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Abstract: This work addresses a pattern-moving-based partial form dynamic linearization model
free adaptive control (P-PFDL-MFAC) scheme and illustrates the bounded convergence of its tracking
error for a class of unknown nonaffine nonlinear discrete-time systems. The concept of pattern
moving is to take the pattern class of the system output condition as a dynamic operation variable,
and the control purpose is to ensure that the system outputs belong to a certain pattern class or some
desired pattern classes. The P-PFDL-MFAC scheme mainly includes a modified tracking control
law, a deviation estimation algorithm and a pseudo-gradient (PG) vector estimation algorithm.
The classification-metric deviation is considered as an external disturbance, which is caused by the
process of establishing the pattern-moving-based system dynamics description, and an improved cost
function is proposed from the perspective of a two-player zero-sum game (TP-ZSG). The bounded
convergence of the tracking error is rigorously proven by the contraction mapping principle, and the
validity of the theoretical results is verified by simulation examples.

Keywords: pattern moving; partial form dynamic linearization (PFDL); nonlinear system; two-player
zero-sum game; model free adaptive control (MFAC)

1. Introduction

In the process of industrial production, there is a range of complex equipment, such as
sintering machines, rotary kilns, blast furnaces, and so on. Due to the increase in complexity,
such as nonlinearity, high order, large delay, time-varying, and parameter perturbation, it
is very difficult to establish an accurate mathematical model [1]. To a certain extent, this
kind of production system is mainly governed by the law of statistical moving rather than
the existing Newton’s law of mechanics. A group of the same or similar system working
conditions can produce the corresponding products with the same or similar quality index
parameters [2].

A feasible method of system modeling and control is the pattern recognition tech-
nology for these considered systems [3], and most researchers’ practice is to design the
corresponding model and controller according to the different pattern classes of the system
working condition [4,5]. Different from the previous multi-controller model design method
based on pattern classes, a novel pattern-moving-based system dynamics description
method was proposed in [6]. Its basic idea is to take the pattern class as a moving variable,
and this variable is mapped to a computable space by class centers [7], interval numbers [8],
and cells [9] due to its lack of arithmetic operation attribute. One advantage of the system
dynamics description method introduced in [6] is that it is robust to system parameter
disturbance and measurement noise. Regarding robust control, a well-known method is
sliding mode control [10–12], which has a good ability to deal with external disturbances
and system uncertainties. In recent years, a series of important research achievements have
been made in sliding mode control, and many improved methods have been proposed,
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such as global sliding mode control [13] and terminal sliding mode control [14]. Differ-
ent from the methods proposed in [10–14], the pattern-moving-based system dynamics
description method is able to eliminate the system disturbance in the process of pattern
classification, as long as the influence of the disturbance on the output does not change
the pattern class to which the output belongs. In the case of various metric methods of
pattern class, the linear autoregressive model with exogenous input (ARX) or interval
ARX (IARX) model has been established, and the minimum-variance-based controller [6],
optimal controller [15], predictive controller [16], and state-feedback-based [7] controller
have been designed. However, it is well known that it is not easy to identify the system
model order and parameters. In addition, even if a pattern-moving-based mathematical
prediction model such as ARX or IARX is proposed, it is always an approximation of the
real plant, and the unmodeled dynamics of the system are inevitable. Therefore, it is of
significance to propose a pattern-moving-based data-driven control (DDC) method and
design a controller whose parameters are adjusted by adopting the online input/output
(I/O) data and the offline historical data simultaneously.

The data-driven controller is designed directly depending on the offline or/and online
I/O data, instead of the explicit mathematical model of the controlled plant [17]. Generally,
DDC can be almost cataloged into the following classes according to the different ways in
which the data are used: (1) adaptive dynamic programming [18] and iterative learning
control [19] based on offline and online data; (2) iterative feedback tuning [20] and virtual
reference feedback tuning [21] based on offline data; (3) traditional MFAC [17,22–24]
based on online data. The traditional MFAC method does not use the state space model
but puts forward new concepts such as pseudo-gradient (PG) vector or pseudo-partial
derivative (PPD) to capture the dynamic characteristics of the controlled plant, and it
designs the controller through the dynamic linearization data model of the controlled plant
at each operating point. Thus far, three equivalent dynamic linearization data models
have been proposed, i.e., PFDL, compact-form dynamic linearization (CFDL), and the full-
form dynamic linearization (FFDL) data model. By setting input correlation and output
correlation components with different memory lengths, the three kinds of data models are
different equivalent descriptions of system evolution, and they have different dynamic
description capabilities for the controlled plant. Recently, due to many advantages of
the MFAC method, such as the fact that establishing a controller merely depends on the
measurement I/O data, the monotonic convergence of tracking error, and the bounded-
input bounded-output stability of the closed-loop system, it has achieved many application
results in many fields, and a few examples are as follows: the MFAC-based fault-tolerant
control [25]; sensorless brushless direct current motor based on MFAC [26]; multi-agent
systems tracking control [27]; MFAC-based sliding mode control [28]; chemical process
based on MFAC [29], etc.

However, although the traditional MFAC algorithms have good control qualities
for single-input single-output (SISO), multiple-input single-output, and multiple-input
multiple-output time-varying structures and parameters in nonlinear discrete-time systems,
there are few reports on MFAC for single-input multiple-output (SIMO) nonlinear systems
or systems where the desired exact value of the output target cannot be determined exactly.
In view of this kind of nonlinear system, a P-PFDL-MFAC method is proposed in this
work and it considers that the difference in the output between next time and the current
time is related to the differences in inputs in a time window between the current time and
a specific previous time. The length of the time window corresponds to the number of
PG vector elements, which is also called the pseudo-order of the equivalent PFDL data
model. This is the most significant difference between the method proposed here and the
pattern-moving-based CFDL-MFAC (P-CFDL-MFAC) scheme in [30], which considered
that the output difference between next time and the current time is only related to the
input difference between the current time and the previous time. The control purpose of
this kind of system is to make the system outputs belong to one or some specific pattern
classes. The first contribution of this work is to combine the pattern-moving-based system
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dynamics description with the traditional PFDL-MFAC method, and to design a control
law algorithm based on two-player zero-sum game and saddle point theory [31,32] under
the condition of classification-metric deviation. Another major contribution is that the
bounded convergence of the tracking error dynamics of the closed-loop control system is
rigorously proven by using the contraction mapping principle.

