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Abstract: Both the position and force control of robots are needed in industrial manufacturing, such
as in assembly and grinding, etc. In this paper, we concentrate on two issues. One is the system
oscillation in traditional hybrid force–position control (HFPC) during switching between force and
position control because the diagonal elements in the selection matrix are either 0 or 1. Another
issue is the poor force-tracking performance of conventional impedance control, which depends on
accurate environmental models. To address these issues, a coupled force–position control (CFPC)
method is presented in this paper by combining the proposed adaptive impedance control method
with a modified HFPC method. The selection matrix S of HFPC is replaced with a weighted matrix
Sw. A weighted matrix regulator is designed to realize smooth switching between position and force
control by adjusting the matrix weights in real time, and an adaptive impedance control algorithm
is proposed to improve the force-tracking performance in complex environments. To verify the
feasibility of the CFPC method proposed in this paper, simulations and physical experiments were
conducted. The results show that the CFPC method has the advantages of a better force-tracking
performance and a smoother switching between position and force control compared to the traditional
HFPC method. A grinding experiment was conducted to further compare the performances of the
HFPC and CFPC methods. The roughness values of the ground plates were 0.059 µm for the HFPC
method and 0.031 µm for the proposed CFPC method, which demonstrates that the proposed CFPC
method has a better performance.

Keywords: coupled force–position control; dynamic contact force; weighted matrices; adaptive
impedance control

1. Introduction

Force and position are two typical control objects in robotic control problems. In
many robotic applications, such as peg-in-hole assembly, grinding, and polishing, etc.,
it is necessary to control both force and position. The robot generally needs to switch
frequently between a free space and a contact-manipulating space, where the robot should
be compliant. This is an essential problem when designing a compliance controller that
has the following advantages: it not only implements smooth changes between the force
and position control modes without system oscillation and contact force overshoot but also
performs excellently in terms of force tracking in complicated environment.

There are two major compliance control methods, which are impedance control and
hybrid force–position control (HFPC) [1,2]. Impedance control, introduced by Hogan [3],
can be used for force tracking by adjusting the dynamic relation between the motion and
the contact force. This indirect force control method is widely used owing to its easy
implementation and robustness [4–7]. For instance, Yang et al. [8] employed an observer in
the robot joint space to estimate the interaction torque of the robot and used impedance
control to adjust the position and orientation of the manipulator at the interaction points.
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However, traditional impedance control depends on an accurate environmental model.
The force-tracking performance is poor in an unstructured environment. To solve this
problem, some researchers proposed adaptive impedance control methods by combining
adaptive control with impedance control. Li et al. [9] proposed an adaptive impedance
control algorithm and established a linear quadratic regulator using reinforcement learning
to achieve minimum error tracking. Ikeura et al. [10] and Lee et al. [11] presented a variable
impedance control method to deal with force-tracking problems in varying environment.
Sheng et al. [12] presented an adaptive impedance control method for mirror milling.
Mei et al. [13] proposed an adaptive unified impedance and admittance control method to
solve the problem of interactions between the robot and the environment. Although the
force-tracking performance improved, overshoot in the contact force is always ignored,
which may damage the workpiece. Moreover, the impedance control couples force and
position, force control always affects positioning accuracy [14], so impedance control cannot
be applied for accurate position tracking in a free space.

Unlike impedance control, HFPC divides the robot task space into two orthogonal
subspaces and controls the force and position independently [15–17]. Ravandi et al. [18]
proposed an HFPC method that combines fuzzy logic with traditional sliding mode control
to obtain precise force tracking in uncertain environments. Xie et al. [19] presented an
HFPC method to achieve motion tracking and force controlling. A hybrid force-position
controller based on fuzzy PID was designed to improve the quality of aviation blade
grinding [20]. Anh et al. [21] proposed a hybrid force–position control algorithm based on
a neural network to improve the performance of the traditional HFPC method. Although
this method is robust, the diagonal elements in the selection matrix of a traditional HFPC
method only have two states, i.e., 0 and 1. Consequently, when a manipulator switches
from position control to force control, oscillation occurs. Furthermore, it is always difficult
to judge when to switch the control mode precisely because environmental information
is lacking.

