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Abstract: The objective of this work is to characterize the nonlinear dependence of the piezoelectric
d15 shear coefficient of a composite actuator on the static electric field and include this effect in finite
element (FE) simulations. The Levenberg-Marquardt nonlinear least squares optimization algorithm
implemented in MATLAB was applied to acquire the piezoelectric shear coefficient parameters. The
nonlinear piezoelectric d15 shear constant of the composite actuator integrated with piezoceramic d15

patches was obtained to be 732 pC/N at 198 V. The experimental benchmark was simulated using
a three-dimensional piezoelectric FE model by taking piezoelectric nonlinearity into consideration.
The results revealed that the piezoelectric shear d15 coefficient increased nonlinearly under static
applied electric fields over 0.5 kV/cm. A comparison between the generated transverse deflections
of the linear and nonlinear FE models was also performed.

Keywords: nonlinear; piezoceramic; d15 shear-mode; composite; optimization

1. Introduction

d15 shear-mode piezoceramics have stronger electromechanical properties than d31
or d33 modes [1,2], and they show nonlinear piezoelectric behavior due to domain wall
motion [3]. The piezoelectric shear strain is boosted by the non-180◦ domain wall mo-
tion [3–6]. The piezoelectric shear response shows linear behavior until a threshold electric
field value is achieved, which matches the potential energy barrier of the non-180◦ domain
walls [3–16]. If the applied electric field exceeds this limiting value, the non-180◦ domain
walls are induced dynamically, and the piezoelectric material reveals nonlinearity [6,7].
It was reported that d15 shear-mode piezoelectric ceramics undergo significantly larger
piezoelectric nonlinearity than d31 mode piezoceramics [3,6–8,11–13]. Piezoelectricity is the
main source of nonlinearity in d15 shear actuators under static electric fields. Piezoelectric
d15 thickness-shear mode actuators can control thickness shear-mode vibrations more
effectively since they induce different deflection patterns than surface-mounted d33 and
d31 actuators. Embedded piezoelectric shear actuators experience less damage and smaller
stresses compared to surface-mounted extension actuators. In addition, they can also be
applied in special configurations to prevent or control torsional deformation in engineering
structures [3].

Mueller, Zhang, and Beige [14,15] studied the nonlinear shear piezoelectric response
of lead zirconate titanate (PZT) piezoceramics under AC electric fields and expressed the
experimental data using power fit equations. Berik et al. [3,16] investigated the piezo-
electric nonlinearity in d15 shear-mode lead-free hard piezoceramic 0.93 (Na0.5Bi0.5TiO3)-0.
07BaTiO3 (NBT-BT-Mn) material and d36 shear-mode piezoelectric BZT-BCT lead-free
single crystals. Benjeddou [17,18] provided multidisciplinary reviews on shear-mode
piezoceramics and field-dependent nonlinear piezoelectricity. Malakooti and Sodano [4,5]
investigated the nonlinearity in the piezoelectric shear response of a single soft piezoce-
ramic plate by applying bipolar and unipolar harmonic triangular electric fields under
dynamic operational conditions. Hagiwara et al. [8] studied the nonlinear shear response
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in (K,Na)NbO3-based lead-free piezoceramics at a high frequency of 150 kHz. Trindade
and Kakazu [19] presented some theoretical results on the application of the piezoelectric
nonlinear effect in shear actuation of sandwich beams; however, experimental analysis was
not performed in their study, and the piezoelectric coefficients used in the FE analysis were
taken from Mueller and Zhang’s work [14], which was conducted under AC electric fields.

This paper presents an optimization method for nonlinear piezoelectric material
parameter estimation in d15 shear-mode composite actuators. The piezoelectric parame-
ters were retrieved from the experimental data to characterize the nonlinear piezoelectric
d15 shear coefficient of a smart composite. The least squares optimization algorithm in
MATLAB was applied to determine the piezoelectric material parameters. The nonlinear
responses in the finite element simulations were obtained by including the parameters of
the nonlinear piezoelectric d15 coefficients. Following on previous work of the authors
on piezoceramic d15 shear-induced composite actuators [20], the present paper especially
contributes to the investigation of piezoelectric d15 shear coefficient using the least squares
optimization algorithm. An analysis of the nonlinearity of shear-mode piezoelectric com-
posite actuators is crucial for their design because shear-mode d15 actuators are often
integrated with composite structures in various engineering applications. The rest of
the paper is organized as follows: Section 2 presents the technique used to estimate the
piezoelectric d15 shear coefficient, then Section 3 focuses on the nonlinear finite element
simulation. Conclusions are summarized in Section 4.

