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Abstract: With outstanding deep feature learning and nonlinear classification abilities, Convolutional
Neural Networks (CNN) have been gradually applied to deal with various fault diagnosis tasks.
Affected by variable working conditions and strong noises, the empirical datum always has different
probability distributions, and then different data segments may have inconsistent contributions, so
more attention should be assigned to the informative data segments. However, most of the CNN-
based fault diagnosis methods still retain black-box characteristics, especially the lack of attention
mechanisms and ignoring the special contributions of informative data segments. To address these
problems, we propose a new intelligent fault diagnosis method comprised of an improved CNN
model named Efficient Convolutional Neural Network (ECNN). The extensive view can cover the
special characteristic periods, and the small view can locate the essential feature using Pyramidal
Dilated Convolution (PDC). Consequently, the receptive field of the model can be greatly enlarged to
capture the location information and excavate the remarkable informative data segments. Then, a
novel residual network feature calibration and fusion (ResNet-FCF) block was designed, which uses
local channel interactions and residual networks based on global channel interactions for weight-
redistribution. Therefore, the corresponding channel weight is increased, which puts more attention
on the information data segment. The ECNN model has achieved encouraging results in information
extraction and feature channel allocation of the feature. Three experiments are used to test different
diagnosis methods. The ECNN model achieves the highest average accuracy of fault diagnosis. The
comparison results show that ECNN has strong domain adaptation ability, high stability, and superior
diagnostic performance.

Keywords: intelligent fault diagnosis; efficient convolutional neural network; pyramidal dilated
convolution; residual neural network; feature calibration and fusion

1. Introduction

In the era of Big Data, fault diagnosis has always played an important role in industrial
production [1–3]. In practical environments, the equipment works with complex operating
conditions and strong noise. Its core components (such as bearings, gears, and motors)
occasionally fail, and some faults are challenging to locate using traditional methods, so
intelligent fault diagnosis is essential to ensuring their safety and reliability [4–9].

Convolutional Neural Network (CNN) [10–15], one of the representative deep learning
models, is increasingly applied to deal with fault diagnosis tasks relying on its outstanding
advances in deep features learning and nonlinear classification. Zhang et al. [16] proposed
a fault diagnosis method. The method uses multiple parallel convolutional layers to extract
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rich and complementary fault features effectively and then transforms the one-dimension
signal into a two-dimension signal by continuous wavelet transforms. Huo et al. [17]
extended a convolutional neural network with transfer learning, which can adaptively
process one-dimensional vibration signals into two-dimension matrices and reduce the
data distribution distance between the source and the target domains. Wang et al. [18]
proposed a new multi-sensor information fusion method constructing the time-domain
signals into a rectangular two-dimension matrix and then used an improved 2D-CNN
to realize signal classification. Wen et al. [19] employed LeNet-5 to develop a new CNN
and convert signals into 2D images through a conversion method. The proposed method
easily captures the features. S. et al. [20] applied a one-dimensional convolutional neural
network to motor fault diagnosis and proposed adding feature classification and extraction
to a single learning body. Zhao et al. [21] proposed a normalized CNN for rolling bearing
diagnosis with different severity and fault directions under data imbalance and variable
conditions. Abdeljaber et al. [22] presented a novel, fast and accurate structural damage
detection system using 1D Convolutional Neural Networks (CNNs) that has an inherent
adaptive design to fuse feature extraction and classification blocks into a single and compact
learning body. Dibaj et al. [23] proposed a fault diagnosis approach based on variational
mode decomposition and CNN for rotating machinery. Janssens et al. [24] proposed a
DL model for condition monitoring using CNN and proved that the feature learning
method was significantly better than the feature extraction method in fault diagnosis of
rotating machines. A Convolutional Neural Network (CNN) machine learning algorithm is
proposed to classify gearbox faults in [25], and the learning features of the CNN filters are
visualized to understand the physical fault diagnosis phenomena. Cheng et al. [26] implied
an intelligent fault diagnosis method for the rotation machine based on a new continuous
wavelet transforming the local binary convolutional neural network. Therefore, in the field
of fault diagnosis, scholars have utilized a lot of convolutional neural networks to improve
the accuracy of diagnosis and finally achieved excellent results. Although these studies
verify the efficiency of CNN in the fault diagnosis field, the two following problems remain.

In the course of fault diagnosis, firstly, converting vibration signals to spectrogram
requires a quantity of computation. Secondly, spectrograms are resized as small images
before the training model to decrease computation cost time; some signal nature will be
lost during the compression process. Therefore, the proposed method is dedicated to
one-dimension data [27–29]. In addition, the traditional 1D-CNN uses the pooling layer to
obtain the receptive field. Information on the Avg/Max pooling region is insufficient to
capture the importance of the pooling feature. Although stride convolution could learn
from neighbor features, it fails to model the importance of down sampling procedures
adaptively and limits shift-invariance because it focuses only on one fixed location within
each sliding window and discards the rest [30].

Since the equipment is usually affected by load changes and environmental noises,
some scholars use dilated convolution to replace the pooling layer in standard convolution.
This process can retain the timing relation of original signals and obtain larger-scale feature
information, which helps improve the feature learning ability of neural networks. In [31],
Su et al. used a dilated convolution deep belief network dynamic multilayer perceptron for
bearing fault recognition under alterable running states. Zhao et al. [32] proposed a novel
transfer learning framework based on a Deep Multi-Scale Convolutional Neural Network
(MSCNN), in which dilated convolution and global average pooling were introduced to
realize intelligent fault diagnosis of rolling bearings. Han et al. [33] used dilated convolu-
tions to construct a Novel Multi-scale Dilated Convolutional Neural Network (NMDCNN)
to enrich the field of view coverage. Meanwhile, piecewise cross-entropy is used to balance
the misclassification cost between healthy samples and faulty samples. Chu et al. [34]
advanced a novel multi-scale convolution model based on Multi-Dilation Rates And Multi-
Attention Mechanism (MDRMA-MSCM) for mechanical fault diagnosis. Wang et al. [35]
proposed Cascade Convolutional Neural Network (C-CNN) for fault diagnosis, and a cas-
cade structure was built to avoid information loss. In conclusion, dilated convolution
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has made significant achievements in the field of fault diagnosis, and its advantages are
as follows:

(1) Dilated convolution replaces the pooling layer operation in feature processing. This
process not only cannot reduce the receptive field of the network but also can leave the
temporal relationship of the original signal completely, which is of great significance
for mining the domain invariant characteristics of the signal.