The remainder of this work is organized as follows. Section 2 introduces the pre-
liminary of the work. Section 3 presents the problem formulation and designs a pattern-
moving-based PFDL-MFAC scheme. The bounded convergence of the closed-loop system’s
tracking error is proven in Section 4. Section 5 presents two simulation examples to demon-
strate the correctness and efficiency of the proposed algorithms. A conclusion is given
in Section 6.

Notation: R denotes the real number domain; Z+ denotes the positive integer domain;
Rn is the real n-dimensional space; [·]T is the transpose of [·]; ‖ · ‖ is the Euclidean norm,
and ‖ · ‖v is the consistent matrix norm.

2. Preliminary

Consider a class of SIMO nonaffine nonlinear discrete-time systems with unknown
structure, order and parameters.

y1(k + 1) = f1(y1(k), · · · , y1(k− n1), u(k), · · · , u(k−m1)) + d1(k),

y2(k + 1) = f2(y2(k), · · · , y2(k− n2), u(k), · · · , u(k−m2)) + d2(k),
...

yq(k + 1) = fq(yn(k), · · · , yn(k− nq), u(k), · · · , u(k−mq)) + dq(k),

(1)

where q > 1; yi(k) denotes the output of fi(·) and it satisfies yi(k) ∈ R; u(k) is the
whole system input and it satisfies u(k) ∈ R; mi , ni represent the unknown input and
output orders, respectively, and they satisfy that mi ∈ Z+ , ni ∈ Z+; di(k) is the weak
output measurement noise; fi(·) denotes an unknown nonlinear discrete-time function;
i ∈ {1, · · · , q}.

Assumption 1. The input of this kind of system (1) is bounded, i.e., a constant M1 exists and
satisfies that |u(k)| ≤ M1.

A pattern-moving-based system dynamics description [6–9,30] that corresponds to
system (1) is proposed in the following steps.

(1) Feature extraction (T(·)). A large number of inputs and outputs are collected offline,
and the input data set {u(k)} and q-dimensional output vector set {[y1(k), · · · , yq(k)]}
are obtained. Through the principal component analysis (PCA) feature extraction [33]
of the output data, the first principal component information is obtained, and then the
one-dimensional principal component information set {y(k)} will be obtained.

(2) Classification (M(·)) and hybrid metrics (D(·), D̄(·)). Using pattern classification
technology to classify the first principal component information, the number of pattern
classes (N), the class center value (si), and the class radius (ri) of each pattern class
(dxi) can be obtained, i = [1, · · · , N]. Since the pattern class does not have the
arithmetic operation attribute, the pattern class variable needs to be measured. Because
the pattern class is a collection of pattern samples with the same or similar attributes,
the method of combining the class center explicit metric D(·) and implicit metric
D̄(·) is adopted, i.e., si = D(dxi) and ¯dxi = D̄(dxi). The implicit metric values are
unknown, but there is a definite relationship between an implicit metric value and
a class center explicit metric value, such as |si − ¯dxi| ≤ ri. The class center explicit
metric represents the statistical attribute of the pattern class, while the implicit metric
denotes the difference in each pattern sample in one pattern class.
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(3) Establishing the pattern-moving-based system dynamics equations. The inputs {u(k)},
implicit metric values {d̄x(k)}, and class center explicit metric values {s(k)} are
employed to construct the following dynamics equations.

d̄x(k + 1) = f (d̄x(k), . . . , d̄x(k− n), u(k), . . . , u(k−m)), (2)

s(k + 1) = D(M(d̄x(k + 1))) =



s1, d̄x(k + 1) ∈ [s1 − r1, s1 + r1],

s2, d̄x(k + 1) ∈ (s2 − r2, s2 + r2],
...

sN , d̄x(k + 1) ∈ (sN − rN , sN + rN ],

(3)

where f (·) is an unknown SISO nonlinear discrete-time system function; m, n denote
the input and output orders of system (2), respectively.

By choosing a reasonable classification method, such as a modified quantized control
classification [34], it can be obtained that Ci = si + ri = si+1 − ri+1, which is named the
class threshold. It exits a classification-metric deviation e(k + 1) between the d̄x(k + 1)
and s(k + 1), and |e(k + 1)| = |s(k + 1) − d̄x(k + 1)| ≤ ri, while s(k + 1) = si. Let
rmax = maxi∈[1,N]{ri}, then |e(k)| ≤ rmax.

Remark 1. As mentioned in the Introduction, the description of system dynamics based on pattern
moving was first proposed in [6], and further studied in [7–9,30]. The basic idea is to treat the
pattern class as a moving variable. Since this variable does not have the attribute of arithmetic
operation, it is necessary to measure it into a computable space, and then construct the corresponding
dynamic equation in this space. Obviously, the SISO nonlinear system or linear time-varying
system can also be treated by the dynamic description method proposed in this section, but the
feature extraction (T(·)) process is not required.

Remark 2. The ultimate goal of classifying and measuring the first principal component informa-
tion is to obtain a SISO system dynamics description in a computable space. From the perspective
of pattern recognition technology, when the contribution rate of the first principal component
obtained after feature extraction is more than 85%, it is considered that the first principal component
information does not lose the original information or it loses very little. If the contribution rate of the
first principal component information does not reach 85%, more principal component information
should be considered. Then, after classification and class center explicit metric, the metric result of
each pattern class variable is a vector. A pattern-moving-based SIMO system dynamics description
is to be constructed in a computable space, but the output dimension may be less than that of the
original system. For the pattern-moving-based SIMO system, its control method remains to be
studied in the future. In this work, we only consider the case in which the contribution rate of the
first principal component information is greater than 85%.

3. Problem Formulation and Control Scheme
3.1. Problem Formulation

Through the above system dynamics description method, the model free adaptive
tracking control problem of system (1) is transformed into the corresponding control
problem of system (2) and (3). In order to carry out our next analysis, the following
assumptions and lemma are proposed first.

Assumption 2. The partial derivatives of nonlinear system function f (·) with respect to all
variables of the system (2) exist and are continuous.

Assumption 3. The system (2) satisfies the generalized Lipschitz condition, i.e.,∣∣d̄x(k1 + 1)− d̄x(k2 + 1)
∣∣ ≤ b‖Ul(k1)−Ul(k2)‖,
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where Ul(k) = [u(k), · · · , u(k− l + 1)]T ∈ Rl , l denotes the input pseudo-order, which satisfies
l > 1, and b is a positive constant.