Aiming to address the issues mentioned above, our goal is to design a controller
that has the advantages of autonomous smooth switching between the force and position
control modes, and also having good performance in terms of force tracking in complicated
environments. We make some efforts, as follows:

1. The selection matrix S of HFPC is replaced by weighted matrix Sw, and a weight
matrix regulator is designed to achieve automatic smooth switching between position
and force control by adjusting the matrix weights in real time according to contact
force feedback.

2. An adaptive impedance controller is proposed to implement force tracking in compli-
cated environment, and its stability is also analyzed.

3. Combining the proposed adaptive impedance controller with the modified HFPC
method, we present a coupled force–position control (CFPC) method in this paper.
This method has the merits of an automatic smooth switching between the free
space and the interaction manipulating space without contact force overshoot and
system oscillation.

The remainder of this paper is organized as follows. In Section 2, a Kalman filter
is used to estimate the contact force between the manipulator end-effector and the envi-
ronment. The design of the coupled force–position controller is presented. The adaptive
impedance controller is designed, and its stability is also analyzed. In Section 3, simulations
and experiments are conducted to demonstrate the performance and applicability of the
proposed CFPC method. Finally, a conclusion is drawn in Section 4.

2. Proposal of the Coupled Force–Position Controller
2.1. Contact Force Estimation

The contact force model comprises a robot model and an environmental model. The
robot model is represented by a second-order mass-spring-damper model, and the environ-
ment is represented as a rigid model, as shown in Figure 1.
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The implementation of the proposed CFPC method requires measuring the contact
force between the manipulator end-effector and the environment. To obtain an accurate
contact force from noisy measurements (the gravity of the tool has been compensated via the
gravity-compensation algorithm; assuming the manipulator moves slowly, the influence of
the inertia of the tool can be ignored), the Kalman filter, which is a widely applied Bayesian
estimation method, is used to estimate the contact force. The state equations are given by

.
X(t) = A0X(t), (1)

Y(t) = H0X(t), (2)

where X and Y denote the system state vector and measurement vector, respectively;

X =
[
FT

s TT
s

.
F

T
s

.
T

T
s

]T
; Y =

[
FT

s TT
s
]T ; Fs and Ts represent force and torque measured

by the six-axis force–torque sensor, respectively; and A0 and H0 are expressed as follows:

A0 =

[
06×6 I6×6
06×6 06×6

]
,

H0 =
[
I6×6 06×6

]
.

The system and the measurement models can be expressed as follows:

.
X(t) = A0X(t) + w, (3)

Y(t) = H0X(t) + v, (4)

where w and v denote process noise and measurement noise, respectively. Equations (3) and (4)
can be discretized as follows:

Xk = AXk−1 + wk−1, (5)

Yk = HXk + vk, (6)

where

A =

[
I6×6 I6×6
06×6 I6×6

]
,

H = H0, Xk represents the force signal at the k-th moment, and the iterative process of the
Kalman filter is determined by the following Equations [22]:

x̂k = Axk−1, (7)

P̂k = APk−1AT + Q, (8)

ϕ = P̂kHT
(

HP̂kHT + R
)−1

, (9)



Actuators 2022, 11, 150 4 of 16

xk = x̂k−1 +ϕ(Yk −Hx̂k), (10)

Pk = (I−KH)P̂k, (11)

where Q, ϕ, R, P, x̂k, and P̂k denote the process noise, Kalman gain, measurement noise,
covariance, predictive system sate, and predictive covariance, respectively.

2.2. CFPC Modeling

The contact process between the robot and the environment can be divided into two
phases: the first phase is the robot moving in a free space, and the second phase is robot’s
contact with the environment. In such a contact process, the robot needs to switch from
position control to force control correspondingly. The traditional HFPC method switches
between force and position control using a selection matrix S in the controller. However,
each diagonal element in the selection matrix of the traditional HFPC method is either 0 or 1,
the system oscillates when switching from one control mode to the other, and it is always
difficult to judge when to switch the control mode precisely in complex environments. To
address this problem, we replaced the selection matrix S with the weighted matrix Sw.
The control block diagram of the proposed CFPC is shown in Figure 2. Dr and Fd stand
for the desired trajectory and desired force, and I denotes the identity matrix. We also
designed a weight matrix regulator to realize automatic smooth switching between position
and force control by adjusting the matrix weights in real time according to contact force
feedback. The matrix weights are adjusted in Algorithm 1. fi is the contact force between
the end-effector of the manipulator and the environment, flim is the contact force threshold,
λ is the exponent that determines the transition curve of the weights and is set according to
different requirements of force sensitivity, and Swi is the diagonal element of Sw.