(2) The use of large convolution kernels in standard convolution will increase the com-
putation amount. Compared with larger convolution kernels, dilated convolution
has significantly less computation making the model more accurate in processing
fault features.

However, dilated convolution still maintains the black-box feature, which assigns the
same weight to different feature channels, and cannot adaptively adjust the corresponding
weight according to the importance of the channel. In particular, the lack of attention
mechanism ignores the exceptional contribution of the information data segment.

In recent years, the attention mechanism has been experimentally implied to solve
this problem. It is inspired by the method that the human brain uses limited computation
to obtain high-value information while processing information. Based on the idea, it
has been applied in plenty of deep learning methods. Extracting the features of the
original vibration signals, the attentional mechanism can dynamically enhance the weight
of significant feature channels, thus improving diagnostic accuracy. Zhang et al. [36]
proposed a fault diagnosis method, which is utilized to realize spatiotemporal feature
fusion, where vibration signal fused features with attention weight. Li et al. [37] constructed
a rolling bearing fault diagnosis model, which combines a Dual-stage Attention-based
Recurrent Neural Network (DA-RNN) and Convolutional Block Attention Module (CBAM).
Yang et al. [38] developed a method based on multilayer bidirectional gated recurrent units
with an attention mechanism to access the interpretability of neural networks in fault
diagnosis. Zhang et al. [39] proposed a Hybrid Attention improved Residual Network (HA-
ResNet) based method to diagnose the fault of the wind turbines’ gearbox. This method
highlights the essential frequency bands of wavelet coefficients and the fault features of
convolution channels. Cao et al. [40] built a deep domain-adaptive multi-task learning
model Y-Net, which is exploited to enable domain-adaptive diagnosis of faults in planetary
gearboxes. The Squeeze and Excitation Residual (SE-Res) modules are utilized to reduce
the redundancy of the model and improve the separability of deep features.

Attention mechanisms can be used to solve the problem that dilated convolution
cannot adaptively obtain the particular weight of informative data segments. At the
same time, the dilated convolution is introduced into the attention mechanism so that
the model can gather a larger receptive field and extract more features. Inspired by the
dilated convolution and attention mechanism, an ECNN model was proposed in this
study. The model employs a novel Pyramidal Dilated Convolution to extract more valuable
features, and the Residual Network Feature Calibration and Fusion (ResNet-FCF) block is
implied to assign different weights to different feature channels. This article contributes:

(1) In this model, the pyramidal dilatated convolution is designed to extract the features
of data segments, which dramatically improves the receiving field and captures
more features.

(2) The ResNet-FCF is designed as a novel attention network architecture. Based on the
local interaction learning scheme, ResNet-FCF introduces a residual network with
one-dimensional convolution for global cross-channel interaction. The module assigns
precise weight to the informative data segments.

(3) The model has a good diagnosis effect under three practical examples.

The rest of this paper is organized as follows. The basic theory of the convolutional
neural networks and residual networks are briefly introduced in Section 2. Moreover, it in-
troduces an ECNN model and a novel fault diagnosis method. In Section 3, the experiment
results are analyzed and discussed. Ultimately, the conclusions are presented in Section 4.
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2. Materials and Methods
2.1. Convolutional Neural Networks

The CNN model is used for fault diagnosis, which can not only automatically extract
fault features but also process a large amount of real-time data generated by the equipment.

2.1.1. Convolutional Layer

The main module of CNN [41] is the convolutional layer, which uses filters to perform
a series of convolutional operations on the input data and output the corresponding features.
Its mathematical model can be expressed as

yk
j = (X∗W) = g

(
∑ Wk

ij · Xk−1
i + bk

j

)
(1)

where X represents the vibration signal, ∗ represents the convolution operation, k represents
the k-layer network, W represents the convolution kernel, and yk

j is the k-th layer output. g

stands for nonlinear activation function, and bk
j represents the bias vector.

When F(x) (the output of the residual block) is 0, the basic mapping function of
the residual block becomes H(x) = x, which accomplishes the identity mapping of the
input and output. At the same time, according to the rule of backpropagation, it can be
known that the backpropagation gradient of the residual part is (∂H)/(∂x) + 1. The model
is merely required to minimize the residual map for approximating the identity map,
which aims to ensure that the backpropagation gradient of the bottom layer is non-zero.
Furthermore, the increase in the smoothness of interaction takes complete advantage of
deep neural networks. The structure of the residual network is shown in Figure 1.

Weight layer

ReLU

Weight layer

ReLU

Figure 1. Residual neural network.

2.1.2. Pooling Layer

The pooling operation aims to reduce the dimension of the output of the previous
layer. The essence is to effectively reduce the amount of calculation and retain important
information, so the calculation resources and time are reduced in order to better preserve
the data feature and make the model obtain a higher convergence speed. The pooling
methods mainly include maximum pooling and average pooling. Maximum pooling pmax
and average pooling pavg refer to computing the maximum value and average pooling
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in the pool window, respectively. The mathematical description of the two equations is
shown as

pl(i,j)
avg =

1
W

jW

∑
t=(j−1)W+1

al(i,t) (2)

pl(i,j)
max = max

(j−1)W+1≤i≤jw

{
al(i,t)

}
(3)

where al(i,t) is the activation value of the t neuron in frame i of layer l; W is the width of the
pool window.