Lemma 1 ([22,23]). For the considered system (2) satisfying Assumptions 2 and 3, there must
exist a time-varying parameter vector ϕ f ,l(k) which is called a pseudo-gradient (PG) vector. If
‖∆Ul(k)‖ 6= 0, the system (2) can be described as the following PFDL data model.

∆d̄x(k + 1) = ϕT
f ,l(k)∆Ul(k), (4)

where ‖ϕ f ,l(k)‖ ≤ b; ∆d̄x(k + 1) = d̄x(k + 1) − d̄x(k); ϕ f ,l(k) = [ϕ1(k), · · · , ϕl(k)]T ;
∆Ul(k) = Ul(k)−Ul(k− 1).

Because the implicit metric values {d̄x(k)} are not available, the traditional MFAC
methods can not be directly used in such systems. Therefore, this work will focus on the
design of a new control scheme that merely depends on the obtained data {s(k)}, {u(k)}
and the performance analysis of the closed-loop control system.

3.2. The P-PFDL-MFAC Scheme

It can be seen from the system dynamics Equations (2) and (3) that there is a classification-
metric deviation e(k + 1) between the initial predicted output d̄x(k + 1) and the final output
s(k + 1) of the system, and this deviation e(k + 1) is always considered as a bounded exter-
nal disturbance [12] in this work. Based on the saddle point theory of TP-ZSG proposed
in [30–32], an improved cost function is designed in order to obtain a deviation estimation
algorithm and an adaptive tracking control law, which aims to find an equilibrium point
between the classification-metric deviation difference and the input difference. The basic
idea is that even under large deviation fluctuation, a small input variation value can be
found to optimize the loss function.

J(∆u(k), ∆e(k + 1)) =|s∗(k + 1)− s(k + 1)|2 + λ|u(k)− u(k− 1)|2

− γ2|e(k + 1)− e(k)|2,
(5)

where ∆e(k + 1) = e(k + 1)− e(k); λ is utilized to limit the variation in the control input
difference, which satisfies λ > 0; s∗(k + 1) denotes the desired class center explicit metric
value at time instant k + 1; γ is employed to limit the difference change in classification-
metric deviation, which satisfies γ > 1; ∆u(k) = u(k)− u(k− 1).

By solving the following equations

∂J(∆u(k), ∆e(k + 1))
∂∆u(k)

= 0,

and
∂J(∆u(k), ∆e(k + 1))

∂∆e(k + 1)
= 0,

one has the optimal results, such as

∆e(k + 1) =
1

1− γ2

(
s∗(k + 1)− s(k)− ϕT

f ,l(k)∆Ul(k)
)

, (6)

and

∆u(k) =
ϕ1(k)ρ1(s∗(k + 1)− s(k)− ∆e(k + 1))

λ + |ϕ1(k)|2
− ϕ1(k)∑l

i=2 ρi ϕi(k)∆u(k− i + 1)

λ + |ϕ1(k)|2
, (7)

where γ > 1; λ > 0; ρi is a step-size, which satisfies ρi ∈ (0, 1] and makes the control
algorithm more general; i ∈ {1, · · · , l}.
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In order to estimate the PG vector, the following objective function is designed.

J(ϕ f ,l(k)) =
∣∣∣s(k)− s(k− 1)− ϕT

f ,l(k)∆Ul(k− 1)
∣∣∣2 + µ‖ϕ f ,l(k)− ϕ f ,l(k− 1)‖2, (8)

where µ is a weight factor and it satisfies µ > 0.
By letting

∂J(ϕ f ,l(k))
∂ϕ f ,l(k)

= 0,

one can obtain the estimation algorithm of the PG vector as follows:

ϕ f ,l(k) = ϕ f ,l(k− 1) +
η∆Ul(k− 1)

(
∆s(k)− ϕT

f ,l(k− 1)∆Ul(k− 1)
)

µ + ‖∆Ul(k− 1)‖2 , (9)

where ∆s(k) = s(k) − s(k − 1); η is a step-size that satisfies η ∈ (0, 2] and makes the
estimation algorithm more general; µ > 0.

Combining the above algorithms (6), (7), and (9), and proposing a reset algorithm of
the PG estimation vector and a limitation mechanism of classification-metric deviation, the
P-PFDL-MFAC scheme can be obtained.

ϕ̂ f ,l(k) =ϕ̂ f ,l(k− 1) +
η∆Ul(k− 1)

(
∆s(k)− ϕ̂T

f ,l(k− 1)∆Ul(k− 1)
)

µ + ‖∆Ul(k− 1)‖2 , (10)

ê(k + 1) = ê(k) +
1

1− γ2

(
s∗(k + 1)− s(k)− ϕ̂T

f ,l(k)∆Ul(k)
)

, (11)

u(k) =u(k− 1)− ϕ̂1(k)∑l
i=2 ρi ϕ̂i(k)∆u(k− i + 1)

λ + |ϕ̂1(k)|2

+
ϕ̂1(k)ρ1(s∗(k + 1)− s(k)− ∆ê(k + 1))

λ + |ϕ̂1(k)|2
,

(12)

ϕ̂1(k) = ϕ̂1(1), if ‖ϕ̂ f ,l(k)‖ ≤ ε, or ‖∆Ul(k− 1)‖ ≤ ε, or sign(ϕ̂1(k)) 6= sign(ϕ̂1(1)), (13)

ê(k) =

{
rj, if ê(k) > rj, s(k) = sj

− rj, if ê(k) ≤ −rj, s(k) = sj.
(14)

where η ∈ (0, 2], µ > 0, γ > 1, λ > 0, ρi ∈ (0, 1], i ∈ {1, · · · , l}, j ∈ {1, · · · , N}; ϕ̂ f ,l(k) is
the estimation vector of PG ϕ f ,l(k); ε denotes a small positive constant; ϕ̂1(1) is the initial
value of ϕ̂1(k); the algorithm (13) is the reset algorithm of the PG estimation vector, and
the algorithm (14) denotes the limitation mechanism of classification-metric deviation.

It is known from the above algorithms that the PG estimation vector directly affects the
quality of the control scheme. In order to enhance the time-varying parameters’ tracking
ability for the PG estimation (10), it is necessary to add the reset algorithm (13). The
limitation mechanism (14) is added to ensure that the deviation within one pattern class is
not greater than the corresponding pattern class radius. The pseudo-order l is supposed to
be less than or equal to the sum of the input and output orders (m + n). A large number of
experiments show that the lower the system complexity, the smaller the value of l can be.
On the contrary, the higher the system complexity, the greater the l should be. It is obvious
that the proposed P-PFDL-MFAC algorithms in this work degenerate to the P-CFDL-MFAC
algorithms designed in [30] when l = 1.