2. Estimation of Parameters of Piezoelectric d15 Shear Coefficient
2.1. ESPI Measurements

To investigate the piezoelectric shear response under static electric field, an ESPI
system (Dantec-Ettemeyer ESPI Q300) with in-plane and out-of-plane measurement config-
urations was used (Figure 1). The two-stack and four-stack piezoceramic benchmarks were
constructed according to the design presented in Figure 2. Soft piezoceramic PIC255 shear
patches of dimensions 25 × 25 × 0.5 mm3 were supplied from PI (Munich, Germany). The
material properties of the piezoceramic material are provided in Table A1, Appendix A.
The outer surfaces of the shear patches are covered with thin-film Au electrodes.

Piezoelectric shear constants were extracted from the detected shear-induced length
displacements of the piezoceramic d>15 single and stack benchmarks and out-of-plane
transverse deflections of a cantilevered smart composite structure (Figure 2). The other
setup equipment included was a high-voltage (HV) amplifier model T-502, a laboratory
power supply type EA 3016, and an ISTRA data processing software for the control and
evaluation of the ESPI system.
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Figure 3 shows photographs of the experimental assembly and corresponding cross-
sectional views.
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Figure 3. (a) Experimental assembly with two-stack and four-stack actuators, and cross-sectional
views of (b) two-stack and (c) four-stack piezoceramic benchmarks.

At the first step, the piezoelectric d15 shear constant was evaluated in single and stack
actuator configurations in order to obtain its original value at high applied voltages prior
to integration in the composite structure. Stack design was selected for the piezoelectric
d15 stack actuator since it produces enhanced displacements that can be more accurately
measured by the ESPI system depending on the number of layers and applied voltage. Since
the shear-induced length (x-direction) displacements of the stack actuators at low applied
voltages were not detected well by the ESPI system, measurements were performed at
199 V as the highest limiting voltage. The detected x displacements of the single, two-stack,
and four-stack actuators under an applied voltage of 199 V (3.98 kV/cm) are presented in
Figure 4.
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Figure 4. x-direction displacement distributions and their variation through the thickness at the end
of the actuator produced by single actuator (a,b), two-stack actuator (c,d), and four-stack actuator
(e,f) under an applied voltage of 199 V.

The piezoelectric shear d15 constant was extracted from measured length displace-
ments using Equation (1) [21–23], and its values are presented in Table 1.

D = nd15V (1)
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where D represents the measured displacement along the x-direction, V is the applied
voltage, and n is the number of the piezoceramic layers in the stack actuator.

Table 1. Displacement D and d15 constant values of length shear-mode stack actuators at 199 V
(3.98 kV/cm) applied voltage.

Type D, Displacement (µm) d15 Constant (pC/N)

1 layer 0.156 783
2-stack 0.288 723
4-stack 0.546 686

It should be noted that different benchmarks were used in the three cases listed in
Table 1. Since the adhesive layers have a significant effect on the generated output, it is
common to obtain slightly different d15 coefficients from different benchmarks. Figure 5a,b
shows the schematic and the experimental model of the composite benchmark. Out-of-
plane deflections of the smart composite structure were measured using an electronic
speckle pattern interferometry (ESPI system) (Dantec-Ettemeyer ESPI Q300). Soft piezo-
ceramic PIC255 shear patches of dimensions 25 × 25 × 0.5 mm3 were supplied from PI
Germany. Polyspeed G-EV 760 R glass fiber/epoxy layers with 0.49 mm thickness from
Hexcel Austria were used as the sandwiching face layers. The material properties of the
piezoceramic, glass/fiber epoxy, and adhesive materials are provided in Appendix A. The
experimental benchmark used in the data extraction was in 75 mm length. The face layers
of the benchmark were white-coated so that the speckles occurring during the applied
voltage could be better detected. The benchmark was clamped to a holder and cantilevered.
A detailed description of the experimental procedure can be found in the author’s previous
work [20].