2.1.3. Fully Connected Layer

Through a series of convolution and pooling, depth feature extraction is performed
layer by layer, then the features are flattened and input into the fully connected layer, and
the equation is

yk = σ((w f )
T
sm + b f ) (4)

where w f and b f are the weight matrix and bias of the k-layer, respectively; y is the
output of the fully connected layer. Usually, for obtaining the predicted output of the
model, the softmax function is connected to realize the category classification after the fully
connected layer, namely

fk(y) = exp(yk)/
C

∑
k=1

exp(yk) (5)

where fk(y) is the predicted value of the softmax function for each category; C is the
number of categories.

2.2. Residual Neural Network

As the deep neural network training process may lead to network degradation,
He et al. [42] proposed a Residual Neural Network (ResNet), which builds a model by
stacking residual blocks. The input of the residual block is x. After two convolutional
layers, the basic mapping function H(x) is acquired. The residual block introduces a skip
layer connection to reconstruct the learning process of stacked network layers, so that the
residual mapping function F(x) of the network layer can fit H(x)− x, where the expression
of F(x) is as follows:

F(x) = W2(ReLU(W1(x))) (6)

where W1 and W2 in represent the convolutional layer 1 and convolutional layer 2 in the
residual block, and ReLU represents the nonlinear activation function.

2.3. ECNN Model

As the standard CNN model still maintains the black-box feature, it not only cannot
capture the features of different scales but also ignores the unique contribution of special
data segments. In order to solve the problem, we start from three aspects: raw vibration
signal using Pyramidal Dilated Convolution, ResNet-FCF block construction, and the
general procedure of the proposed method.

Compared with CNN, this model adopts different architectural approaches in process-
ing original signals, feature extraction and weight allocation of signal channels, as shown in
Figure 2. The ECNN model uses dilated convolution to replace the pooling layer to avoid
the loss of important features and has a larger receptive field under the same parameters
with more useful features extracted. After the dilated convolution operation, the global
average pooling (GAP) is used to obtain the descriptor of each feature channel. Then the
local channel interaction and the global channel interaction based on the residual network
are fused for weight redistribution, strengthening the crucial features and suppressing the
irrelevant features.
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Figure 2. ECNN model of structures.

2.3.1. Pyramidal Dilated Convolution

Dilated convolution has huge advantages over standard convolution [43]. In this study,
Pyramidal Dilated Convolution (PDC) is proposed, which has an adaptive receptive field
with the same parameters. When a large amount of information is acquired, the parameters
can be kept unchanged, resulting in a decrease in computing resources. Assuming that x(a)
represents the one-dimensional input, A shows the data feature size, the dilation rate is r,
the 1D convolution kernel is w(i), and y(a) represents the output feature of data operation.
The relationship equation between them is as follows:

y(a) =
A

∑
i=1

x(a + r× i)× w(i). (7)

The Pyramidal Dilated Convolution can not only expand the reception field of the orig-
inal network but also compensate for the loss caused by under-sampling, as demonstrated
in Figure 3. Therefore, it is feasible to replace standard convolution in neural networks
with Pyramidal Dilated Convolution. Depending on the PDC with different dilation rates,
the receptive field becomes enlarged, and in the meantime, features of data segments permit
more access.

(a) Standard convolution model. (b) Dilated convolution model.

Figure 3. Comparison of two convolutional networks.

Under the condition that the size of the convolution kernel is the same, the receptive
field of the Pyramidal Dilated Convolution in the i-th convolutional layer rises exponentially.
The dilation rate d and the size of the convolution kernel jointly determine the receptive
field size of the i-th Pyramidal Dilated Convolutional network. Equation (8) is the receptive
field of dilation:
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S1 = kernel_size (8)

Si = Si−1 + (kernel_sizei − 1) ∗ di (9)

where Si stands for the receptive field of the i-th layer, and kernel_sizei and di represent the
size of the convolution kernel and dilation rate of the i-th layer network, respectively.

2.3.2. ResNet-FCF Block

In recent years, it has been proved that channel attention exists with great potential in
improving the performance of convolutional neural networks. In this study, we propose a
novel ResNet-FCF block with the structure shown in Figure 4.

…

…

⊗
⊕

pooling

Same convolution

activation

Mutiply

Add

k

…

k

…

D=1 , k

k

Figure 4. The construction of a ResNet-FCF block.

The specific working process of the module is initially to perform GAP [44] after
convolution transformation, whose purpose is to obtain the global information of each
channel. The statistic z ∈ RC is generated by shrinking the dimension H ×W of the input
signal, and the p-th element of z can be expressed as:

zp = Fsq
(
up
)
=

1
H ×W

H

∑
i=1

W

∑
j=1

up(i, j) (10)

where zp can be interpreted as a collection of local features, the statistical information
of these local features can express the entire signal and have a global receptive field.
The statistic z does not require dimensionality reduction, and the attention weight of each
channel can be obtained in the following way:

ρ = σ(Wkz) (11)

where ρ is the weight, and Wk contains k× C parameters, which is defined as:
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w1

1 · · · wk
1 0 0 · · · · · · 0

0 w2
2 · · · wk+1

2 0 · · · · · · 0
...

...
...

...
. . .

...
...