4. Performance of the Closed-Loop System

The focus of this section is to analyze the performance of the closed-loop tracking
control system, i.e., to prove the tracking error bounded stability of the closed-loop control
system. Before this, the following assumptions and lemmas are proposed.
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Assumption 4. Considering the nonlinear system (2), for any desired bounded output d̄x∗(k + 1),
a bounded input u∗(k) always exists and it can make the system output equal to d̄x∗(k + 1).

Assumption 5. The signal of the first element of the PG vector ϕ f ,l(k) is assumed to be known
and unchanged at any time k with ‖∆Ul(k)‖ 6= 0, i.e., ϕ1(k) ≥ ε > 0 (or ϕ1(k) ≤ ε < 0), ε is
a small positive constant. In this work, in order to simplify the derivation of the conclusion, it is
always assumed that ϕ1(k) ≥ ε > 0 without loss of generality.

Lemma 2 ([22]). Let

A =


a1 a2 · · · ap
1 0 · · · 0

. . . . . .
...

1 0


(p×p)

.

If ∑
p
i=1 |ai| < 1, then s(A) < 1, where s(A) is the spectral radius of A.

Lemma 3 ([17]). Let A ∈ Rp×p. For any given ε > 0, there exists an induced consistent matrix
norm such that ‖A‖v ≤ s(A) + ε, where s(A) has the same meaning as Lemma 2.

It is known to all that Assumption 4 is a necessary condition for the design and solution
of the control problem, and it also shows that the output of the system (2) is controllable.
Many plants satisfy the condition of Assumption 5 to some extent, and its actual physical
background is also very clear, i.e., the plant’s output increasing or decreasing corresponds
to the control input increasing or decreasing. Next, our main results will be proven.

Lemma 4. For the system (2) and (3) using the P-PFDL-MFAC scheme (10)–(14) under Assump-
tions 2–5, ‖ϕ̂ f ,l(k)‖ is bounded.

Proof of Lemma 4. When ‖∆Ul(k− 1)‖ ≤ ε, it is obvious that ϕ̂ f ,l(k) is bounded from the
reset algorithm (13) of the P-PFDL-MFAC scheme. When ‖∆Ul(k− 1)‖ > ε, subtracting
ϕ f ,l(k) in both sides of Equation (10) obtains

ϕ̃ f ,l(k) =ϕ̃ f ,l(k− 1)− ϕ f ,l(k) + ϕ f ,l(k− 1) +
η∆Ul(k− 1)∆s(k)
µ + ‖∆Ul(k− 1)‖2

−
η∆Ul(k− 1)ϕ̂T

f ,l(k− 1)∆Ul(k− 1)

µ + ‖∆Ul(k− 1)‖2

=

[
I −

η∆Ul(k− 1)∆UT
l (k− 1)

µ + ‖∆Ul(k− 1)‖2

]
ϕ̃ f ,l(k− 1)− ϕ f ,l(k) + ϕ f ,l(k− 1)

+
η∆ê(k)∆Ul(k− 1)
µ + ‖∆Ul(k− 1)‖2 ,

(15)

where ϕ̃ f ,l(k) = ϕ̂ f ,l(k)− ϕ f ,l(k).
Taking the norm on both sides of (15) and using Lemma 1, |ê(k)| ≤ rmax yields

‖ϕ̃ f ,l(k)‖ ≤ 2b + 2ηrmax +

∥∥∥∥∥
[

I −
η∆Ul(k− 1)∆UT

l (k− 1)
µ + ‖∆Ul(k− 1)‖2

]
ϕ̃ f ,l(k− 1)

∥∥∥∥∥. (16)
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Square the first term on the right of (16) and obtain the following inequality:∥∥∥∥∥
[

I −
η∆Ul(k− 1)∆UT

l (k− 1)
µ + ‖∆Ul(k− 1)‖2

]
ϕ̃ f ,l(k− 1)

∥∥∥∥∥
2

≤
∥∥∥ϕ̃ f ,l(k− 1)

∥∥∥2
+

(
−2 +

η‖∆Ul(k− 1)‖2

µ + ‖∆Ul(k− 1)‖2

)η
(

ϕ̃T
f ,l(k− 1)∆Ul(k− 1)

)2

µ + ‖∆Ul(k− 1)‖2 .

(17)

Since µ > 0 and η ∈ (0, 2], it can be obtained that −2 + η‖∆Ul(k−1)‖2

µ+‖∆Ul(k−1)‖2 < 0, and it

is obvious that
η
(

ϕ̃T
f ,l(k−1)∆Ul(k−1)

)2

µ+‖∆Ul(k−1)‖2 > 0. Thus, there must exist a constant 0 < d1 < 1

that satisfies
∥∥∥∥[I − η∆Ul(k−1)∆UT

l (k−1)
µ+‖∆Ul(k−1)‖2

]
ϕ̃ f ,l(k− 1)

∥∥∥∥ ≤ d1

∥∥∥ϕ̃ f ,l(k− 1)
∥∥∥. It can be further

deduced that

‖ϕ̃ f ,l(k)‖ ≤ d1‖ϕ̃ f ,l(k− 1)‖+ 2b + 2ηrmax

≤ d2
1‖ϕ̃ f ,l(k− 1)‖+ d1(2b + 2ηrmax) + 2b + 2ηrmax

≤ · · · ≤ dk−1
1 ‖ϕ̃ f ,l(1)‖+

(2b + 2ηrmax)(1− dk−1
1 )

1− d1
.

(18)

In view of (18), ‖ϕ̃ f ,l(k)‖ is bounded, since ‖ϕ f ,l(k)‖ is bounded; thus, ‖ϕ̂ f ,l(k)‖ is
bounded.

Theorem 1. For system (2) and (3) using the P-PFDL-MFAC scheme (10)–(14) under Assump-
tions 3–6 with the desired signal s∗(k + 1) = s∗ = const, if the controller parameters meet the
following conditions

(1) letting ρ̄1 = γ2ρ1
γ2−1+ρ1

and ρ̄1 ∈ (0, 1];

(2) letting ρ̄i =
(γ2−1)ρi+ρ1

γ2−1+ρ1
and ρ̄i ∈ (0, 1], i = 2, · · · , l;

(3) letting λ̄ = (γ2−1)λ
γ2−1+ρ1

, and there exists a λ̄min such that λ̄ > λ̄min,

then the closed-loop control system guarantees that

lim
k→∞
|s∗ − s(k + 1)| ≤ M,

where M is a constant and M > 0.