Piezoelectric transverse shear is obtained by applying an electric field perpendicular
to the polarization direction of the material. The piezoelectric constitutive equation of the
transverse shear strain γxz in terms of the applied electric field Ez and the piezoelectric
shear strain coefficient d15 is expressed as:

γxz = d15Ez (2)

Actuators 2021, 10, x FOR PEER REVIEW 7 of 15 
 

 

Table 1. Displacement D and 𝑑ଵହ constant values of length shear-mode stack actuators at 199 V 
(3.98 kV/cm) applied voltage. 

Type D, Displacement (µm) 𝒅𝟏𝟓 Constant (pC/N) 
1 layer 0.156 783 
2-stack 0.288 723 
4-stack 0.546 686 

It should be noted that different benchmarks were used in the three cases listed in 
Table 1. Since the adhesive layers have a significant effect on the generated output, it is 
common to obtain slightly different 𝒅𝟏𝟓 coefficients from different benchmarks. Figure 
5a,b shows the schematic and the experimental model of the composite benchmark. Out-
of-plane deflections of the smart composite structure were measured using an electronic 
speckle pattern interferometry (ESPI system) (Dantec-Ettemeyer ESPI Q300). Soft pie-
zoceramic PIC255 shear patches of dimensions 25 × 25 × 0.5 mm3 were supplied from PI 
Germany. Polyspeed G-EV 760 R glass fiber/epoxy layers with 0.49 mm thickness from 
Hexcel Austria were used as the sandwiching face layers. The material properties of the 
piezoceramic, glass/fiber epoxy, and adhesive materials are provided in Appendix A. The 
experimental benchmark used in the data extraction was in 75 mm length. The face layers 
of the benchmark were white-coated so that the speckles occurring during the applied 
voltage could be better detected. The benchmark was clamped to a holder and cantile-
vered. A detailed description of the experimental procedure can be found in the author’s 
previous work [20]. 

 
(a) 

Figure 5. Cont.



Actuators 2021, 10, 168 8 of 15
Actuators 2021, 10, x FOR PEER REVIEW 8 of 15 
 

 

 
(b) 

Figure 5. (a) Schematic composite benchmark and (b) experimental model with zoomed view of 
the benchmark. 

Piezoelectric transverse shear is obtained by applying an electric field perpendicular 
to the polarization direction of the material. The piezoelectric constitutive equation of the 
transverse shear strain γxz in terms of the applied electric field Ez and the piezoelectric 
shear strain coefficient 𝑑ଵହ is expressed as: 

15xz zd Eγ =  (2)

2.2. Parameter Identification of Piezoelectric 𝑑ଵହ Shear Coefficient 
Mueller and Beige [14] proposed that the nonlinear piezoelectric shear 𝑑ଵହ response 

in soft piezoceramics can be expressed by power fit equation at applied electric fields 
above the threshold as: 

( )15 15 15( ) 1lin nld E d d E
β 

= + 
 

 (3)

where 15
lind  is the linear piezoelectric shear coefficient, E is the applied electric field, and 

piezoelectric nonlinearities of soft piezoceramics above the threshold field can be de-

scribed by the additional coefficients 15
nld  and β , which are to be computed from fit-

ting measurement data. 
Fitting the parameters to experimental data is an essential part of nonlinear modeling 

of piezoelectric response in 𝑑ଵହ shear-mode smart composites. Piezoelectric shear 𝑑ଵହ 
constants were extracted from the measured shear-induced transverse deflections of the 
cantilevered smart composite structure (Figure 5a,b) using least squares optimization al-
gorithm in MATLAB. Function lsqcurvefit is particularly capable of fitting mathematical 
models to experimental data; for this reason, it was selected with the Levenberg–Mar-
quardt algorithm to apply the least squares optimization method leading to the estimation 
of piezoelectric material parameters in this work. The top-level function lsqcurvefit ena-
bles fitting parameterized nonlinear functions to data by calling sub-level functions. It 
requires a user-defined function, the model equation, and an initial estimate for the pa-
rameters to be fitted. Choosing an initial guess of the variable parameters is crucial to 

Figure 5. (a) Schematic composite benchmark and (b) experimental model with zoomed view of
the benchmark.