...
0 · · · 0 0 · · · wC−k+1

C · · · wC
C

 (12)

σ represents the sigmoid [45] nonlinear activation function:

σ(x) = 1/(t)−xe (13)

Equation (11) avoids complete independence between different channels and ensures
efficiency and effectiveness while realizing partial cross-channel interaction. The weight of zj
is calculated only by considering the interaction between zj and its k neighboring elements:

ρi = σ

(
k

∑
j=1

wj
iy

j
i

)
, yj

i ∈ Ωk
i (14)

where Ωk
i represents the set of k channels adjacent to yi. In order to reduce the complexity

of the model, all channels can share the same parameters, namely:

ρi = σ

(
k

∑
j=1

wiyj
i

)
, yj

i ∈ Ωk
i (15)

Equation (11) can be further simplified as a one-dimensional convolution operation:

ϕ = σ
(

Convk
1(z)

)
(16)

where Convk
1 represents the one-dimensional convolution, and k is the size of the corre-

sponding convolution kernel. It is verified through experiments that the value of k is related
to the number of channels C. The simplest mapping is a linear function.

However, the relationships characterized by linear functions are excessively limited.
Exponential functions are often used to deal with this nonlinear mapping relationship.
The expression is as follows:

C = 2(γ
nk−b) (17)

the number of channels is C, the expression of k can be inversely deduced as

k =

(
log2 C

γ
+

b
γ

)
(18)

in the equation: γ, b are adjustment parameters, which can be adjusted according to
specific conditions.

Fsc(·) multiplies the input x by ρ and maps it to the output with the same dimension.
The output is defined as follows:

Fsc(x, ρ) = Y (19)

The process uses a local feature learning scheme to assign weights, then the skip
part of the residual network is changed to convolution, which builds the global feature
interaction. The output U of the residual block is defined as follows:

U = Conv1
2(X) + Y (20)

where Conv1
2 represents the convolution whose kernel size is 1.
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2.4. Intelligent Fault Diagnosis Process

In this study, a novel ECNN for intelligent fault diagnosis is developed. The specific
framework of diagnosis is shown in Figure 5. The general process is summarized as follows:

• Step 1: Collect vibration signal data from equipment.
• Step 2: The raw signal is divided. Firstly, a certain proportion of the former is the

training signal, and the rest is the test signal. Then, several samples are randomly
selected from the corresponding signals to form a training set and a test set.

• Step 3: Construct an ECNN network model and select appropriate parameters.
• Step 4: Bring the training samples into the model for training. If the model does not

converge, return to the previous step to redesign.
• Step 5: The performance of the proposed method is verified using test samples.
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Figure 5. The structure of intelligent fault diagnosis.

3. Results

In this section, the Windows10 operating system is used. The Random Access Memory
(RAM) and graphics process unit are 16GB and GeForce GTX 1060, respectively. The ECNN
test model was built and trained under the Keras framework. Keras is an open-source
artificial neural network library written in Python, which can be used as a high-level appli-
cation interface for Tensorflow, Microsoft-CNTK and Theano to design, debug, evaluate,
apply and visualize deep learning models. Three examples are given to verify that the
ECNN fault diagnosis model can extract a considerable number of data features with
equivalent calculations and assign much weight to essential features and little to irrelevant
features. In the experiment, three different data sets are used to verify its effectiveness:
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Case Western Reserve University (CWRU) rolling bearing, National Aeronautics and Space
Administration (NASA) rolling bearing, and the Permanent Magnet Synchronous Motor
(PMSM) of our lab, respectively.

3.1. The CWRU Rolling Bearing Example

The CWRU bearing data set is recognized as an authoritative fault diagnosis standard
data set. In order to objectively compare the method with others, this paper selects the
CWRU bearing data set for algorithm verification. In the experiment, the drive end data
are selected. The bearing has three types of fault conditions: the inner ring, outer ring and
rolling element. The depth and location of each type of fault are different, as shown in
Table 1. There are four hundred samples collected for each condition. The load of this exper-
iment is variable and can be divided into HP1, HP2 and HP3 load data. The experimental
data contains 16 kinds of conditions. The signals are shown in Figure 6.
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Figure 6. Raw waveforms of the bearing conditions.
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3.1.1. Model Structure

In the experiment, six traditional methods and four convolutional neural networks
were selected for the comparison. The conventional method extracts 11 time-domain
features and 13 frequency-domain features from the samples and then classifies them
using BPNN and SVM. More details about the eleven TD features and thirteen FD features
can be seen in [46,47], respectively. CNN, dilated convolution and SE (Squeeze-and-
Excitation) CNN are taken as the comparative experimental models of deep convolutional
neural networks. The first layer of the ECNN model uses a one-dimensional way for
data processing, and then different dilated rates are set for the other eight layers. This
process can replace the pooling layer in standard CNN so more valuable features can
be extracted while the receptive field increases. The designed ResNet-FCF block assigns
different weights to feature channels after each layer. The model parameters of the deep
learning network ECNN are shown in Table 2.

Table 1. Description of the bearing operation conditions.

Bearing Operation Conditions Fault Diameter Size of Training Testing Samples Label

Normal - 300 100 0
Ball fault 0.007 300 100 1
Ball fault 0.014 300 100 2
Ball fault 0.021 300 100 3
Ball fault 0.028 300 100 4

Inner race fault 0.007 300 100 5
Inner race fault 0.014 300 100 6
Inner race fault 0.021 300 100 7
Inner race fault 0.028 300 100 8

Outer race fault 6 o’clock 0.007 300 100 9
Outer race fault 6 o’clock 0.014 300 100 10
Outer race fault 6 o’clock 0.021 300 100 11
Outer race fault 3 o’clock 0.007 300 100 12
Outer race fault 3 o’clock 0.021 300 100 13

Outer race fault 12 o’clock 0.007 300 100 14
Outer race fault 12 o’clock 0.021 300 100 15

Table 2. Parameters of the ECNN model.