Proof of Theorem 1. Substituting the classification-metric deviation estimation algorithm (11)
into control algorithm (12), one has

u(k) =u(k− 1) +

γ2ρ1
γ2−1+ρ1

ϕ̂1(k)(s∗ − s(k))
(γ2−1)λ
γ2−1+ρ1

+ |ϕ̂1(k)|2
−

ϕ̂1(k)∑l
i=2

(γ2−1)ρi
γ2−1+ρ1

ϕ̂i(k)∆u(k− i + 1)
(γ2−1)λ
γ2−1+ρ1

+ |ϕ̂1(k)|2
. (19)

Given ρ̄1, ρ̄i, λ̄, Equation (19) can be written as

u(k) =u(k− 1) +
ρ̄1 ϕ̂1(k)(s∗ − s(k))

λ̄ + |ϕ̂1(k)|2
− ϕ̂1(k)∑l

i=2 ρ̄i ϕ̂i(k)∆u(k− i + 1)
λ̄ + |ϕ̂1(k)|2

, (20)

where ρ̄i ∈ (0, 1], i = 1, · · · , l.
Since γ > 1, λ > 0 and ρ1 ∈ (0, 1], thus λ̄ > 0. It is known from Lemma 4 that

‖ϕ̂ f ,l(k)‖ is bounded and noted that ‖ϕ̂ f ,l(k)‖ ≤ b1; here, b1 is a positive constant. Given
‖ϕ̂ f ,l(k)‖ ≤ b1 , ‖ϕ f ,l(k)‖ ≤ b, γ > 1, λ > 0, ρi ∈ (0, 1], ρ̄i ∈ (0, 1], λ̄ > 0, there exist
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bounded constants Wi, i ∈ {1, 2, 3, 4, 5} such that the following inequalities (21)–(25) hold
when λ̄ > λ̄min.

Letting λ̄ > λ̄min ≥ b2 and using inequality x2 + y2 ≥ 2xy , one obtains∣∣∣∣ ϕ̂1(k)
λ̄ + |ϕ̂1(k)|2

∣∣∣∣ ≤
∣∣∣∣∣ ϕ̂1(k)

2
√

λ̄|ϕ̂1(k)|

∣∣∣∣∣ <
∣∣∣∣∣ 1

2
√

λ̄min

∣∣∣∣∣ = W1 <
0.5
b

, (21)

0 < W2 ≤
∣∣∣∣ ϕ̂1(k)ϕi(k)
λ̄ + |ϕ̂1(k)|2

∣∣∣∣ ≤ b

∣∣∣∣∣ ϕ̂1(k)

2
√

λ̄|ϕ̂1(k)|

∣∣∣∣∣ < 0.5, (22)

W1‖ϕ f ,l(k)‖ = W3 < 0.5. (23)

From the inequalities (22) and (23), it is deduced that

W2 + W3 < 1. (24)

Letting {∑l
i=2

∣∣∣ ϕ̂1(k)ϕ̂i(k)
λ̄+|ϕ̂1(k)|2

∣∣∣} 1
l−1 ≤W4 and choosing ρ̄max = maxi=1,··· ,l ρ̄i, one has

l

∑
i=2

ρ̄i

∣∣∣∣ ϕ̂1(k)ϕ̂i(k)
λ̄ + |ϕ̂1(k)|2

∣∣∣∣ ≤ ρ̄max

l

∑
i=2

∣∣∣∣ ϕ̂1(k)ϕ̂i(k)
λ̄ + |ϕ̂1(k)|2

∣∣∣∣ ≤ ρ̄maxW l−1
4 = W5 < 1. (25)

Defining tracking error w(k) = s∗ − s(k) and letting

A(k) =


− ρ̄2 ϕ̂1(k)ϕ̂2(k)

λ̄+|ϕ̂1(k)|2
− ρ̄3 ϕ̂1(k)ϕ̂3(k)

λ̄+|ϕ̂1(k)|2
· · · − ρ̄l ϕ̂1(k)ϕ̂l(k)

λ̄+|ϕ̂1(k)|2
0

1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0

, (26)

the control algorithm (12) can be written as

∆Ul(k) =[∆u(k), · · · , ∆u(k− l + 1)]T

=A(k)[∆u(k− 1), · · · , ∆u(k− l)]T +
ρ̄1 ϕ̂1(k)

λ̄ + |ϕ̂1(k)|2
Cw(k),

(27)

where C = [1, 0, · · · , 0]T ∈ Rl . The secular equation of A(k) is

zl +
ρ̄2 ϕ̂1(k)ϕ̂2(k)
λ̄ + |ϕ̂1(k)|2

zl−1 + · · ·+ ρ̄l ϕ̂1(k)ϕ̂l(k)
λ̄ + |ϕ̂1(k)|2

z = 0.

From Lemma 2 and inequality (25), one has |z| < 1 and obtains

|z|l−1 ≤
l

∑
i=2

ρ̄i

∣∣∣∣ ϕ̂1(k)ϕ̂i(k)
λ̄ + |ϕ̂1(k)|2

∣∣∣∣ ≤ ρ̄maxW l−1
4 < 1.
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Further, it can be deduced that |z| ≤ ρ̄
1

l−1
maxW4. From Lemma 3, one can obtain

‖A(k)‖v ≤ s(A(k)) + ε ≤ ρ̄
1

l−1
maxW4 < 1. According to the definition of Ul(k), it is clear that

∆Ul(0) = 0. Letting d2 = ρ̄
1

l−1
maxW4 and taking the norm on both sides of (27), one obtains

‖∆Ul(k)‖ ≤ ‖A(k)‖v‖∆Ul(k− 1)‖+ ρ̄1

∣∣∣∣ ϕ̂1(k)
λ̄ + |ϕ̂1(k)|2

∣∣∣∣|w(k)|

≤ d2‖∆Ul(k− 1)‖+ ρ̄1W1|w(k)| ≤ · · · = ρ̄1W1

k

∑
i=1

dk−i
2 |w(k)|.

(28)

From Lemma 1 and Equation (27), one has

w(k + 1) = s∗ − s(k + 1) = s∗ − d̄x(k + 1)− e(k + 1)

= w(k)− ∆e(k + 1)− ϕT
f ,l(k)∆Ul(k)

=

[
1− ρ̄1 ϕ̂1(k)ϕ1(k)

λ̄ + |ϕ̂1(k)|2

]
w(k)− ϕT

f ,l(k)A(k)∆Ul(k− 1)− ∆e(k + 1).