Algorithm 1. Weight Adjustment

Input fi, flim, λ

if | fi| ≥ flim, swi = 0

else if 0 <| fi| < flim, swi =
∣∣∣ 1

f λ
lim
(| fi − flim|)λ

∣∣∣
else swi= 1
output swi
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Figure 2. Control block diagram of the proposed CFPC method.

2.3. Force Controller Design

Generally, the commercial manipulator performs position tracking excellently, so we
merely focus on the force controller design. Impedance control has the advantage of an
easy implementation, but its force-tracking performance is poor in complex environments,
since it depends on an accurate environmental model [23]. To overcome this limitation,
we propose an adaptive impedance control algorithm to improve the performance of
force tracking.
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Figure 3 shows the block diagram of the proposed adaptive impedance control method.
The control algorithm can be expressed as folles:

M
( ..

Dc −
..
Dr

)
+ B

( .
Dc −

.
Dr

)
+ K(Dc −Dr) = Fe − Fd, (12)

where Dc, Fe, M, B, and K denote trajectory sent to the robot, contact force between the
end-effector and environment, mass, damping, and stiffness, respectively.
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Without loss of generality, we study the one-dimensional case. Equation (12) can be
rewritten as follows:

m
( ..

dc −
..
dr

)
+ b
( .

dc −
.
dr

)
+ k(dc − dr) = fe − fd. (13)

As the accurate environmental stiffness ke is unknown, reference trajectory dr is
difficult to obtain. Therefore, the trajectory can be replaced with the environmental location
de [24], and Equation (13) can be expressed as follows:

m
( ..

dc −
..
de

)
+ b
( .

dc −
.
de

)
+ k(dc − de) = fe − fd. (14)

By letting position perturbation e = dc − de, Equation (14) becomes the following:

m
..
e + b

.
e + ke = fe − fd. (15)

Because an error exists between the actual and the measured environmental locations,
estimation should be performed. Let d′e denote the estimation of the environmental location
and ∆de stand for the estimated error of the environmental location, which can be expressed
as ∆de = de − d′e. Define e′ = e + ∆de; then, Equation (15) can be rewritten as follows:

m
..
e′ + b

.
e′ + ke′ = fe − fd = m

(..
e + ∆

..
de

)
+ b
( .

e + ∆
.
de

)
+ k(e + ∆de), (16)

where ∆d and de are time-varying parameters, indicating the persistent force-tracking error.
We propose the following adaptive impedance control algorithm:

m
..
e′(t) + b

( .
e′(t) + Qb(t)

)
+ k
(
e′(t) + Qk(t)

)
= fe(t)− fd(t), (17)

where

Qb(t) = Qb(t− α) + β
fd(t− α)− fe(t− α)

b
, (18)

Qk(t) = Qk(t− α) + β
fd(t− α)− fe(t− α)

k
, (19)
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with Qk(t) and Qb(t) being adjusted according to the force error. α and β denote the
sampling period and update rate of the system, respectively.

2.4. Stability Analysis of the Force Controller

In this section, we analyze the stability of the force controller we designed in this
paper. To analyze the stability of the force controller, we first substitute (18) and (19)
into (17) to obtain

m
..
e′(t) + b

.
e′(t) + ke′(t) + bQb(t− α) + βb[ fd(t− α)− fe(t− α)]

+kQk(t− α) + βk[ fd(t− α)− fe(t− α)] = fe(t)− fd(t) =

m
(..

e(t) + ∆
..
de(t)

)
+ b
( .

e(t) + ∆
.
de(t)

)
+ k(e(t) + ∆de(t))+

bQb(t− α) + βb[ fd(t− α)− fe(t− α)] + kQk(t− α)+

βk[ fd(t− α)− fe(t− α)]

(20)