Network Layer Size/Stride Kernels Dilate Factor Output Shape Receptive Field Padding

Input — — — 1024 × 1 1 —
Conv 1 3 × 1/1 × 1 64 1 1024 × 64 3 Yes

ResNet-FCF - - - 1024 × 64 3 -
Conv 2 3 × 1/1 × 1 64 2 1020 × 64 7 No

ResNet-FCF - - - 1020 × 64 7 -
Conv 3 3 × 1/1 × 1 64 4 1012 × 64 15 No

ResNet-FCF - - - 1012 × 64 15 -
Conv 4 3 × 1/1 × 1 64 8 996 × 64 31 No

ResNet-FCF - - - 996 × 64 31 -
Conv 5 3 × 1/1 × 1 64 16 964 × 64 63 No

ResNet-FCF - - - 964 × 64 63 -
Conv 6 3 × 1/1 × 1 64 32 900 × 64 127 No

ResNet-FCF - - - 900 × 64 127 -
Conv 7 3 × 1/1 × 1 64 64 772 × 64 255 No

ResNet-FCF - - - 772 × 64 255 -
Conv 8 3 × 1/1 × 1 64 516 × 64 511 No

ResNet-FCF - - - 516 × 64 511 -
Conv 9 3 × 1/1 × 1 64 256 4 × 64 1023 No

ResNet-FCF - - - 4 × 64 1023 -
Flatten — — — 128 — —

FC 128 — — 128 — —
SoftMax 16 — — 16 — —
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3.1.2. Diagnosis Results of Different Methods

In order to obtain more accurate results, the experiment was divided into ten groups.
The results show that the performance of BPNN and SVM depends on feature extraction to
a large extent. When the selected input becomes sensitive features, the diagnostic results
are further improved to 79.63% and 87.14%, respectively, but this is expensive and time-
consuming. The accuracy of the proposed method is 99.12% higher than that of the nine
methods, as shown in Table 3 and Figure 7.

Table 3. Parameters of the ECNN model.

Network Layer Size/Stride Kernels Dilate Factor Output Shape Receptive Field Padding

Input — — — 1024 × 1 1 —
Conv 1 3 × 1/1 × 1 64 1 1024 × 64 3 Yes

ResNet-FCF - - - 1024 × 64 3 -
Conv 2 3 × 1/1 × 1 64 2 1020 × 64 7 No

ResNet-FCF - - - 1020 × 64 7 -
Conv 3 3 × 1/1 × 1 64 4 1012 × 64 15 No

ResNet-FCF - - - 1012 × 64 15 -
Conv 4 3 × 1/1 × 1 64 8 996 × 64 31 No

ResNet-FCF - - - 996 × 64 31 -
Conv 5 3 × 1/1 × 1 64 16 964 × 64 63 No

ResNet-FCF - - - 964 × 64 63 -
Conv 6 3 × 1/1 × 1 64 32 900 × 64 127 No

ResNet-FCF - - - 900 × 64 127 -
Conv 7 3 × 1/1 × 1 64 64 772 × 64 255 No

ResNet-FCF - - - 772 × 64 255 -
Conv 8 3 × 1/1 × 1 64 516 × 64 511 No

ResNet-FCF - - - 516 × 64 511 -
Conv 9 3 × 1/1 × 1 64 256 4 × 64 1023 No

ResNet-FCF - - - 4 × 64 1023 -
Flatten — — — 128 — —

FC 128 — — 128 — —
SoftMax 16 — — 16 — —

Figure 7. Diagnosis results of the ten trials using different methods.
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3.1.3. Visualization of the Fault Diagnosis Process

ECNN is set for fault diagnosis, in which nine layers exist. Each layer initially uses
different dilation rates for feature extraction and then utilizes the ResNet-FCF block to
assign appropriate weights for the extracted features effectively. Thereby the informative
data segments will receive more attention and their corresponding channel weights increase.
This paper takes advantage of the t-SNE dimensionality reduction technique to visualize
the features in each layer. The diagram of the structure is shown in Figure 8.

Conv1D(64,3,1)

Layer 9

Input Layer 1

Layer 5

Layer 2Layer 3

Layer 4

Layer 6Layer 7

Layer 8

…

Conv1D(64,3,2)

ResNet-FCF

Conv1D(64,3,4)

ResNet-FCF

Conv1D(64,3,8)

ResNet-FCF

Conv1D(64,3,16)

ResNet-FCF

Conv1D(64,3,32)

ResNet-FCF

Conv1D(64,3,64)

ResNet-FCF

Conv1D(64,3,128)

ResNet-FCF

Conv1D(64,3,256)

ResNet-FCF

Figure 8. The proposed method fault classification results.

3.1.4. Weight Comparison of ECNN and SECNN

To explore the role of ResNet-FCF in every convolutional layer of ECNN, we visualize
the weights generated by each convolutional layer and then compare the effects of ResNet-
FCF and SE blocks at each layer in detail. As shown in Figure 9, the results indicate that
when different types of samples are input, the weight generated by the fault diagnosis
model is more related to the category information. The combination of local cross-channel
and global cross-channel interactions in the ResNet-FCF block significantly improves the
ability of channel attention.
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Figure 9. Visual comparison of weights for ResNET-FCF and SE blocks.

3.1.5. The Influence of Hyperparameters

The structural parameters of the model are determined by experiments. Two key
parameters k (convolution kernel size) and C (number of channels) are selected through
cross-validation, as shown in Figure 10. The results of the 3D hyperparametric graph show
that the accuracy of the model is the highest when the size of the convolution kernel is
sixty-four, and the number of channels is three.

Figure 10. The effect of C and k on accuracy.

3.1.6. The Influence of Different Segmentation Ratios

In the experiment, with the increased number of training samples, the accuracy and
experiment time of each network structure also increase. As seen in Table 4, under the
conditions of different sample segmentation ratios, the ECNN fault diagnosis model has
achieved the greatest results.

