Fabrication and Actuation Performance of Selective Laser Melting Additive-Manufactured Active Shape-Memory Alloy Honeycomb Arrays
Abstract
:1. Introduction
2. Design of Active SMA Honeycomb Arrays
2.1. Geometry of Active SMA Honeycomb Arrays
2.2. Analysis of Active SMA Honeycomb Arrays
3. Fabrication of Active SMA Honeycomb Arrays Based on SLM Process
3.1. Raw Materials for SLM Process
3.2. SLM Process of Active SMA Honeycomb Arrays
4. Actuation Performance of SLM–Fabricated Active SMA Honeycomb Arrays
4.1. Characterization of SLM–Fabricated Active SMA Honeycomb Arrays
4.2. In–Plane Mechanical Properties of SLM–Fabricated Active SMA Honeycomb Arrays
4.3. Actuation Stress of SLM–Fabricated Active SMA Honeycomb Arrays
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McEvoy, M.A.; Correll, N. Materials that couple sensing, actuation, computation, and communication. Science 2015, 347, 1261689. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.Z.; Plummer, A.R.; Cleaver, D. Distributed actuation and control of a tensegrity-based morphing wing. IEEE/ASME Trans. Mechatron. 2022, 27, 34–45. [Google Scholar] [CrossRef]
- Li, D.C.; Zhao, S.W.; Ronch, A.D.; Xiang, J.W.; Drofelnik, J.; Li, Y.C.; Zhang, L.; Wu, Y.N.; Kintscher, M.; Monner, H.P.; et al. A review of modelling and analysis of morphing wings. Prog. Aerosp. Sci. 2018, 100, 46–62. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, Q.H.; Scarpa, F.; Liu, Y.J.; Leng, J.S. Bending and benchmark of zero Poisson’s ratio cellular structures. Compos. Struct. 2016, 152, 729–736. [Google Scholar] [CrossRef]
- Wu, C.; Li, Y.K. AlN-induced reinforcement of nano-amorphous B-C-N compound for TiB2-B4C ceramic composite. J. Alloys Compd. 2020, 831, 154074. [Google Scholar] [CrossRef]
- Chen, J.J.; Shen, X.; Li, J.F. Zero Poisson’s ratio flexible skin for potential two-dimensional wing morphing. Aerosp. Sci. Technol. 2015, 45, 228–241. [Google Scholar] [CrossRef]
- Ni, D.R.; Gui, X.; Powderly, K.M.; Cava, R.J. Honeycomb-Structure RuI3, A New Quantum Material Related to alpha-RuCl3. Adv. Mater. 2022, 34, 2106831. [Google Scholar] [CrossRef]
- Sun, J.; Du, L.Z.; Scarpa, F.; Liu, Y.J.; Leng, J.S. Morphing wingtip structure based on active inflatable honeycomb and shape memory polymer composite skin: A conceptual work. Aerosp. Sci. Technol. 2021, 111, 106541. [Google Scholar] [CrossRef]
- Meyer, P.; Luck, S.; Spuhler, T. Transient dynamic system behavior of pressure actuated cellular structures in a morphing wing. Aerospace 2021, 8, 89. [Google Scholar] [CrossRef]
- Sun, J.; Gao, H.L.; Scarpa, F.; Liu, Y.J.; Leng, J.S. Active inflatable auxetic honeycomb structural concept for morphing wingtips. Smart Mater. Struct. 2014, 23, 125023. [Google Scholar] [CrossRef] [Green Version]
- Lv, J.; Ren, X.Y.; Song, C.; Zhang, H.W. Two-scale topology optimization of the 3D plant-inspired adaptive cellular structures for morphing applications. J. Aerosp. Eng. 2020, 33, 04020032. [Google Scholar] [CrossRef]
- Vos, R.; Barrett, R. Mechanics of pressure-adaptive honeycomb and its application to wing morphing. Smart Mater. Struct. 2011, 20, 094010. [Google Scholar] [CrossRef]
- McCracken, J.M.; Donovan, B.R.; White, T.J. Materials as machines. Adv. Mater. 2020, 32, 1906564. [Google Scholar] [CrossRef] [PubMed]
- Gu, D.D.; Ma, C.L.; Dai, D.H.; Yang, J.K.; Lin, J.; Zhang, H.M.; Zhang, H. Additively manufacturing-enabled hierarchical NiTi-based shape memory alloys with high strength and toughness. Virtual Phys. Prototy. 2021, 16, S19–S38. [Google Scholar] [CrossRef]