It follows that
m

..
e(t) + b

.
e(t) + ke(t)− [ fe(t)− fd(t)]+

bQb(t− α) + βb[ fd(t− α)− fe(t− α)]

+kQk(t− α) + βk[ fd(t− α)− fe(t− α)]

= −m∆
..
de(t)− b∆

.
de(t)− k∆de(t)

(21)

According to the environmental model fe = ke(de − dc) = −kee, we can obtain

e = − fe

ke

.
e = −

.
f e
ke

..
e = −

..
f e
ke

. (22)

where ke denotes environmental stiffness.
Upon substituting (22) into (21), we obtain

−m
..
f e(t)− b

.
f e(t)− k fe(t)− ke[ fe(t)− fd(t)]

+bkeQb(t− α) + keβb[ fd(t− α)− fe(t− α)]

+kkeQk(t− α) + keβk[ fd(t− α)− fe(t− α)]

= −mke∆
..
de(t)− bke∆

.
de(t)− kke∆de(t)

(23)

It follows that

m
..
f d(t)−m

..
f e(t) + b

.
f d(t)− b

.
f e(t) + k fd(t)− k fe(t)−

ke[ fe(t)− fd(t)] + bkeQb(t− α) + keβb[ fd(t− α)− fe(t− α)]

+kkeQk(t− α) + keβk[ fd(t− α)− fe(t− α)]

= m
..
f d(t)−mke∆

..
de(t) + b

.
f d(t)− bke∆

.
de(t) + k fd(t)− kke∆de(t)

(24)

Let f ′e(t) = ke∆de(t), o(t) = fd(t)− fe(t), and p(t) = fd(t)− f ′e. Equation (24) can
be rewritten as

m
..
o(t) + b

.
o(t) + ko(t) + keo(t) + bkeQb(t− a)

+kebo(t− a) + kkeQk(t− a) + kebo(t− a)
= m

..
p(t) + b

.
p(t) + kp(t)

(25)

and n elements of Qb(t) and Qk(t) series can be discretized as [24],

bQb(t− α) = bQb(t− (n + 1)α)

+βo(t− (n + 1)α) + · · ·+ βo(t− 2α)
(26)
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kQk(t− α) = kQk(t− (n + 1)α)

+βo(t− (n + 1)α) + · · ·+ βo(t− 2α)
(27)

Using the common initial value of zero for Qb(t− (n + 1)α) and Qk(t− (n + 1)α),
Equation (25) becomes

m
..
o(t) + b

.
o(t) + ko(t) + keo(t)

+2keβ(o(t− (n + 1)α) + · · ·+ o(t− α))

= m
..
p(t) + b

.
p(t) + kp(t)

(28)

in which the Laplace transformation gives

o(s)
p(s)

=
ms2 + bs + k

ms2 + bs + (k + ke) + 2keβ
(
e−(n+1)αs + · · ·+ e−αs

) . (29)

From (29), we can obtain the stability condition of the system:

ms2 + bs + (k + ke) + 2keβ
(

e−(n+1)αs + · · ·+ e−αs
)
= 0. (30)

Assuming that n is large and that α is small, such that
∞
∑

n=1
e−αsn = e−αs

1−e−αs , e−αs ≈ 1− αs.

Equation (30) can be rewritten as

αms3 + αbs2 + α(k + ke)s + (α(k + ke)− 2keβ)s + 2keβ= 0. (31)

According to Routh’s stability criterion, we obtain
2keβ > 0

α(k + ke)− 2keβ > 0

α2b(k + ke(1− 2β))− 2αmkeβ

αb
> 0

, (32)

and the stable condition of the system is given as follows:

0 < β <
αb(k + ke)

2ke(αb + m)
. (33)

The steady-state error of the stable system can be obtained by Laplace transform:

lim
t→∞

( fd(t)− fe(t)) = lim
t→∞

o(t) = lim
s→0

so(s)

=
ms2 + bs + k

ms2 + bs + k + ke + 2keβ
(

1−αs
αs

) p(s)
(34)

Assuming that the input of the system is a step function, p(s) = 1
s ; when t→ ∞ ,

we have lim
t→∞

( fd(t)− fe(t)) = 0. Therefore, the contact force fe between the end-effector

and the environmental approaches the desired force fd as t→ ∞ . This fact shows that
the adaptive impedance controller designed in this paper is stable. In Section 3, We also
confirm this through simulations and experiments, in which a complex input function in
the system provides a tracking error close to zero.

