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Abstract: Conveyors are one of the important components of transport systems and are used in almost
all branches of mechanical engineering. This paper investigates the dynamics of the intermittent
motion conveyor mechanical system. The mechanical transmission is a planetary mechanism with
elliptical gears, in which the intermittent motion of the output shaft is provided by a variable gear
ratio of non-circular gears. A single-mass dynamic model is built by reducing the masses, forces
and moments to the initial link, which is the input shaft of the mechanism. The solutions of the
equations of initial link motion were obtained using two methods, the energy-mass method and
the third-order Hermite method. Dynamic studies by the energy-mass method made it possible to
determine flywheel moment of inertia to reduce the coefficient of initial link rotation irregularity.
The convergence of the functions of the initial link angular velocity obtained by both methods was
confirmed. The results can be used for further force analysis, strength calculations, design and
manufacture of the conveyor.

Keywords: intermittent motion; planetary gear; elliptical gears; dynamic analysis; mechanical
actuator design

1. Introduction

Transportation structures consisting of conveyors and their systems are widely used
in various branches of modern industry: coal, mining, electric power, machining, chemical,
food and many other fields [1–3]. Belt conveyors have become widespread due to their
high loading capacity, speed and the possibility of transportation over long distances [4,5].
The belt is the weakest link of conveyor, therefore, a large number of papers are devoted
to the strength calculations of the belt [6–10], as well as the diagnostics of belt conveyors
using inspection robots [11] and computer vision [12–15].

For the purpose of rational mechanical design and operation of conveyors, much
attention of researchers should also be paid to other components of drive systems: bear-
ings [16], gearboxes [17], idlers [18]. The design of the conveyor actuator is currently a
relatively well-known and widely studied problem, especially in the particular case when
the conveyor belt moves at a constant speed. However, many production lines require
stopping the conveyor belt for various operations on the product, and this issue can be
solved using mechanical drives of intermittent motion.

The intermittent motion mechanisms make it possible to have the required duration
stops of the output link with constant angular velocity of the input link [19]. The mechanical
system “electric motor—actuator—working element (for example, a conveyor pulley)” is
rational construction, since the motor operates in the most efficient constant mode, and the
efficiency of the mechanical transmission is high. The most common type of mechanical
device for the implementation of intermittent movement is the Maltese cross (Geneva
drive) [20]. Although it has been researched and modernized [21,22] over the decades, the
Geneva drive has a significant disadvantage. Intermittent movement in such mechanisms
is provided due to the rupture of the kinematic chain, which leads to shocks that occur at
the beginning and end of the movement phase [23].
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In recent years, scholars have been increasing their attention to the research of me-
chanical transmissions with non-circular gears as the most effective method for realizing
nonlinear transfer functions [24–26]. This type of mechanical transmission also makes
it possible to realize the intermittent motion of the output link without breaking the
kinematic chain. Non-circular gears can have various shapes, but the most common are
elliptical ones [27–29]. This is mainly due to extensive studies of their geometry and
kinematics [30,31], the solution of various problems of their manufacture [32,33].

An important place in the study of machines and actuators is given to the study of
their dynamics, which makes it possible to find the laws of motion of the machine parts,
to perform analysis of the forces acting on the working bodies, to identify irrationally
functioning units, to investigate and optimize the operating modes of the device, as well
as the overall design [34–37]. However, most of the papers on the creation of non-circular
gears are devoted only to the geometry and kinematics of these mechanisms, while the
issues of their dynamics are much more complex and not studied. Nevertheless, some
applied problems of the dynamics of non-circular gears have been solved. For exam-
ple, Xing Liu et al. [38] carried out a theoretical and experimental study of the dynamic
performance of elliptical gears with rotational axes at the focus and center of the pitch
ellipse. Nan Gao et al. [29] investigated parametric vibrations and instabilities of elliptical
gears caused by loading torque and eccentricity vibrations. Zhiqin Cai and Chao Lin [39]
presented and investigated a generalized nonlinear dynamic model of a curved gear drive
based on Lagrange–Bondon graphs. Many researchers have considered the issues of
dynamics in relation to practical applications of mechanical devices [38–40] containing
non-circular gears, since dynamic models include the parameters of the technological load
on the working body of the machine.