(29)

Choosing a reasonable ρ̄1, one can obtain∣∣∣∣1− ρ̄1 ϕ̂1(k)ϕ1(k)
λ̄ + |ϕ̂1(k)|2

∣∣∣∣ = ∣∣∣∣1− ∣∣∣∣ ρ̄1 ϕ̂1(k)ϕ1(k)
λ̄ + |ϕ̂1(k)|2

∣∣∣∣∣∣∣∣ ≤ 1− ρ̄1W2 = d3 < 1. (30)

From the above inequality and |e(k)| ≤ rmax, taking the norm on both sides of
the Equation (29), one obtains

|w(k + 1)| < d3|w(k)|+ d2‖ϕ f ,l(k)‖‖∆Ul(k− 1)‖+ 2rmax < · · ·

< dk
3|w(1)|+ d2

k−1

∑
i=1

dk−1−i
3 ‖ϕ f ,l(i + 1)‖‖∆Ul(i)‖+ 2rmax

k−1

∑
i=1

dk−1−i
3

< dk
3|w(1)|+ 2rmax

k−1

∑
i=1

dk−1−i
3 + d2

k−1

∑
i=1

dk−1−i
3 ‖ϕ f ,l(i + 1)‖ρ̄1W1

i

∑
j=1

di−j
2 |w(j)|.

(31)

Letting d4 = ρ̄1W3, it is clear that d4 < 1. The inequality (31) can be recorded as

|w(k + 1)| < dk
3|w(1)|+ d2d4

k−1

∑
i=1

dk−1−i
3

i

∑
j=1

di−j
2 |w(j)|+

2rmax(1− dk−1
3 )

1− d3
. (32)

Letting

g(k + 1) = dk
3|w(1)|+ d2d4

k−1

∑
i=1

dk−1−i
3

i

∑
j=1

di−j
2 |w(j)|,

it is obvious that g(2) = d3|w(1)|. One can see that if g(k + 1) is bounded, then w(k)
is bounded.

Next, the boundedness of g(k + 1) will be proven.

g(k + 2) = dk+1
3 |w(1)|+ d2d4

k

∑
i=1

dk−i
3

i

∑
j=1

di−j
2 |w(j)|

= d3g(k + 1) + d4dk
2|w(1)|+ · · ·+ d4d2

2|w(k− 1)|+ d4d2|w(k)|
< d3g(k + 1) + d4dk

2|w(1)|+ · · ·+ d4d2g(k)

+ d4d2
2|w(k− 1)|+ d4d2

2rmax(1− dk−2
3 )

1− d3
.

(33)
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Note that h̄(k) = d3g(k + 1) + d4dk
2|w(1)| + · · · + d4d2

2|w(k − 1)| + d4d2g(k). Since
d3 = 1− ρ̄1W2 > ρ̄1(W2 + W3)− ρ̄1W2 = ρ̄1W3 = d4, one obtains

h̄(k) < d3g(k + 1) + d4dk
2|w(1)|+ · · ·+ d4d2

2|w(k− 1)|+ d3d2g(k)

< d3g(k + 1) + d4dk
2|w(1)|+ · · ·+ d4d2

2|w(k− 1)|

+ d3d2

[
dk−1

3 |w(1)|+ d2d4

k−2

∑
i=1

dk−2−i
3

i

∑
j=1

di−j
2 |w(j)|

]
= d2g(k + 1).

(34)

From the inequalities (33) and (34), one has

g(k + 2) ≤ (d2 + d3)g(k + 1) + d4d2
2rmax(1− dk−2

3 )

1− d3
.

Since d2 + d3 = 1− ρ̄1W2 + ρ̄
1

l−1
maxW4, by choosing the reasonable ρ̄i, i = 1, · · · , l, it exits

d2 + d3 = d5 ∈ (0, 1) and one obtains

g(k + 2) ≤ d5g(k + 1) + d4d2
2rmax

1− d3
≤ · · · ≤ dk

5g(2) + d4d2
2rmax

1− d3

1− dk
5

1− d5
. (35)

It is clear that g(k) is bounded convergent; thus, the tracking error w(k) is bounded
convergent, i.e., limk→∞ |w(k)| ≤ M, M is a positive constant.

Remark 3. The contraction mapping principle is utilized to prove the bounded convergence in this
work, and many inequalities are employed to handle the mapping relationships in Lemma 4 and
Theorem 1. A critical technique is to let λ, γ, and ρi take reasonable values that can guarantee the
existence of constants W1, W2, W3, W4, W5, λ̄, γ̄, ρ̄i, d1, d2, d3, d4, and d5 to make the inequalities
used in the above derivations hold.

Remark 4. It is obvious that the desired tracking target is an arbitrary bounded constant s∗ in
Theorem 1. In fact, for the closed-loop control system based on pattern moving, the desired tracking
target should be one or some specific pattern classes (dxi), i.e., one or some specific pattern class
centers (s∗ = si, i = 1, · · · , N). Therefore, instead of focusing on each specific value of the system
output, the P-PFDL-MFAC method focuses on whether the system outputs belong to one or some
specific pattern classes, and this is the most significant difference between the method designed in
this work and the model free adaptive quantization control method proposed in [35,36]. From this
point of view, under the control input and output disturbance, even if the implicit metric value
of the pattern class to which the system outputs belong satisfies |d̄x(k + 1)− s∗| ≤ ri when the
desired target s∗ = si, it is still considered that the system’s tracking error is zero.

Remark 5. The designed P-PFDL-MFAC method is employed for the considered system (2) and (3),
which corresponds to a practical SIMO system (1). When the system is under the control input u(k)
at time instant k, the output vector [y1(k + 1), · · · , yl(k + 1)] is obtained, and then s(k + 1) is
obtained by feature extraction T(·), pattern classification M(·), the class center explicit metric D(·)
with the real-time output data [y1(k + 1), · · · , yl(k + 1)], and a large amount of offline historical
data. Generally speaking, the P-PFDL-MFAC method can be considered a novel data-driven method
based on offline historical data and online real-time data, and this is a major difference from the
traditional MFAC methods.