3.1.7. The Influence of Different SNR

To further research the performance of the model, various levels of white noise were
added to the traditional learning model and the deep learning model, respectively. The re-
sults show that the traditional methods are less competitive compared with CNN in terms
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of noise-resistance. The model behaves brilliantly in terms of robustness compared with
other deep learning networks. Table 5 shows the accuracy of each model under noise
conditions. Figure 11 shows the noise-resistance curve.

Table 4. Accuracy of different segmentation ratios.

Methods BP-r BP-T BP-F SVM-r SVM-
T SVM-F CNN DCNN SECNN ECNN

350/50

Correct samples 12816 11410 15037 9787 13795 15717 15782 15640 15818 15818
Accuracy 82.96% 75.67% 95.33% 71.88% 88.56% 98.36% 98.17% 99.02% 98.98% 99.34%

Accuracy std 1.05% 2.81% 0.36% 0.55% 1.11% 0.27% 0.38% 0.32% 0.70% 0.40%
Time 6.95 6.29 7.29 12.37 2.56 1.86 30.83 59.97 44.69 71.68

325/75

Correct samples 12816 11410 15037 9787 13795 15717 15782 15640 15818 15818
Accuracy 80.72% 74.58% 94.61% 71.25% 87.58% 98.33% 97.75% 98.87% 98.79% 99.27%

Accuracy std 0.84% 3.50% 0.34% 1.47% 1.00% 0.31% 1.21% 0.60% 0.58% 0.42%
Time 6.31 6.21 6.93 12.17 2.5 1.81 28.38 58.69 41.7 70.87

300/100

Correct samples 12816 11410 15037 9787 13795 15717 15782 15640 15818 15818
Accuracy 79.63% 71.91% 93.17% 71.20% 87.14% 98.15% 95.47% 97.07% 98.72% 99.12%

Accuracy std 1.38% 1.99% 2.84% 1.05% 1.17% 0.29% 2.08% 1.50% 0.41% 0.37%
Time 6.1 6.14 6.8 12.09 2.4 1.78 28.05 52.56 38.36 62.89

275/125

Correct samples 12816 11410 15037 9787 13795 15717 15782 15640 15818 15818
Accuracy 78.48% 69.56% 92.98% 71.07% 86.12% 98.13% 95.40% 97.01% 96.95% 98.79%

Accuracy std 1.27% 2.00% 1.66% 0.56% 1.28% 0.17% 2.64% 0.49% 2.83% 0.33%
Time 5.89 5.63 6.65 11.5 2.38 1.76 25.19 52.14 37.78 62.46

250/150

Correct samples 12816 11410 15037 9787 13795 15717 15782 15640 15818 15818
Accuracy 77.85% 69.02% 92.42% 70.60% 86.08% 98.10% 95.02% 96.82% 96.72% 98.58%

Accuracy std 0.63% 2.70% 3.16% 1.00% 2.08% 0.19% 5.68% 2.07% 1.03% 1.02%
Time 5.74 5.59 6.32 11.26 2.31 1.74 24.16 45.59 34.93 54.35

225/175

Correct samples 12816 11410 15037 9787 13795 15717 15782 15640 15818 15818
Accuracy 72.34% 67.82% 89.83% 70.37% 86.08% 98.07% 93.61% 96.66% 96.56% 97.87%

Accuracy std 1.50% 0.57% 3.48% 0.50% 1.57% 0.23% 3.70% 0.58% 2.25% 0.41%
Time 5.62 5.48 6.27 10.81 2.19 1.71 22.89 44.74 33.34 54.22

200/100

Correct samples 12816 11410 15037 9787 13795 15717 15782 15640 15818 15818
Accuracy 71.35% 66.72% 88.43% 69.07% 85.37% 98.04% 93.48% 96.24% 95.67% 97.23%

Accuracy std 0.94% 3.74% 3.29% 1.59% 0.31% 0.38% 6.77% 1.33% 5.45% 1.82%
Time 5.37 5.1 6.14 1.18 2.16 1.68 19.57 38.64 32.81 45.94

In this table, the accuracy reflects the average accuracy; the time represents the average time and units in
seconds (s).

Table 5. The accuracy of each method under different SNRs.

Method
SNR(dB)

3 2 1 0 −1 −2 −3 −4

BPNN with raw data 64.13% 60.81% 57.25% 54.25% 45.63% 43.81% 34.43% 30.31%
BPNN with TD features 77.69% 77.63% 76.37% 76.00% 75.88% 74.63% 74.18% 74.06%
BPNN with FD features 90.94% 90.81% 87.88% 83.63% 82.81% 79.00% 73.87% 72.68%

SVM with raw data 69.63% 68.25% 66.56% 66.25% 64.88% 64.06% 62.93% 62.68%
SVM with TD features 84.75% 84.69% 84.25% 84.19% 84.00% 83.31% 81.18% 80.87%
SVM with FD features 96.44% 95.56% 94.38% 92.44% 92.00% 90.12% 85.31% 83.43%

CNN 96.75% 95.38% 93.56% 87.93% 85.25% 83.06% 79.25% 77.87%
DCNN 97.87% 97.75% 97.37% 96.81% 95.69% 92.31% 89.37% 80.87%
SECNN 97.69% 97.31% 97.06% 96.75% 95.50% 92.06% 88.58% 78.25%
ECNN 98.56% 98.06% 98.00% 97.75% 96.74% 94.44% 92.12% 87.43%
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Figure 11. Accuracy curve of each method under different SNRs.

3.1.8. The Influence of Variable Load

In order to analyze the generalization ability of these models, every method is re-
quired to be trained under different loads, and another load will be used as a test set.
The experiment results are shown in Figure 12 and Table 6.

