical resonance frequency ωc2 85 rad/s
Second composite hydro-mechanical resonance damping ratio ξc2 0.15 –

Table 4. The identified parameters of the sixth-order load model.

Parameter Symbol Value Unit

First derived equivalent structural resonance frequency ω′L1 70 rad/s
First derived equivalent resonance damping ratio ξ ′L1 0.05 –

Second derived equivalent structural resonance frequency ω′L2 100 rad/s
Second derived equivalent resonance damping ratio ξ ′L2 0.14 –

Third derived equivalent structural resonance frequency ω′L3 158 rad/s
Third derived equivalent resonance damping ratio ξ ′L3 0.19 –

First numerator resonance Frequency ω′′L2 80 rad/s
First numerator resonance damping ratio ξ ′′L2 0.032 –
Second numerator resonance frequency ω′′L3 130 rad/s

Second numerator resonance damping ratio ξ ′′L3 0.09 –
First composite hydro-mechanical resonance frequency ωc1 67 rad/s

First composite hydro-mechanical damping ratio ξc1 0.055 –
Second composite hydro-mechanical resonance frequency ωc2 85 rad/s

Second composite hydro-mechanical resonance damping ratio ξc2 0.15 –
Third composite hydro-mechanical resonance frequency ωc3 145 rad/s

Third composite hydro-mechanical resonance damping ratio ξc3 0.1 –
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As shown in Figure 15, the load resonances can be modeled as a sixth-order transfer
function with a sufficient precision, while a fourth-order function can match well the first
and second peak but not the third peak.

To observe the hydro-mechanical resonance effect, the open loop response Xpo is
computed by breaking the closed loop response Xp, as shown in Equations (29)–(32).

Cxp = 10
Axp
20
(
cos θxp + i· sin θxp

)
(29)

Cxpo =
Cxp

1− Cxp
(30)

Axpo = 20log10
∣∣Cxpo

∣∣ (31)

θxpo = angle
(
Cxpo

)
(32)

where Cxp and Cxpo are the closed-loop and the open-loop frequency responses of the piston
position Xp represented in the complex form, and Axp, θxp, Axpo, θxpo are corresponding
amplitude and phase responses, respectively.

Equation (29) changes the closed-loop amplitude and phase values into complex
numbers, Equation (30) computes the open-loop complex numbers by the closed-loop ones,
and Equations (31) and (32) give the open-loop amplitude and phase responses.

The calculated open-loop amplitude bode plot is given in Figure 16.
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Figure 16. The open loop dynamics of the piston position Xp loop.

In Figure 16, two obvious hydro-mechanical resonance peaks can be seen clearly
and the third also emerges since its composite frequency ωc3 is 145 rad/s, lower than the
corresponding load structural frequency ω′L3 and located in the plotted frequency scope.
As shown, a sixth-order model fits the data better than a fourth-order.

Additionally, in Figure 16, the combined control strategy can be illustrated in the three
marked regions. While the notch filters deal with the resonances in the high frequency
region 1©, the feedforward improves the tracking precision in the intermediate frequency
region 2©, and the PID upgrades the response in the low frequency region 3©.

5. Experiments

The combined control algorithm as in Section 3 was used, with the parameters shown
in Table 5, where the open loop gain was settled at 20 rad/s. The bode plot of the notch filter
network is given in Figure 17. As shown, a two-notch-filter network was used, with the
second notch frequency selected at 135 rad/s, in the middle of the second and third peak,
i.e., 100 rad/s and 158 rad/s, with a width of around 100 rad/s, the lowest depth at−18 dB,
and the shallowest depth at −5 dB. A three-notch-filter network was shown together, with
a better amplitude performance, but with too much phage lag in the intermediate frequency
region and more complexities, not used so far.



Actuators 2021, 10, 53 15 of 18

Table 5. The principal parameters of the combined control algorithm.