- Okabe, Y.; Sugiyama, H.; Inayoshi, T. Lightweight actuator structure with SMA honeycomb core and CFRP skins. J. Mech. Des. 2011, 133, 011006. [Google Scholar] [CrossRef]
- Dadbakhsh, S.; Vrancken, B.; Kruth, J.P.; Luyten, J.; Humbeeck, J.V. Texture and anisotropy in selective laser melting of NiTi alloy. Mater. Sci. Eng. A 2016, 650, 225–232. [Google Scholar] [CrossRef]
- Wang, J.; Pan, Z.X.; Wang, Y.F.; Su, L.H.; Cuiuri, D.; Zhao, Y.H.; Li, H.J. Evolution of crystallographic orientation, precipitation, phase transformation and mechanical properties realized by enhancing deposition current for dual-wire arc additive manufactured Ni-rich NiTi alloy. Addit. Manuf. 2020, 34, 101240. [Google Scholar] [CrossRef]
- Gu, D.D.; Shi, X.Y.; Poprawe, R.; Bourell, D.L.; Setchi, R.; Zhu, J.H. Material-structure-performance integrated laser-metal additive manufacturing. Science 2021, 372, 1487. [Google Scholar] [CrossRef]
- Ma, C.L.; Gu, D.D.; Dai, D.H.; Yang, J.K.; Zhang, H.; Guo, M.; Wang, R.; Gao, J.; Chen, W.; Song, Y.J. Tailored pore canal characteristics and compressive deformation behavior of bionic porous NiTi shape memory alloy prepared by selective laser melting. Smart Mater. Struct. 2020, 29, 095001. [Google Scholar] [CrossRef]
- Ma, C.L.; Gu, D.D.; Setchi, R.; Dai, D.H.; Wu, M.P.; Ma, S.; Miao, X.J. A large compressive recoverable strain induced by heterogeneous microstructure in a Ni50.6Ti49.4 shape memory alloy via laser powder bed fusion and subsequent aging treatment. J. Alloys Compd. 2022, 918, 165620. [Google Scholar] [CrossRef]
- Xiong, Z.W.; Li, Z.H.; Sun, Z.; Hao, S.J.; Yang, Y.; Li, M.; Song, C.H.; Qiu, P.; Cui, L.S. Selective laser melting of NiTi alloy with superior tensile property and shape memory effect. J. Mater. Sci. Technol. 2019, 35, 2238–2242. [Google Scholar] [CrossRef]
- Lu, H.Z.; Liu, L.H.; Yang, C.; Luo, X.; Song, C.H.; Wang, Z.; Wang, J.; Su, Y.D.; Ding, Y.F.; Zhang, L.C.; et al. Simultaneous enhancement of mechanical and shape memory properties by heat-treatment homogenization of Ti2Ni precipitates in TiNi shape memory alloy fabricated by selective laser melting. J. Mater. Sci. Technol. 2022, 101, 205–216. [Google Scholar] [CrossRef]
- Lu, H.Z.; Ma, H.W.; Cai, W.S.; Luo, X.; Wang, Z.; Song, C.H.; Yin, S.; Yang, C. Stable tensile recovery strain induced by a Ni4Ti3 nanoprecipitate in a Ni50.4Ti49.6 shape memory alloy fabricated via selective laser melting. Acta Mater. 2021, 219, 117261. [Google Scholar] [CrossRef]
- Xu, Y.S.; Qiu, L.; Yuan, S.F.; Wang, Y. Research on shape memory alloy honeycomb structures fabricated by selective laser melting additive manufacturing. Opt. Laser Technol. 2022, 152, 108160. [Google Scholar] [CrossRef]
- Liu, W.D.; Li, H.L.; Zhang, J.; Li, H.D. Theoretical analysis on the elasticity of a novel accordion cellular honeycomb core with in-plane curved beams. J. Sandw. Struct. Mater. 2020, 22, 702–727. [Google Scholar] [CrossRef]
- An, S.M.; Ryu, J.; Cho, M.; Cho, K.J. Engineering design framework for a shape memory alloy coil spring actuator using a static two-state model. Smart Mater. Struct. 2012, 21, 055009. [Google Scholar] [CrossRef]
- Li, S.; Hassanin, H.; Attallah, M.M.; Adkins, N.J.E.; Essa, K. The development of TiNi-based negative Poisson’s ratio structure using selective laser melting. Acta Mater. 2016, 105, 75–83. [Google Scholar] [CrossRef]