Figure 12. Average accuracy under different loads.
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Table 6. Variable load accuracy rate of each method.

Methods BP-r BP-T BP-F SVM-r SVM-T SVM-F CNN DCNN SECNN ECNN

1→2

1 45.77% 78.30% 96.58% 50.73% 85.20% 94.53% 96.80% 98.42% 99.64% 99.23%
2 42.95% 76.77% 96.69% 48.85% 86.24% 94.93% 96.12% 98.91% 98.83% 99.98%
3 44.03% 77.38% 96.83% 49.29% 86.02% 94.86% 93.32% 98.83% 96.95% 99.97%
4 43.39% 79.28% 96.67% 51.25% 85.23% 94.64% 94.85% 99.94% 97.17% 99.98%
5 42.47% 80.92% 97.68% 50.57% 84.94% 94.66% 93.45% 99.65% 94.74% 99.81%

Avg 43.72% 78.53% 96.89% 50.14% 85.52% 94.72% 94.91% 99.15% 97.47% 99.79%
Std 1.28% 1.64% 0.45% 1.02% 0.57% 0.16% 1.55% 0.62% 1.89% 0.33%

2→1

1 38.83% 79.70% 94.97% 56.83% 83.51% 94.39% 95.00% 97.35% 92.77% 97.90%
2 39.80% 79.94% 94.59% 54.23% 84.01% 94.43% 90.03% 98.60% 94.59% 98.15%
3 38.51% 78.41% 94.16% 51.10% 84.39% 94.32% 95.85% 98.44% 94.85% 98.69%
4 38.53% 82.01% 94.68% 52.41% 85.39% 94.37% 92.03% 97.38% 94.51% 98.56%
5 39.43% 80.26% 95.06% 53.72% 80.98% 94.18% 92.90% 96.94% 93.97% 97.95%

Avg 39.02% 80.06% 94.69% 53.66% 83.65% 94.34% 93.16% 97.74% 94.14% 98.25%
Std 0.57% 1.29% 0.35% 2.15% 1.65% 0.10% 2.33% 0.73% 0.83% 0.36%

1→3

1 38.79% 80.07% 85.59% 55.02% 83.85% 91.23% 87.61% 90.83% 91.35% 98.94%
2 40.56% 78.30% 88.83% 52.90% 83.44% 91.09% 92.39% 95.94% 90.17% 98.97%
3 40.20% 77.68% 85.34% 57.02% 82.73% 90.33% 83.51% 98.33% 95.06% 98.04%
4 37.86% 83.54% 83.08% 55.59% 83.00% 92.29% 89.66% 97.53% 88.27% 99.29%
5 40.03% 80.76% 87.72% 54.14% 87.12% 91.12% 92.77% 97.06% 90.99% 99.15%

Avg 39.49% 80.07% 86.11% 54.93% 84.03% 91.21% 89.19% 95.94% 91.17% 98.88%
Std 1.13% 2.31% 2.24% 1.55% 1.78% 0.70% 3.81% 2.98% 2.48% 0.49%

3→1

1 34.26% 77.78% 91.22% 51.86% 83.49% 88.35% 82.34% 84.30% 81.14% 91.83%
2 34.83% 76.33% 87.23% 50.11% 81.99% 88.59% 82.34% 83.68% 87.12% 91.70%
3 34.09% 70.04% 90.26% 49.89% 81.46% 91.18% 80.57% 85.81% 80.22% 90.93%
4 33.46% 77.97% 92.82% 48.01% 83.41% 92.96% 80.74% 87.09% 79.99% 92.19%
5 33.84% 77.35% 87.58% 49.83% 82.95% 89.17% 81.64% 86.74% 85.56% 91.97%

Avg 34.10% 75.89% 89.82% 49.94% 82.66% 90.05% 81.53% 85.52% 82.81% 91.72%
Std 0.51% 3.33% 2.39% 1.37% 0.90% 1.97% 0.85% 1.49% 3.30% 0.48%

2→3

1 39.27% 79.50% 89.14% 58.38% 85.37% 94.92% 85.15% 90.42% 90.61% 98.93%
2 41.24% 80.24% 89.41% 55.21% 85.73% 94.72% 89.98% 93.07% 91.10% 99.62%
3 41.37% 77.46% 87.18% 53.96% 85.42% 94.34% 86.66% 97.63% 92.00% 99.86%
4 41.05% 82.84% 87.59% 55.54% 84.66% 94.21% 86.27% 91.68% 93.23% 98.86%
5 41.93% 82.73% 90.56% 52.73% 85.43% 95.10% 90.29% 87.17% 89.76% 98.55%

Avg 40.97% 80.56% 88.78% 55.16% 85.32% 94.66% 87.67% 91.99% 91.34% 99.16%
Std 1.01% 2.28% 1.38% 2.11% 0.40% 0.38% 2.32% 3.83% 1.33% 0.55%

3→2

1 35.31% 81.12% 94.08% 47.52% 81.98% 91.42% 82.99% 87.26% 81.12% 95.47%
2 35.05% 74.39% 94.13% 45.11% 81.14% 91.09% 83.62% 86.66% 85.70% 95.36%
3 35.42% 71.81% 96.18% 43.88% 81.19% 90.69% 84.34% 87.47% 81.27% 95.11%
4 35.45% 77.67% 96.28% 44.65% 80.22% 92.14% 84.50% 87.36% 86.92% 95.33%
5 35.67% 76.22% 95.11% 44.73% 79.40% 91.02% 83.87% 92.68% 87.11% 95.48%

Avg 35.38% 76.24% 95.15% 45.18% 80.79% 91.27% 83.86% 88.29% 84.42% 95.35%
Std 0.22% 3.50% 1.06% 1.39% 0.99% 0.55% 0.61% 2.47% 3.00% 0.15%

3.2. The NASA Rolling Bearing Example

In this section, the NASA dataset is further used to demonstrate the superiority of
the proposed method in feature extraction and contributions from different data segments.
From the beginning to the end of the data collection, there are four cases in the data set:
normal, inner ring failure, outer ring failure and rolling element failure. The test time of
normal, inner ring and rolling elements are all thirty-five days, with the exception of thirty
days for the test of the outer ring. The data set extracted in this experiment was collected
after frequent failures, and the data of the last five days were taken as samples shown in
Figure 13 and Table 7.
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Figure 13. Collection of NASA datasets.