2.2. Parameter Identification of Piezoelectric d15 Shear Coefficient

Mueller and Beige [14] proposed that the nonlinear piezoelectric shear d15 response in
soft piezoceramics can be expressed by power fit equation at applied electric fields above
the threshold as:

d15(E) = dlin
15

[
1 +

(
dnl

15E
)β
]

(3)

where dlin
15 is the linear piezoelectric shear coefficient, E is the applied electric field, and

piezoelectric nonlinearities of soft piezoceramics above the threshold field can be described
by the additional coefficients dnl

15 and β, which are to be computed from fitting measure-
ment data.

Fitting the parameters to experimental data is an essential part of nonlinear modeling
of piezoelectric response in d15 shear-mode smart composites. Piezoelectric shear d15
constants were extracted from the measured shear-induced transverse deflections of the
cantilevered smart composite structure (Figure 5a,b) using least squares optimization
algorithm in MATLAB. Function lsqcurvefit is particularly capable of fitting mathematical
models to experimental data; for this reason, it was selected with the Levenberg–Marquardt
algorithm to apply the least squares optimization method leading to the estimation of
piezoelectric material parameters in this work. The top-level function lsqcurvefit enables
fitting parameterized nonlinear functions to data by calling sub-level functions. It requires
a user-defined function, the model equation, and an initial estimate for the parameters to
be fitted. Choosing an initial guess of the variable parameters is crucial to reduce the risk
of converging to incorrect parameters. The Levenberg-Marquardt algorithm (LMA) is an
iterative optimization technique used to solve nonlinear least squares problems. Levenberg–
Marquardt algorithm interpolates between gradient descent and Gauss–Newton methods
at each iteration and updates the solution. LMA is used to conduct a curve fitting to
measured data by minimizing the following expression:

S(ϕ) =
n

∑
i=1

(yi − f (xi, ϕ))2 (4)
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yi are the collected data measured at points xi. The parameter ϕ is varied to minimize the
error S(ϕ) of the function f (xi, ϕ).

The extracted parameters of the piezoelectric shear strain d15 coefficient (pC/N) at
each applied electric field E (kV/cm) are expressed as:

d15(E) = 550
[
1 + (0.9E)1.07

]
(5)

A comparison of the experimental and curve-fitted tip displacement values is pre-
sented in Figure 6. Equation (5) shows structural conformity with Equation (3) provided
in [14]. The d15 constant with a value of 732 pC/N at 198 V (3.96 kV/cm) showed 33%
enhancement with respect to the linear d15 value of 550 pC/N.
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Figure 6. Comparison of experimental and optimized tip displacement values.

Measured and curve-fitted dependence of the piezoelectric shear coefficients of the
composite actuator on the electric field and comparison to the values reported by the man-
ufacturer (PI) [24] are shown in Figure 7. The comparison showed reasonable agreement.
Since our benchmarks are different from PI’s, it is normal to obtain slightly different d15
coefficients. Adhesive layers, boundary conditions, glass fiber/epoxy, and clamp also play
significant roles in the generated output. A maximum difference of 7% happened at the
highest applied electric field. According to the information provided by the manufacturer
(PI), the experimental procedure applied by PI was as follows: the small signal values of d15
were determined based on EN 50324-2, and the boundary condition was friction-resistant
on one side and pseudo-floating bearing on the other. Inductive and capacitive sensors
were used in measurements conducted by the manufacturer.

The measured and curve-fitted tip displacement values and extracted piezoelectric
shear coefficients of the piezoelectric d15 shear-mode composite actuator under different
applied electric field values are presented in Table 2. As it can be seen, the results showed
good agreement, with a maximum deviation percent of 1.93% at 3.58 kV/cm. The extracted
d15 values of the shear-mode composite actuator demonstrated reasonable agreement
with the measured values of shear-mode stack actuators with a maximum error deviation
percent of 6.97% at the highest applied voltage.
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Table 2. Displacement and d15 values of thickness shear-mode composite actuator.

Applied Electric
Field (kV/cm)

Experimental
Displacement

(µm)

Curve-Fitted
Displacement

(µm)

Deviation
Percentage (%)

Piezoelectric d15
Constant (pC/N)

