A Backstepping Controller Based on a Model-Assisted Extended State Observer for a Slice Rotor Supported by Active Magnetic Bearings
Abstract
:1. Introduction
2. Model Description of the Slice Rotor Supported by AMBs
2.1. Passive Stability of Axial and Tilting Directions
2.2. Active Control of Radial Directions
3. Backstepping Controller Design and Stability Proof
4. ESO-Based Backstepping Controller Design
4.1. Extended State Observer
4.2. The GESO-BC Design
4.3. The MESO-BC Design
5. Simulation and Experimental Verification
5.1. Simulations Results
5.1.1. Simulations of Floating Performance Contrast
5.1.2. Simulations Contrast of Robustness to External Disturbances
5.2. Experimental Setup
5.3. Experimental Results
5.3.1. Experimental Floating Performance
5.3.2. Experimental Contrast of Robustness to External Disturbances
5.3.3. Experimental Rotation Performance
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Asama, J.; Fukao, T.; Chiba, A.; Rahman, A.; Oiwa, T. A design consideration of a novel bearingless disk motor for artificial hearts. In Proceedings of the 2009 IEEE Energy Conversion Congress and Exposition, San Jose, CA, USA, 20–24 September 2009; pp. 1693–1699. [Google Scholar]
- Puentener, P.; Schuck, M.; Steinert, D.; Nussbaumer, T.; Kolar, J.W. A 150,000-r/min Bearingless Slice Motor. IEEE/ASME Trans. Mechatron. 2018, 23, 2963–2967. [Google Scholar] [CrossRef]
- Silber, S.; Sloupensky, J.; Dirnberger, P.; Moravec, M.; Amrhein, W.; Reisinger, M. High-Speed Drive for Textile Rotor Spinning Applications. IEEE Trans. Ind. Electron. 2014, 61, 2990–2997. [Google Scholar] [CrossRef]
- Jeon, H.-W.; Lee, C.-W. Proportional-integral-derivative control of rigid rotor-active magnetic bearing system via eigenvalue assignment for decoupled translational and conical modes. J. Vib. Control. 2015, 21, 2372–2393. [Google Scholar] [CrossRef]
- Sun, J.; Zhou, H.; Ma, X.; Ju, Z. Study on PID tuning strategy based on dynamic stiffness for radial active magnetic bearing. ISA Trans. 2018, 80, 458–474. [Google Scholar] [CrossRef] [PubMed]
- Breńkacz, Ł.; Witanowski, Ł.; Drosińska-Komor, M.; Szewczuk-Krypa, N. Research and applications of active bearings: A state-of-the-art review. Mech. Syst. Signal Process. 2021, 151, 107423. [Google Scholar] [CrossRef]
- Balini, H.M.N.K.; Scherer, C.W.; Witte, J. Performance Enhancement for AMB Systems Using Unstable H∞ Controllers. IEEE Trans. Control. Syst. Technol. 2011, 19, 1479–1492. [Google Scholar] [CrossRef]
- Abooee, A.; Arefi, M.M. Robust finite-time stabilizers for five-degree-of-freedom active magnetic bearing system. J. Frankl. Inst. 2019, 356, 80–102. [Google Scholar] [CrossRef]
- Sun, X.; Su, B.; Chen, L.; Yang, Z.; Xu, X.; Shi, Z. Precise control of a four degree-of-freedom permanent magnet biased active magnetic bearing system in a magnetically suspended direct-driven spindle using neural network inverse scheme. Mech. Syst. Signal Process. 2017, 88, 36–48. [Google Scholar] [CrossRef]
- Mystkowski, A.; Kierdelewicz, A.; Kotta, Ü.; Kaparin, V. Experimental validation of the Newton observer for a nonlinear flux-controlled AMB system operated with zero-bias flux. Int. J. Control. 2020, 93, 2257–2266. [Google Scholar] [CrossRef]
- Li, D.; Cao, H.; Zhang, X.; Chen, X.; Yan, R. Model predictive control based active chatter control in milling process. Mech. Syst. Signal Process. 2019, 128, 266–281. [Google Scholar] [CrossRef]
- Wu, M.; Zhu, H. Backstepping control of three-pole radial hybrid magnetic bearing. IET Electr. Power Appl. 2020, 14, 1405–1411. [Google Scholar] [CrossRef]
- Yang, D.; Gao, X.; Cui, E.; Ma, Z. State-Constraints Adaptive Backstepping Control for Active Magnetic Bearings with Parameters Nonstationarities and Uncertainties. IEEE Trans. Ind. Electron. 2021, 68, 9822–9831. [Google Scholar] [CrossRef]
- Pavlichkov, S.S.; Dashkovskiy, S.N.; Pang, C.K. Uniform Stabilization of Nonlinear Systems with Arbitrary Switchings and Dynamic Uncertainties. IEEE Trans. Autom. Control. 2017, 62, 2207–2222. [Google Scholar] [CrossRef]
- Jin, C.W.; Guo, K.X.; Xu, Y.P.; Cui, H.B.; Xu, L.X. Design of Magnetic Bearing Control System Based on Active Disturbance Rejection Theory. J. Vib. Acoust.-Trans. ASME 2019, 141, 011009. [Google Scholar]