Parameter Symbol Value Unit

Nominal open-loop gain Ko 20 rad/s
Nominal proportional factor KP 1.032 –

The enlargement proportional factor near zero error fK 1.5 –
Nominal integral factor Ki 0.1 –

Nominal differential factor Kd 0.006 –
Feedforward factor K f 0.005 –

Notch filter Resonance Frequency ωn1 67 rad/s
Notch filter Damping Ratio ξn1 0.03 –

Notch filter Resonance Frequency ωd1 70 rad/s
Notch filter Damping Ratio ξd1 0.4 –

Notch filter Resonance Frequency ωn2 135 rad/s
Notch filter Damping Ratio ξn2 0.04 –

Notch filter Resonance Frequency ωd2 135 rad/s
Notch filter Damping Ratio ξd2 0.35 –
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The final compensated output XL1 frequency response is shown in Figure 18, where
the sixth-order simulation curve better fits the data than the fourth-order in most high
frequency amplitude points. It is shown that the specification has been well satisfied. The
response data at the marked frequencies is listed in Table 6.
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Table 6. The compensated load dynamic response at the specified frequencies with the combined
control algorithm.

Frequency (Rad/s) Amplitude (dB) Phase (Degree)

2 0.01 −4.31
4 0.04 −8.07

6.28 0.05 −12.39
10 0.13 −18.89
15 0.49 −28.67
20 0.8 −39.35
30 −0.2 −72.81
40 −0.58 −103.29
50 −1.54 −135.15
60 −3.51 −177.24
70 −14.95 −208.76
80 −22.49 −178.13
90 −18.05 −220.64

100 −20.4 −255.91
110 −24.62 −267.25
120 −30.38 −289.19
130 −38.91 −285.18
140 −43.49 −255.64
150 −41.15 −180.31

The relevant systems were tested in a series of successful launcher flights [25].

6. Discussion

As shown, unlike some applications where the load structural resonance can be
ignored, the understanding and modeling of the controlled target dynamics are criti-
cal in highly dynamic actuation systems, especially for one to drive a complicated load
with multiple DOFs. Due to the dominance of structural load dynamics as illustrated,
hydro-mechanical resonance peaks emerge in the electro-hydraulic actuator piston loop,
demonstrating their non-negligible effects and deserving modeling efforts, whatever an
advanced controller might be used.

Since the demanding system bandwidth is approaching the structural natural frequen-
cies and a frequency response is required as rigorous as specified by a set of amplitude
and phase values at a series of given frequencies, a combined control algorithm has to be
elaborately designed to accommodate specifications in the full cared frequency range. It
was found that the separate use of a two-notch-filter network could not meet the stringent
specification. Fortunately, with a digital control applied, the seemingly complicated al-
gorithm can be easily implemented in software. Moreover, with the digital control, the
pressure transducer or delicate devices can be eliminated in the critical control loop so that
the reduced hardware cost and the higher inherent system reliability could be enjoyed.
Additionally, with more studies, three or more notch filters might be applied.

One may argue that the system model might be simpler if the feedback is taken at the
engine angular output point, because the structural load resonance items in the numerator
outside the loop and denominator inside would be cancelled out and a full closed-loop is
built. Nonetheless, there are the composite hydro-mechanical parts left, which are derived
from the structural items. The modeling and control algorithm would be almost same.

In fact, the cascaded notch filter network can also be applied to actuators whose
loads are described by ordinary one-mass-one-spring models, acting as a low-pass-high-
resistance filter, which is usually welcome in engineering applications.

7. Conclusions

Multiple DOF models were presented to describe the thrust vector dynamics of a high
thrust kerolox launch engine. A baseline fourth-order and a more accurate sixth-order
transfer functions were developed out, with parameters identified by the actuator frequency
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scanning tests and optimized by a full factor method. Normalized system models were
given, comprising a closed-loop for the piston displacement including a fourth-order or
sixth-order composite hydro-mechanical load effect, plus a fourth-order or sixth-order load
structural resonance outside. In addition, the composite hydro-mechanical resonances were
displayed in the open-loop position response. A combined control strategy comprising
a notch filter network, a PID controller and a reduced-order feedforward compensation
was used to obtain satisfactory dynamic performances in the whole interested frequency
range, from low to high. The experiment data matched well with the simulations. It is
demonstrated that, in a high-order dynamic aerospace electro-hydraulic actuation system
where a high and stringent frequency response is required, both an appropriate high-
order model and a delicate combined control strategy are enabling contributors to realize
high performances.
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