Complex nonlinear functions of fluctuations in the speed oflinks of cyclic mechanisms,
which also include transmissions by non-circular gears, lead to irregular movement of the
input (initial) link of the mechanism, to which the motor shaft is connected directly or
through a gearbox. Speed fluctuations on the motor shaft cause vibrations of the machine
body, and cause noise, vibration, and reduced drive reliability. Therefore, in this study, it is
proposed to construct and study a single-mass dynamic model of the intermittent-motion
conveyor actuator in order to determine the function of the angular velocity of the initial
link, identify the irregularity of its motion and determine the inertial characteristics of the
flywheel to reduce the coefficient of irregularity to the permissible values.

2. Description of the Conveyor Actuator Mechanical System and Problem Statement

The object of research is the conveyor actuator; a simplified scheme (Figure 1) includes
the electric motor 1, planetary mechanism of intermittent motion 2, and a working body
3 (drive pulley of conveyor). In the considered schematic, the motor shaft is connected
directly to the input shaft of the planetary mechanism, and the axis of the drive pulley is
rigidly connected to the output shaft.
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Intermittent motion of the conveyor pulley is ensured by mechanically converting
the uniform rotational motion of the input shaft into non-uniform motion with stops of
the output shaft. The design of the planetary gear with elliptical gears, which allows this
transformation, is considered in [31] and is shown in Figure 2.
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Figure 2. Intermittent motion planetary mechanism with elliptical gears.

The rotation of the motor shaft is transmitted to the input shaft 1 and the carrier 2.
The rotational movement of the carrier causes the spur gear 7 to roll around the fixed gear
4. Motion of the spur gear 7 is transmitted to the satellite shaft 9 and the elliptical gear
8, which drives the elliptical gear 5 and, accordingly, the output shaft 3. At the moment
when the gear ratio of the pair of elliptical wheels is equal to the gear ratio of the pair of
circular wheels, the output shaft 3 stops. Further, the speed of the output shaft increases to
a maximum value, then decreases again to zero, which leads to an intermittent motion of
the output shaft. Intermittent motion of the output link is provided in a special case: the
radius of the circular gear must meet one of two conditions: R = a− c or R = a + c, where
a and c are semi-major axis and focal distance of the pitch ellipse [31]. The second satellite,
containing the counterweight 10, the elliptical gear 11 and the shaft 12, is necessary to
balance the mechanism [41] and repeats the movement of the first satellite. Intermittent
motion is transmitted to the driving pulley, which drives the conveyor belt and the driven
pulley. Since the output shaft of the planetary mechanism rotates with stops, the load on
the conveyor belt will move in translational motion with stops.

The planetary actuator has one degree of freedom, and its links are rigidly connected to
each other, therefore, to solve the set problem, it is advisable to replace the real mechanism
with a single-mass dynamic model, taking input shaft 1 as the reduction link. The equation
of motion of the driving link for a mechanical system with one degree of freedom has the
following form [42]:

ω2
1

2
· dIr

dϕ1
+ ε1·Ir = Mrr + Mrd (1)



Actuators 2021, 10, 174 4 of 12

where ϕ1, ω1, ε1 are the rotation angle, angular velocity and angular acceleration of the
reduction link 1, Ir is reduced to link 1 moment of inertia, Mrr is reduced to link 1 resistance
moment, Mrd is reduced to link 1 driving moment.

The aim of the work is not only to find the law of motion of the reduction link ω1(t),
but also to conduct a deeper dynamic analysis of the mechanical system, namely, to find the
driving moment, the moment of inertia of the flywheel and reduce the rotation irregularity
of the drive link. Therefore, to study the obtained dynamic model, a simpler and more
visual energy-mass method is used, and the verification of the obtained solutions is carried
out using a numerical method, the third-order Hermite interpolation function [43].