Table 7. Data description.

Conditions Days Train Samples Test Samples Dataset Bearing Label

Normal 25–35 300 100 No.1 No.1 0
Inner face 25–35 300 100 No.1 No.3 1
Outer face 20–30 300 100 No.3 No.3 2

Roller element 25–35 300 100 No.1 No.4 3

This experiment obtained 300 training samples and 100 testing samples from each
condition, and the length of each sample was set to 1024. Ten experiments were conducted
for each one of the four deep learning networks. The experiment results are shown in
Figure 14 and Table 8. Compared with other deep learning methods, the proposed method
has obvious advantages and enables to accurately identify different types of faults.

Table 8. Diagnosis results of the ten trials using different methods.

Methods Total Sample Correct Sample Average Testing Accuracy

CNN 4000 3815 95.38% ± 0.54%
DCNN 4000 3924 98.10% ± 0.42%
SECNN 4000 3913 97.83% ± 0.50%
ECNN 4000 3982 99.55% ± 0.33%
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Figure 14. Diagnosis results of the ten trials using different methods.

The following conclusions can be drawn: different changes in load have different
influences on signals. Compared with other deep learning methods, the ECNN fault
diagnosis model has a high average accuracy rate that reaches 97.19% under variable
working conditions. The results show that the model has a strong generalization ability
and domain adaptability.

3.3. The Example of PMSM

Further study on the electrical systems of Permanent Magnet Synchronous Motors
(PMSM) will be carried out to verify the transferability and extensibility of the ECNN-
based method.

The experimental platform comprises the following parts: upper computer, electrome-
chanical actuator and its controller, sensor, data acquisition system, loading system and
power supply system. The structure of the experimental platform is shown in Figure 15.

Figure 15. PMSM experimental setup.

3.3.1. The Faults of Motor

In order to guarantee the safety of the test and prevent irreversible damage to the
motor, mainly the inter-turn short circuit fault of the motor is simulated in this study,
as shown in Figure 16. The inter-turn short circuit fault is mainly reflected in the change in
the winding resistance value. Therefore, the three-phase winding of the motor is externally
connected, in which the resistance of the two-phase windings has the same value (the other
phase is not a series of resistance or a different resistance value of the resistance) to simulate
the three-phase winding asymmetry. At the same time, the three-phase current and speed
signals of the motor under different fault depths are collected.
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Figure 16. Failure testing of PMSM.

As shown in Figure 16, number 1 represent the controller of the output bus, numbers 2,
3, and 4 represent the three current sensor output signal, number 5 on behalf of the 5V DC
power supply, numbers 6, 7 and 8 are used to measure the a, b, and c three-phase current
of the current sensor respectively, number 9, 10 and 11 are concatenated in an a, b, and c
three-phase resistor respectively, and number 12 represents the input bus at the end of the
motor end.

3.3.2. Influence of Short Circuit on Three-Phase Current of Motor

The 1%, 2%, 4%, 8% and 16% inter-turn short circuit faults were injected for a PMSM
stator winding. (a), (b), (c), (d), (e) and (f) are the three-phase current curves of the motor
under different working conditions. The red line is the a-phase current curve, the purple
line is the B-phase current curve, and the blue line is the C-phase current curve. As shown
in Figure 17.

(a) normal. (b) 1% failure.

(c) 2% failure. (d) 4% failure.

Figure 17. Cont.
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(e) 8% failure. (f) 16% failure.

Figure 17. Three phase current curve of the motor under different conditions.

3.3.3. Verification of Different Deep Learning Algorithms

Four deep learning models were trained ten times to obtain average accuracy. As shown
in Figure 18. The results show that ECNN can improve the diagnosis ability of small faults
and has a good recognition ability for inter-turn short circuit faults with the same fault
type and different fault depths. In the experiment, the accuracy of CNN is 93.38%, while
the accuracy of optimized DCNN is improved to 96.61%. The recognition accuracy of the
algorithm combining SECNN is 97.25%, while the accuracy of the ECNN network is the
highest, reaching 99.87%. Deep network ECNN has great advantages in feature extraction
and state recognition. The confusion matrix of the four deep learning models is shown in
Figure 19.

Figure 18. Diagnosis results of the four trials using different methods.
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Figure 19. The confusion matrix of the four deep learning models.

4. Conclusions

This paper presents a new ECNN model for fault diagnosis. Firstly, a novel pyramidal
dilated convolution method is proposed. It not only expands the receptive field of the model
but also plays an important role in feature extraction. Secondly, aiming at the problem
that all feature channels of fault information after pyramid dilated convolution are treated
equally, a novel ResNet-FCF block is proposed. The ResNet-FCF block can effectively
assign appropriate weights to each channel through local cross-channel interaction and
global cross-channel interaction learning. The three examples’ results show the proposed
method’s effectiveness and superiority. However, there is still room for improvement in
the parameter tuning of this model, which can be further optimized on the number of
convolution kernels on the convolution layer. Meanwhile, the recognition rate from the “3”
domain to the “1” domain needs to be improved. In the future, other algorithms to improve
the adaptive ability of the domain can be added to further improve the fault identification
ability under complicated conditions.
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