5. Simulation

Two examples are given to demonstrate the feasibility and effectiveness of the achieved
algorithms in this section. In the simulation example of reference [37], the speed control
of a Stanford manipulator’s joint 4 proposed in [38] was discussed. It considered that the
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controlled object is a discrete-time system with jump parameters while the load changes.
In the first example below, this discrete-time system is also taken as the consideration
object, and the designed P-PFDL-MFAC scheme is implemented. Example 2 is a SIMO
nonlinear discrete-time numerical case. In this simulation case, the designed control scheme
is adopted, and the control effects with different pseudo-orders are compared.

Example 1. Consider a SISO discrete-time system with jump parameters

y(k) = a2(k)y(k− 2) + b0(k)u(k− 1) + b1(k)u(k− 2) + g(k) + e(k), (36)

where y(k) is the system output, which denotes the speed of a Stanford manipulator’s joint 4; u(k)
is the system input, which denotes the motor’s voltage and satisfies u(k) ∈ [0, 10]; e(t) denotes
the system random noise and it satisfies that |e(k)| ≤ 0.01; g(k) is considered as a constant and
g(t) = 0.25; b1(k) is also a constant and b1(k) = 0.2; the other two system jump parameters are
as follows:

a2(k) =


−0.9, k ≤ 200;

−0.75, 200 < k ≤ 400;

−0.9, 400 < k ≤ 600,

and

b0(k) =


0.4, k ≤ 200;

0.35, 200 < k ≤ 400;

0.4, 400 < k ≤ 600.

The control goal of our designed scheme is that the outputs belong to one or some special
pattern classes, which is the most significant difference from the simulation in [37]. Firstly, a large
number of outputs obtained under effective control inputs are divided into several pattern classes.
Then, one or some desired pattern classes are taken as the targets of system control.

Step 1: Classification (M(·)) and metrics (D(·), D̄(·)) of massive offline data. Here,
600 evenly distributed inputs are taken and the corresponding outputs are obtained. A
modified quantized control classification and class center explicit metric method (M(·),
D(·)) [34] is adopted and described as follows.

s(k) = D(M(y(k))) =


y0(k), if T1i < y(k) ≤ T2i,

0, if − TN < y(k) ≤ TN ,

− y0(k), if − T2i < y(k) ≤ −T1i,

(37)

where T1i =
1

1+∆κi; T2i =
1

1−∆κi; TN = 1
1+∆ρN

0 κ0; y0(k + 1) = 1+ρ0
4 κi(ρ

i−1
0 + ρi

0); ∆ = 1−ρ0
1+ρ0

;

κi = ρi
0κ0; ρ0 ∈ (0, 1); κ0 is the maximum working range of y(k) (κ0 ≥ max{|y(k)|}); N

denotes the number of pattern classes; i = 1, 2, · · · , N − 1.
Given the upper limit of the initial class radius r0 at the working point 0 and other

parameters such as ρ0 and κ0, one can obtain L ≥ d
ln(r0

(1+∆)
κ0

)

ln ρ0
e, and the output sequence

{y(k)} is divided into 2L + 1 segments. Furthermore, N = 2L + 1, si, ri =
1+ρ2

4ρ and class
threshold Ci can be obtained, respectively, i = 1, · · · , N. The parameter settings of the
adopted classification method are ρ0 = 0.4, κ0 = 15, r0 = 0.2. The distribution curves of
{u(k)}, {y(k)}, and {s(k)} are shown in Figure 1. Table 1 shows the property values of
each pattern class.
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Table 1. Property values of pattern class.

Class No. Class Center si Class Radius ri Threshold Ci

1 −7.3500 3.1500 −4.2000
2 −2.9400 1.2600 −1.6800
3 −1.1760 0.5040 −0.6720
4 −0.4704 0.2016 −0.2688
5 −0.1882 0.0806 −0.1075
6 0 0.1075 0.1075
7 0.1882 0.0806 0.2688
8 0.4704 0.2016 0.6720
9 1.1760 0.5040 1.6800
10 2.9400 1.2600 4.2000
11 7.3500 3.1500 10.5000

0 100 200 300 400 500 600
−10

0

10

s(
k)

0 100 200 300 400 500 600
−10

0

10

y(
k)

0 100 200 300 400 500 600
0

5

10

Time(k)

u(
k)

Figure 1. The curves of I/O data and class centers.

Remark 6. To the best of our knowledge, there are many clustering and classification algorithms in
statistical pattern recognition, such as ISODATA, K-means, C-means, and so on. A class center
explicit metric and modified quantized control classification method is adopted in this work. As
mentioned in [2], the product quality is directly related to the working conditions. Therefore, the
parameter settings of condition classification are determined by the result of product quality clus-
tering. Here, it is assumed that the first principal component information y(k) ∈ (0.2688, 0.6720]
corresponds to good product quality, so the initial parameters (ρ0 = 0.4, κ0 = 15, r0 = 0.2) are
configured to ensure that the working condition data y(k) ∈ (0.2688, 0.6720] belong to one pattern
class.

Step 2: A pattern-moving-based system dynamics description is established with the
obtained property values and data sets {u(k)},

{
d̄x(k)

}
, and {s(k)}.

d̄x(k) = f (d̄x(k− 1), · · · , d̄x(k− ny), u(k− 1), · · · , u(k− nu)),

s(k) = D(M(d̄x(k)) =



− 7.3500, d̄x(k) ∈ (−10.5,−4.2],
...

0.0000, d̄x(k) ∈ (−0.1075, 0.1075],
...

7.3500, d̄x(k) ∈ (4.2, 10.5],

(38)
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where f (·) is an unknown nonlinear system function; nu, ny denote the unkown input and
output orders of f (·), respectively.

Step 3: Application of the control scheme. Nine pattern classes are obtained and the
designed P-PFDL-PMFAC scheme (10)–(14) is employed to track the following targets.

s∗(k) = 0.4704,

where s∗ = 0.4704 denotes that the object is pattern class 8.
Set the initial conditions as y(1 : 2) = 0, e(1 : 2) = 0, u(1 : 2) = 0, ϕ̂1(2) = 1,

ϕ̂2(1 : 2) = 0, ε = 10−5, s(1 : 2) = 0. The controller parameters are set as γ = 10, λ = 0.01,
µ = 1, η = 0.5, ρ1 = ρ2 = 0.5, l = 2 and the resetting initial value is ϕ̂1(1) = 0.5. Figure 2
shows the system output process, and Figure 3 shows the curves of control input, PG
estimation values, and deviation. From the controlled output of the system, it can be seen
that although it has undergone drastic adjustment at the beginning, it can track the target
quickly and achieve a good tracking effect.
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Figure 2. The curves of desired class center, original output, and its corresponding class center.