- Li, K.; Peng, C.; Deng, Z.; Huang, W.; Zhang, Z. Field dynamic balancing for active magnetic bearings supporting rigid rotor shaft based on extended state observer. Mech. Syst. Signal Process. 2021, 158, 107801. [Google Scholar] [CrossRef]
- Schoeb, R.; Barletta, N. Principle and Application of a Bearingless Slice Motor. JSME Int. J. Ser. C Mech. Syst. Mach. Elem. Manuf. 1997, 40, 593–598. [Google Scholar]
- Nussbaumer, T.; Karutz, P.; Zurcher, F.; Kolar, J.W. Magnetically Levitated Slice Motors—An Overview. IEEE Trans. Ind. Appl. 2011, 47, 754–766. [Google Scholar] [CrossRef]
- Steinert, D.; Nussbaumer, T.; Kolar, J.W. Concept of a 150 krpm bearingless slotless disc drive with combined windings. In Proceedings of the 2013 International Electric Machines & Drives Conference, Chicago, IL, USA, 12–15 May 2013; pp. 311–318. [Google Scholar]
- Schweitzer, G.; Maslen, E.H. Magnetic Bearings: Theory, Design, and Application to Rotating Machinery; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Yousefizadeh, S.; Bendtsen, J.D.; Vafamand, N.; Khooban, M.H.; Blaabjerg, F.; Dragičević, T. Tracking Control for a DC Microgrid Feeding Uncertain Loads in More Electric Aircraft: Adaptive Backstepping Approach. IEEE Trans. Ind. Electron. 2019, 66, 5644–5652. [Google Scholar] [CrossRef]
- Gao, Z.; Huang, Y.; Han, J. An alternative paradigm for control system design. In Proceedings of the 2001 American Control Conference, Arlington, VA, USA, 25–27 June 2001; Volume 4575, pp. 4578–4585. [Google Scholar]
- Han, J. From PID to Active Disturbance Rejection Control. IEEE Trans. Ind. Electron. 2009, 56, 900–906. [Google Scholar] [CrossRef]
- Qing, Z.; Gaol, L.Q.; Zhiqiang, G. On stability analysis of active disturbance rejection control for nonlinear time-varying plants with unknown dynamics. In Proceedings of the 2007 46th IEEE Conference on Decision and Control, New Orleans, LA, USA, 12–14 December 2007; pp. 3501–3506. [Google Scholar]
- Gao, Z. Scaling and bandwidth-parameterization based controller tuning. In Proceedings of the 2003 Annual American Control Conference, Denver, CO, USA, 4–6 June 2003; pp. 4989–4996. [Google Scholar]
- Zheng, Q.; Chen, Z.; Gao, Z. A practical approach to disturbance decoupling control. Control. Eng. Pract. 2009, 17, 1016–1025. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, S.; Gao, Z.Q. An Active Disturbance Rejection Control Solution for the Two-Mass-Spring Benchmark Problem. In Proceedings of the 2016 American Control Conference, Boston, MA, USA, 6–8 June 2016; pp. 1566–1571. [Google Scholar]
- Xu, B.; Zhou, J.; Xu, L. Adaptive Backstepping Control of Active Magnetic Bearings with Slice Rotor. J. Vib. Eng. Technol. 2022, 10, 795–808. [Google Scholar] [CrossRef]
Symbol | Parameter | Value | Unit |
---|---|---|---|
Area of magnetic pole | 56 | mm2 | |
Rotor diameter | 56.4 | mm | |
Stator inner diameter | 57.4 | mm | |
Stator outer diameter | 140 | mm | |
Rotor height | 13.2 | mm | |
Bias current | 1 | A | |
Transfer function of the power amplifier | 0.2 | A/V | |
Current stiffness coefficient | 3.7449 | N/A | |
Transfer function of the displacement sensor | 5 | V/mm | |
Displacement stiffness coefficient | 7489.72 | N/m | |
Rotor mass | 0.105 | kg | |
Turns of single pole coil | 120 | ---- | |
Angle between the magnetic pole and the axis | 22.5 | deg | |
Nominal air gap | 0.5 | mm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, B.; Zhou, J.; Xu, L. A Backstepping Controller Based on a Model-Assisted Extended State Observer for a Slice Rotor Supported by Active Magnetic Bearings. Actuators 2022, 11, 266. https://doi.org/10.3390/act11090266
Xu B, Zhou J, Xu L. A Backstepping Controller Based on a Model-Assisted Extended State Observer for a Slice Rotor Supported by Active Magnetic Bearings. Actuators. 2022; 11(9):266. https://doi.org/10.3390/act11090266
Chicago/Turabian StyleXu, Boyuan, Jin Zhou, and Longxiang Xu. 2022. "A Backstepping Controller Based on a Model-Assisted Extended State Observer for a Slice Rotor Supported by Active Magnetic Bearings" Actuators 11, no. 9: 266. https://doi.org/10.3390/act11090266
APA StyleXu, B., Zhou, J., & Xu, L. (2022). A Backstepping Controller Based on a Model-Assisted Extended State Observer for a Slice Rotor Supported by Active Magnetic Bearings. Actuators, 11(9), 266. https://doi.org/10.3390/act11090266