3. Simulations and Experiments
3.1. Simulations

To verify the effectiveness and performance of the proposed controller, we used a
Python implementation to simulate CFPC. We compared the force-tracking performance on
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a plane, a slope, and a complex surface using HFPC and CFPC. The simulation parameters
are listed in Table 1, and the simulation results are shown in Figures 4–6.

Actuators 2022, 11, x  9 of 17 
 

 

 

 
Figure 4. Simulations on plane surface. Force tracking using (a) the HFPC and (b) proposed CFPC 
methods. (c) Position tracking. (d) Weighted parameter wis . 

 

 
Figure 5. Simulations on sloped surface. Force tracking using (a) the HFPC and (b) proposed CFPC 
methods. (c) Position tracking. (d) Weighted parameter wis . 

Figure 4. Simulations on plane surface. Force tracking using (a) the HFPC and (b) proposed CFPC
methods. (c) Position tracking. (d) Weighted parameter swi.

Actuators 2022, 11, x  9 of 17 
 

 

 

 
Figure 4. Simulations on plane surface. Force tracking using (a) the HFPC and (b) proposed CFPC 
methods. (c) Position tracking. (d) Weighted parameter wis . 

 

 
Figure 5. Simulations on sloped surface. Force tracking using (a) the HFPC and (b) proposed CFPC 
methods. (c) Position tracking. (d) Weighted parameter wis . 

Figure 5. Simulations on sloped surface. Force tracking using (a) the HFPC and (b) proposed CFPC
methods. (c) Position tracking. (d) Weighted parameter swi.



Actuators 2022, 11, 150 9 of 16Actuators 2022, 11, x  10 of 17 
 

 

 

 
Figure 6. Simulations on complex surface. Force tracking using (a) the HFPC and (b) proposed CFPC 
methods. (c) Position tracking. (d) Weighted parameter wis . 

3.2. Experiments 
The proposed CFPC method was also verified through physical experiments. The 

experimental platform mainly comprises a computer (Intel Core i7: Intel Corporation, Ub-
untu 18.04, Python 2.7), robot controller, robot body (Universal Robots UR5: Universal 
Robots A/S Energivej 25 DK-5260, Odense, Danmark, maximum load: 5 kg, communica-
tion frequency: 125 Hz), six-axis force–torque sensor (Universal Robots NRS-6050-D80, 
maximum force/torque: ±500 N/±10 Nm, sampling rate: <1000 Hz, force/torque resolution: 
0.015 N/0.312 × 10−3 Nm), and signal converter. The details of the experimental platform 
are shown in Figure 7. 

 
Figure 7. Schematic of the experimental platform. 

To demonstrate the feasibility of the proposed CFPC method, we compared the per-
formances of the HFPC and CFPC methods. We conducted constant force-tracking and 
variable force-tracking experiments on sloped, curved, and complicated surfaces, as 
shown in Figures 8a,b and 9. The results are shown in the Video S1. The results of force-
tracking experiments on sloped, curved surfaces are shown in Figures 10–13. The constant 
force and variable force-tracking experiments on sloped and curved surfaces in Figures 

Figure 6. Simulations on complex surface. Force tracking using (a) the HFPC and (b) proposed CFPC
methods. (c) Position tracking. (d) Weighted parameter swi.

Table 1. Simulation parameters.

Parameter m b k ke λ α β R

Value 0.5 120 2000 5000 1.2 0.005 0.35 0.001

Figures 4a, 5a, and 6a show the variable force tracking of HFPC on the plane, sloped,
and complex surfaces, respectively. While switching between position and force control, the
system oscillates and an overshoot occurs for large tracking forces. Figures 4b, 5b, and 6b
show the variable force tracking of the proposed CFPC method on the plane, sloped, and
complex surfaces. The contact force approaches the desired force smoothly without over-
shoot. The results of the position tracking are shown in Figures 4c, 5c, and 6c. The position-
tracking error results in a large force-tracking error in the initial phase when using HFPC.
The weights of position control and force control are shown in Figures 4d, 5d, and 6d,
verifying the smooth change.