3. Description and Construction of a Dynamic Model
3.1. Reduced Inertia Moment

The parameter characterizing the mass-inertial characteristics of the mechanism,
taking into account its kinematics, is the reduced moment of inertia [42]:

Ir = ∑n
i=1 miS′

2
i + ∑n

i=1 ISi ϕ
′2
i , (2)

where n is the number of movable links in which masses and moments of inertia are known;
mi is the mass of the i-th link; ISi is the moment of inertia of the i-th link relative to the axis
passing through the center of mass; S′ i =

dSi
dϕ1

is the velocity analogue of the center of mass

of the i-th link; ϕ′ i =
dϕi
dϕ1

is the angular velocity analogue of the of the i-th link.
Equation (2) for the investigated mechanical system will take the form:

Ir = Im + I1 + I2 + (m7 + m9 + m10 + m12)·S′29 + (m8 + m11)·S′28+
(I7 + I8 + I9 + I10 + I11 + I12)·ϕ′29 + (I3 + I5 + I6 + Iwb)·ϕ′

2
3,

(3)

where Im is the moment of inertia of the motor; Iwb is the moment of inertia of the working
body. The moments of inertia and velocity analogues of the actuator links are designated
in accordance with Figure 2.

Differentiating (3) with respect to the generalized coordinate ϕ1, we obtain:

dIr
dϕ1

= 2·[(m7 + m9 + m10 + m12)·S′9·S′′ 9 + (m8 + m11)·S′8·S′′ 8+
(I7 + I8 + I9 + I10 + I11 + I12)·ϕ′9·ϕ′′ 9 + (I3 + I5 + I6 + Iwb)·ϕ′3·ϕ′′ 3].

(4)

The functions of linear and angular velocities analogues, describing the kinematics of
the mechanism and included in Equations (3) and (4), are determined using the plan of the
velocities [44] of the mechanism links (Figure 3).
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The analogue of the angular velocity of the output link 3, according to Figure 3, is
defined as:

ϕ′3 =
ω3

ω1
=

VD·AC
VC·DE

, (5)

where VD and VC are the velocities of points D and C, AC and DE are the lengths of the
segments in Figure 3.

Considering that VD
VC

= BD
BC from the similarity of the triangles BDD’ and BCC’, we

obtain the following:

ϕ′3 =
BD·AC
BC·DE

. (6)

The distances AC and BC in Equation (6) are determined as:

AC = R1 + R2; (7)

BC = R2, (8)

where R1 is the radius of the sun wheel 4, R2 is the radius of the cylindrical wheel 6 of
the satellite.

The lengths of the segments BD and DE are determined through the length of the
segment CD, which is found using the equation of the centroid of the elliptical wheel [45]:

CD = ρ =
a·
(
1− e2)

1 + e· cos ϕ8
, (9)

where ϕ8 = R1
R2

ϕ1 is the angle of rotation of the elliptical wheel 8; a, e are semi-major axis
and eccentricity of the pitch ellipse.

Then, according to Figure 3, the segments BD and DE are defined as:

BD = BC− CD; (10)

DE = AC− CD. (11)

Substituting (7)–(11) into (6), we obtain an equation for determining the analogue of
the output shaft angular velocity:

ϕ′3 = 1− R1ρ

R2(R1 + R2 − ρ)
. (12)

Also, to construct a dynamic model, it is necessary to determine the analogue of the
angular velocity of the satellite ϕ′9 and analogues of the linear velocities of the centers of
mass of links 7, 9 (point C in Figure 4) S′9 and link 8 (point K in Figure 4) S′8.
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Velocity analogues are determined as follows:

S′9 =
VC
ω1

=
ω1·AC

ω1
= R1 + R2; (13)

ϕ′9 =
ω9

ω1
=

VC
R2·ω1

=
S′9
R2

=
R1 + R2

R2
; (14)

S′8 =
VK
ω1

=
ω9·BK

ω1
= ϕ′9·BK =

(R1 + R2)·BK
R2

. (15)

The segment BK is determined from the triangle BCK (Figure 4):

BK =
√
(a·e)2 + R2

2 − 2·a·e·R2·cos ϕ8. (16)

Thus, the obtained equations of kinematics (12)–(16) make it possible to determine,
using (3), (4), the reduced moment of inertia of the mechanism and its derivative.