- Wang, X.B.; Yu, J.Y.; Liu, J.W.; Chen, L.G.; Yang, Q.; Wei, H.L.; Sun, J.; Wang, Z.C.; Zhang, Z.H.; Zhao, G.Q.; et al. Effect of process parameters on the phase transformation behavior and tensile properties of NiTi shape memory alloys fabricated by selective laser melting. Addit. Manuf. 2020, 36, 101545. [Google Scholar] [CrossRef]
- Ma, C.L.; Gu, D.D.; Lin, K.J.; Dai, D.H.; Xia, M.J.; Yang, J.K.; Wang, H.R. Selective laser melting additive manufacturing of cancer pagurus’s claw inspired bionic structures with high strength and toughness. Appl. Surf. Sci. 2019, 469, 647–656. [Google Scholar] [CrossRef]
- Zhang, W.Y.; Tong, M.M.; Harrison, N.M. Scanning strategies effect on temperature, residual stress and deformation by multi-laser beam powder bed fusion manufacturing. Addit. Manuf. 2020, 36, 101507. [Google Scholar] [CrossRef]
- Otsuka, K.; Ren, X. Physical metallurgy of Ti-Ni-based shape memory alloys. Prog. Mater. Sci. 2005, 50, 511–678. [Google Scholar] [CrossRef]
- Tatlier, M.S.; Ozturk, M.; Baran, T. Linear and non-linear in-plane behaviour of a modified re-entrant core cell. Eng. Struct. 2021, 234, 111984. [Google Scholar] [CrossRef]
- Savi, M.A.; Pacheco, P.M.C.L.; Garcia, M.S. Nonlinear geometric influence on the mechanical behavior of shape memory alloy helical springs. Smart Mater. Struct. 2015, 24, 035012. [Google Scholar] [CrossRef]
- Chopra, I. Review of state of art of smart structures and integrated systems. AIAA J. 2002, 40, 2145–2187. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, Z.L.; Humbeeck, J.V.; Deklaey, L. Effect of texture orientation on the martensite deformation of NiTi shape memory alloy sheet. Acta Mater. 1999, 47, 645–660. [Google Scholar] [CrossRef]
- Liang, C.; Rogers, C. Design of shape memory alloy actuators. J. Intell. Mater. Syst. Struct. 1997, 8, 303–313. [Google Scholar] [CrossRef]
- Guo, Z.; Pan, Y.P.; Wee, L.B.; Yu, H.Y. Design and control of a novel compliant differential shape memory alloy actuator. Sens. Actuators A Phys. 2015, 225, 71–80. [Google Scholar] [CrossRef]
- Liu, X.L.; Liu, H.; Tan, J.D. Actuation Frequency Modeling and Prediction Shape Memory Alloy Actuators. IEEE/ASME Trans. Mechatron. 2021, 26, 1536–1546. [Google Scholar] [CrossRef]
Sample | t (mm) | R (mm) | L (mm) | w (mm) | h (mm) | R/t Ratio |
---|---|---|---|---|---|---|
S-C4 | 0.63 | 2.5 | 2.5 | 0.63 | 3 | 4 |
S-C5 | 0.50 | 2.5 | 2.5 | 0.50 | 3 | 5 |
S-C6 | 0.42 | 2.5 | 2.5 | 0.42 | 3 | 6 |
Sample | Theoretical (MPa) | FEA (MPa) | Experimental (MPa) |
---|---|---|---|
S-C4 | 17.2 | 16.4 | 16.1 |
S-C5 | 8.7 | 8.5 | 7.6 |
S-C6 | 5.0 | 4.9 | 4.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Qiu, L.; Yuan, S. Fabrication and Actuation Performance of Selective Laser Melting Additive-Manufactured Active Shape-Memory Alloy Honeycomb Arrays. Actuators 2022, 11, 242. https://doi.org/10.3390/act11090242
Xu Y, Qiu L, Yuan S. Fabrication and Actuation Performance of Selective Laser Melting Additive-Manufactured Active Shape-Memory Alloy Honeycomb Arrays. Actuators. 2022; 11(9):242. https://doi.org/10.3390/act11090242
Chicago/Turabian StyleXu, Yuesheng, Lei Qiu, and Shenfang Yuan. 2022. "Fabrication and Actuation Performance of Selective Laser Melting Additive-Manufactured Active Shape-Memory Alloy Honeycomb Arrays" Actuators 11, no. 9: 242. https://doi.org/10.3390/act11090242
APA StyleXu, Y., Qiu, L., & Yuan, S. (2022). Fabrication and Actuation Performance of Selective Laser Melting Additive-Manufactured Active Shape-Memory Alloy Honeycomb Arrays. Actuators, 11(9), 242. https://doi.org/10.3390/act11090242