3.2. Experiments

The proposed CFPC method was also verified through physical experiments. The
experimental platform mainly comprises a computer (Intel Core i7: Intel Corporation,
Ubuntu 18.04, Python 2.7), robot controller, robot body (Universal Robots UR5: Universal
Robots A/S Energivej 25 DK-5260, Odense, Danmark, maximum load: 5 kg, communi-
cation frequency: 125 Hz), six-axis force–torque sensor (Universal Robots NRS-6050-D80,
maximum force/torque: ±500 N/±10 Nm, sampling rate: <1000 Hz, force/torque reso-
lution: 0.015 N/0.312 × 10−3 Nm), and signal converter. The details of the experimental
platform are shown in Figure 7.
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To demonstrate the feasibility of the proposed CFPC method, we compared the
performances of the HFPC and CFPC methods. We conducted constant force-tracking
and variable force-tracking experiments on sloped, curved, and complicated surfaces,
as shown in Figures 8a,b and 9. The results are shown in the Video S1. The results of
force-tracking experiments on sloped, curved surfaces are shown in Figures 10–13. The
constant force and variable force-tracking experiments on sloped and curved surfaces in
Figures 10a, 11a, 12a, and 13a show that the HFPC method demonstrates a large overshoot
of contact forces when switching between position and force control and that system
oscillation also occurs. In contrast, Figures 10b, 11b, 12b, and 13b show that the pro-
posed CFPC method can realize smooth switching between position and force control.
Figures 10d, 11d, 12d, and 13d show the smooth transition between position and force
control. The results of position tracking are shown in Figures 10c, 11c, 12c, and 13c.
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We also conducted this experiment in a complicated environment where the controller
needs to switch frequently between the position and force control. This complicated
environment includes a sloped, a curved surface, and a step surface. The experiment results
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are shown in Figure 14. The overshoot of contact forces and system oscillation are obvious
when using HFPC, as shown in Figure 14a, because the traditional HFPC depends on
accurate environmental information and we do not know exactly when to apply position
or force control in complicated environments. Unlike the HFPC method, the CFPC method
can realize automatic smooth switching between position and force control according to the
contact force feedback, and there is no overshoot of contact forces, as shown in Figure 14b.
The results of position tracking are shown in Figure 14c, and the weights of position control
and force control are shown in Figure 14d.
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Finally, we conducted a grinding experiment that changes the position control to
force control during the working process to further demonstrate the performance of the
proposed CFPC in practical applications. The desired grinding force was set to 10 N on a
Q235 plate with an initial roughness of 0.49 µm, and the motor speed was set to 3000 rpm.
The grinding devices is shown in Figure 8c.

The grinding force obtained using CFPC approaches the desired force smoothly
(Figure 15b), whereas the grinding force obtained using HFPC presents an overshoot
(Figure 15a). As seen from Figure 15d, the control mode switches gradually. The results
of the position tracking are shown in Figure 15c, and the grinding results are shown in
Figure 16. The roughness values of the ground plates are 0.059 µm for HFPC and 0.031 µm
for the proposed CFPC. The roughness is measured in the time interval [0, 8] s. The grinding
experiment further demonstrates that the proposed CFPC can realize smooth switching
between position and force control, which leads to better grinding performances.
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4. Conclusions

To realize smooth switching between a free space and a contact manipulating space,
a CFPC method was proposed by combining the proposed adaptive impedance control
method with the modified HFPC method. This control method can provide an automatic
smooth transition between position and force control according to the contact force feed-
back, thereby solving the oscillation problem of traditional HFPC. Moreover, the proposed
CFPC method has good force-tracking performance in complicated environments. The
stability of the force controller has also been analyzed. The feasibility of the proposed CFPC
method was evaluated through constant and variable force-tracking simulations, as well as
physical experiments on sloped, curved, and complicated surfaces. A grinding experiment
was conducted to compare the performances of the HFPC and the proposed CFPC methods,
which showed that the proposed CFPC can provide better roughness compared to the
HFPC method. The simulations and experiments demonstrated that the proposed CFPC
method could realize automatic smooth switching between free space and interaction space
without system oscillation and contact force overshoot.

Our future work will focus on further improving the response ability of the system.
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