3.2. Reduced Moment of Resistance Forces

An important parameter used in Equation (1) and characterizing the operation of the
considered mechanical system is the reduced moment of resistance (Mrr). It takes into
account the work of all external forces and moments (excluding the driving moment) acting
on the machine: forces and moments of useful resistance forces, forces and moments of
harmful resistance, gravity forces. The reduced moment of resistance forces, in the general
case, is defined as:

Mrr =
n

∑
i=1

(
m

∑
i=1

Fi·S′ i +
q

∑
i=1

Mi·ϕ′ i

)
, (17)

where n is the total number of moving links; m is the number of forces F acting on the
i-th link; S′ i is the velocity analogue of the force point of application; q is the number of
moments M acting on the i-th link.

The forces of harmful resistance are the forces of friction acting in the kinematic pairs
of the mechanism: bearings, gearing, etc. Determination of these forces is a rather difficult
task, and their values are small in comparison with other resistance forces, therefore, in the
conditions of the studied mechanical system, the friction forces were not taken into account.

The design scheme for determining works of the gravity forces acting on the links of
the mechanism is shown in Figure 5.
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As can be seen from Figure 5, the axes of rotation of all links are parallel to the
horizontal plane Oxy. The gravity forces of the links with the centers of mass on the fixed

axes (
→
G1,

→
G2,

→
G3) do not perform work, since the vertical displacement in this case is equal

to zero. The forces of gravity applied to the centers of mass of the satellites and elliptical
gears will perform work, which is defined as:

AG = ∑ mig·Siz, (18)

where mi is the mass of the i-th link, Siz is the displacement of the i-th link along the z
axis. The masses of the links lying on the opposite satellites are equal, from the conditions
of balancing the mechanism [41], and the displacements along the z-axis are equal in
module, but have opposite directions. Thus, the sum of the work of all gravity forces in the
investigated mechanical system will be equal to zero.

A useful resistance acts on the working body of the investigated mechanical system
(the drive pulley of the conveyor), which is taken into account in the dynamic model and
affects the laws of motion of the links of the mechanism. It is assumed that there is a load
of constant mass on the conveyor belt, and the useful resistance is modeled by a constant
moment M = 4.67 nm.

Thus, since only the moment of resistance acts on the working body in the investigated
device, then Equation (17) for determining the reduced moment of resistance will take
the form:

Mrr = Mr·ϕ′3. (19)

3.3. Initial Parameters for Dynamic Analysis

As an example, a conveyor with the following parameters was investigated (the
numbers of the links correspond to Figure 2): Im = 100 g·cm2 (motor); I1 = 9.8 g·cm2;
I2 = 600 g·cm2; I3 = 30.4 g·cm2; I5 = I6 = 627 g·cm2; I7 = 998 g·cm2, m7 = 0.39 kg; I8 = I11 =
564 g·cm2, m8 = m11 = 0.09 kg; I9 = 19.2 g·cm2, m9 = 0.04 kg; I10 = 972 g·cm2, m10 = 0.38 kg;
I12 = 25 g·cm2, m12 = 0.05 kg; Iwb = 1500 g·cm2 (working body); R1 = 40 mm, R2= 10 mm,
a = 25 mm, e = 0.6; permissible coefficient of rotation irregularity [δ] = 0.05. The input shaft
of the actuator is driven by a motor whose rotation speed ω1 = 157 rad/s (n1 = 1500 rpm).