3.96 9.080 9.106 0.286 732
3.58 8.180 8.022 1.931 713
2.74 5.850 5.789 1.043 672

3. Finite Element (FE) Simulations Considering the Nonlinear Effect

In this section, the piezoelectric nonlinear response of the d15 shear-mode composite
actuator (Figure 5) is simulated under different applied voltages using ANSYS© software
(Figure 8). The previously developed linear model [20] is extended here by considering the
nonlinear dependence of piezoelectric d15 shear constant on the applied electric field and by
taking the effect of 0.1 mm thick adhesives into consideration. The material properties used
in the FE computations for the piezoceramic, glass/fiber epoxy, and adhesive materials are
provided in Appendix A. Electromechanical material properties were obtained from the
manufacturer (PI), and material properties of the glass fiber epoxy were experimentally
measured as previously reported in [20]. To compute numerical responses considering
the nonlinear effect, at each applied voltage, its corresponding nonlinear piezoelectric
nonlinear shear coefficient, which was obtained from the experiment, was applied in the
FE simulation. Piezoelectric and elastic quadratic hexahedral elements were used with in-
plane mesh finite elements of size 0.5 mm. The number of through-the-thickness elements
in the glass fiber/epoxy, adhesive, and piezoelectric core layers is 2, 1, and 2, respectively
(Figure 8b). A tip displacement convergence analysis was performed to obtain a converged
mesh (Figure 9). The mesh that was selected for the evaluation included 60,000 hexahedral
elements and 267,717 nodes.
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The surface distribution of the transverse shear deflection of the finite element simula-
tion considering the nonlinearity and ESPI measurement at an applied voltage of 198 V are
presented in Figure 10a,b.
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Figure 10. Transverse deflection surface distribution in (a) nonlinear FE simulation and its comparison
to the (b) ESPI under applied voltage of 198 V.

The generated tip displacements of the linear and nonlinear finite element simulations
are presented in Figure 11, along with the experimental displacement values in Table 3. The
finite element model with nonlinearity produced higher displacement values and showed
a 33% increase at 198 V with respect to the linear model. The nonlinear effect starts to
become significant at 0.5 kV/cm.

It can be observed that boosting the applied electric field results in an increased piezo-
electric shear coefficient and the relative difference between the two models. These results
reveal that piezoelectric nonlinearity cannot be ignored and should be considered in the
design of shear-mode soft piezoceramic composite actuators because the real displacement
can be much higher than the one anticipated by the linear finite element model.
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Table 3. Displacement and d15 values of thickness shear-mode composite actuator.

Applied Electric
Field (kV/cm)

Experimental
Displacement (µm)

FE (Nonlinear)
Displacement (µm)

FE (Linear)
Displacement (µm)

3.96 9.080 9.130 6.860
3.58 8.180 8.033 6.202
2.74 5.850 5.782 4.747

4. Conclusions

In this work, the parameters of the nonlinear piezoelectric shear d15 coefficient of a
smart composite actuator were predicted using the least squares optimization technique.
MATLAB lsqcurvefit function with Levenberg–Marquardt algorithm (LMA) was used for
piezoelectric material parameter extraction of d15 shear-mode composite actuator, imple-
menting the least squares fitting. The piezoelectric shear constants of length shear-mode
single and stack actuators and thickness shear-mode composite actuator demonstrated a
reasonably acceptable correlation.

Nonlinear finite element simulations were conducted using piezoelectric shear coef-
ficients extracted from the experiments. The findings disclosed that the nonlinear finite
element model showed a 33% increase in displacement value at 198 V with respect to the
linear model of this d15 shear-mode lead-based PIC255 piezoceramic integrated composite
actuator. It can be concluded that the inclusion of piezoelectric nonlinearity is a requirement
in the realistic design of the d15 shear-mode composite actuators.
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Appendix A

Table A1. Material properties.

Materials Constants Notations Values

PIC255
(axially poled)

piezoelectric coupling
stress constant (Cm−2)

e15 = e24 11.9
e31= e32 –7.15

e33 13.7

permittivity constants
at constant strain (nFm−1)

∈S
22=∈S

33
∈S

11

8.234
7.588

Young’s moduli (GNm−2)
E2 = E3 62.89

E1 47.69

Shear Moduli (GNm−2)
G13= G12 22.26

G23 23.15

Poisson’s ratios
v13= v12 0.46

v23 0.36

Density (kgm−3) 7800

Glass fiber/epoxy Young’s moduli (GNm−2)
E2 = E3 13.1

E1 33.11

Shear Moduli (GNm−2)
G13= G12 3

G23 2.3

Poisson’s ratios
v13= v12 0.27

v23 0.40

Adhesive Young’s modulus (GNm−2) E 1.03

Poisson’s ratio v 0.37
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