0 100 200 300 400 500 600
0

2

4

C
on

tr
ol

 in
pu

t

 

 

P−PFDL−MFAC:λ=0.01

0 100 200 300 400 500 600
−2

0

2

P
G

:P
−

P
F

D
L−

M
F

A
C

 

 
ϕ̂1(k)
ϕ̂2(k)

0 100 200 300 400 500 600
−0.02

−0.01

0

Time(k)

D
ev

ia
tio

n

 

 

e(k)

Figure 3. The curves of control input, PG estimation values, and deviation.
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Example 2. A single input and three outputs of the nonlinear discrete-time system are given as
follows.

y1(k + 1) = 1.2 sin(0.5y1(k)) + u2(k) +
u(k)

1 + u2(k)
+ u(k− 1) + d(k),

y2(k + 1) = 1.3 sin(0.5y2(k)) + 0.2y2(k− 1) +
u(k)

1 + u2(k)
+ 0.5u(k− 1) + d(k),

y3(k + 1) = 1.4 sin(0.5y3(k)) + 0.5u2(k) +
u(k)

1 + u2(k)
+ u(k− 1) + d(k),

(39)

where yi(k) denotes one of the three outputs, i = 1, 2, 3; d(k) is the Gaussian white noise and
d(k) ∼ N (0, 0.012); u(k) denotes the system input and u(k) ∈ [−2, 2]; the system is merely
employed to produce the I/O data with unknown system structure, orders, and parameters.

Feature extraction (T(·)), classification (M(·)), and metrics (D(·), D̄(·)) of massive
offline data. Here, 1000 evenly distributed inputs are taken and the corresponding outputs
are obtained. The outputs are normalized and the PCA technology is employed to deal with
them. One can obtain the first principal component information {y(k)} (the contribution
rate: 85.4518% > 85%). The same classification-metrics method (37) as in Example 1
is adopted. The parameter settings of the adopted classification method are ρ0 = 0.4,
κ0 = 5, r0 = 0.2. The distribution curves of {u(k)}, {yi(k)}, {y(k)}, and {s(k)} are shown
in Figure 4, i = 1, 2, 3. Table 2 shows the property values of each pattern class.
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Figure 4. The curves of I/O data, PCA information, and class center.
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Table 2. Property values of pattern class.

Class No. Class Center si Class Radius ri Threshold Ci

1 −2.4500 1.0500 −1.4000
2 −0.9800 0.4200 −0.5600
3 −0.3920 0.1680 −0.2240
4 −0.1568 0.0672 −0.0896
5 0 0.0896 0.0896
6 0.1568 0.0672 0.2240
7 0.3920 0.1680 0.5600
8 0.9800 0.4200 1.4000
9 2.4500 1.0500 3.5000

A pattern-moving-based system dynamics description is established as follows.

d̄x(k + 1) = f (d̄x(k), · · · , d̄x(k− ny), u(k), · · · , u(k− nu)),

s(k + 1) = D(M(d̄x(k + 1)) =



− 2.4500, d̄x(k + 1) ∈ (−3.5,−1.4],
...

0.0000, d̄x(k + 1) ∈ (−0.0896, 0.0896],
...

2.4500, d̄x(k + 1) ∈ (1.4, 3.5],

(40)

Nine pattern classes are obtained and the designed P-PFDL-PMFAC scheme (10)–(14)
is employed to track the following targets.

s∗(k) =

{
0.000, 0 < k ≤ 500;

0.980, 500 < k ≤ 1000,

where s∗ = 0, s∗ = 0.980 denote that the object is pattern class 5 and 8, respectively.
Set the initial conditions as y1(1 : 4) = 0, y2(1 : 4) = 0, y3(1 : 4) = 0, e(1 : 4) = 0,

u(1 : 4) = 0, ϕ̂1(2 : 4) = 1, ϕ̂2(1 : 4) = 0, ϕ̂3(1 : 4) = 0, ε = 10−5, s(1 : 4) = 0 . The
controller parameters are set as γ = 10, λ = 0.01, µ = 1, η = 0.5, ρ1 = ρ2 = ρ3 = 0.5 and
the resetting initial value is ϕ̂1(1) = 0.5. Figures 5–7 correspond to the curves of system
input, outputs, PG estimation values, and deviation when the pseudo-order l is 1, 2, and 3,
respectively. When l = 1, the P-PFDL-PMFAC scheme degenerates to the P-CFDL-MFAC
method designed in [30], and the PG vector becomes a PPD. All three figures show that the
target trajectory s∗(k) = 0.980 is well tracked. However, Figure 5 shows that the tracking
effect of target trajectory s∗(k) = 0 is poor. Figure 6 shows that the tracking effect of target
trajectory s∗(k) = 0 is slightly better, but there are also many cases where the tracking can
not be achieved. It can be seen from Figure 7 that the target object s∗(k) = 0 is well tracked.
The simulation results confirm that the value of pseudo-order should correspond to the
complexity of the system, and they show that a reasonable pseudo-order can improve the
control effect of the system. This numerical example illustrates that the designed scheme
is a very feasible method for a class of nonlinear discrete-time systems when the outputs
only need to be controlled to one or some specific pattern classes.
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Figure 5. The curves of PPD estimation value, control input, deviation, and outputs with l = 1.
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Figure 6. The curves of PG estimation values, control input, deviation, and outputs with l = 2.
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Figure 7. The curves of PG estimation values, control input, deviation, and outputs with l = 3.

6. Conclusions

A novel P-PFDL-MFAC scheme is proposed by combining the pattern-moving-based
system dynamics description with the traditional PFDL-MFAC approach for a class of
unknown practical SIMO nonaffine nonlinear discrete-time systems. Obviously, this scheme
can also be applied to nonlinear or linear time-varying SISO systems, as long as the purpose
of system control is to make all outputs belong to one or some pattern classes. Due to
the existence of classification-metric deviation, an improved cost function for a deviation
estimation algorithm and an adaptive tracking control law is designed based on the
saddle point theory of TP-ZSG. The bounded convergence of the closed-loop system’s
tracking error has been proven and the effectiveness of the P-PFDL-MFAC scheme has
been validated via two simulation examples.

Although it can be seen from the simulation results that the control strategy proposed
in this work has a good effect on the output disturbance, the robustness of data-driven
control should also include the ability to deal with data dropout, which may be caused by
sensor fault, transmission network failure, or actuator damage. Therefore, the next topic
that needs to be focused on is the robustness of pattern-moving-based model free adaptive
control in the case of missing data.
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