4. Numerical Modeling Results

Integrating (12) over the generalized coordinate ϕ1, we obtain a graph of the depen-
dence of the angle of rotation of the output shaft ϕ3 on the angle of rotation of the input
shaft ϕ1 (Figure 6).
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As shown on the graph in Figure 6, the output shaft makes one stop every four
revolutions of the input shaft. According to Equations (3) and (4), the graphs of the
functions of the reduced moment of inertia Ir and its derivative dIr

dϕ1
from the angle of

rotation of the input link ϕ1, taking into account given initial parameters, are plotted
in Figure 7.
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In accordance with the energy-mass method, the increment of kinetic energy ∆T is
determined as follows:

∆T = Ad − Ar, (20)

where Ad is the work of the driving moment, Ar is the work of the moment of resistance.
The works in Equation (20) will be determined as:

Ad = Mrd·ϕ1; (21)

Mrd =

∫ 2π
0 Mrrdϕ1

2π
; (22)

Ar =
∫ ϕ1

0
Mrrdϕ1. (23)

Using Equations (20)–(23), the graphs of the functions Ar, Ad, ∆T were obtained
(Figure 8).
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The angular velocity of the reduction link will be determined as [42]:

ω1 =

√
2∆T − Cmax − Cmin

Ir
, (24)

where Cmax and Cmin are determined as:

Cmax = max
[

∆T − 1
2

Irω2
av(1 + [δ])

]
; (25)

Cmin = min
[

∆T − 1
2

Irω2
av(1− [δ])

]
. (26)

Using (24)–(26) and the calculation results (Figures 7 and 8), the function ω1(ϕ1) was
obtained. Substituting the initial data and values of Mrd and ω10, the equation of motion
of a single-mass mechanical system (1) was also solved using the third-order Hermite
interpolation function. The result obtained in the form of a graph of a function ω1(t) is
overlaid on the graph obtained by the energy-mass method, which is traditional for the
study of machines (Figure 9).
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It can be seen from the graph ω1(ϕ1) that the angular velocity of the reduction link is
not a constant value and fluctuates around the average value. The velocity fluctuations
are determined by the intra-cycle change in the gear ratio of the mechanism with elliptical
gears. Irregularity of the initial link motion is characterized by the coefficient of rotation
irregularity, which, in accordance with [42], is determined as:

δ =
ω1max −ω1min

ωav
. (27)

Preliminary calculations showed that the value of the irregularity coefficient exceeds
the permissible value [δ] = 0.05. Consequently, it is required to install a flywheel in the
investigated actuator of the conveyor.

Flywheel moment of inertia I f will be determined as:

I f =
Cmax − Cmin

[δ]·ω2
av

. (28)
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After substitution in Equation (28) Cmax, Cmin, [δ] and ωav, the required moment of
inertia of the flywheel is obtained (I f = 0.01 kg·m2). Taking into account the flywheel
installation, the angular velocity of the reduced link will be determined as:

ω1 =

√
I f ·ω2

av·(1 + [δ])− 2(Cmax − ∆T)
I f + Ir

. (29)

Using Equation (29) and the results of previous calculations, a graph of the function
ω1(ϕ1) is constructed. The graph also shows the numerical solution of Equation (1) by the
Hermite method, taking into account the moment of inertia of the flywheel (Figure 10).
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As can be seen from the graphs, the installation of the flywheel made it possible to
reduce rotation irregularity of the reduction link. The irregularity coefficient has decreased
to the permissible value [δ] = 0.05.

5. Conclusions

In the present study, a single-mass dynamic model of the intermittent-motion conveyor,
the actuator of which is a planetary mechanism with elliptical gears, is constructed and
investigated. Analysis of the presented mathematical model made it possible to highlight
the following innovation results and conclusions:

• laws of motion of the reduction link (the input shaft of the mechanism) are obtained
using the energy-mass method and the third-order Hermite interpolation function;

• analysis of the input link rotation irregularity is carried out;
• moment of inertia of the flywheel to reduce the irregularity coefficient is determined.

Studies have shown the convergence of the laws of motion obtained by various
methods. The results of dynamic analysis can be used in the design and calculation of
conveyors with the proposed planetary mechanism as part of the actuator.
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