Adaptive Sliding-Mode Path-Following Control of Cart-Pendulum Robots with False Data Injection Attacks
Abstract
:1. Introduction
- (1)
- The existing studies on the tracking error stability of the cart-pendulum system mainly center on the defects caused by the nondeterminacy of system mathematical model, and it is still insufficient to resist the purposeful attack. In this paper, the influence of actuator attack on the system is simulated by using the nonlinear approximation ability of a neural network, and a new control strategy is constructed to ensure that the trajectory tracking is not affected by attacks and disturbances.
- (2)
- The adaptive law proposed in the existing paper [31] can only satisfy that the parameter estimation error is bounded. This paper introduces a filter operator based on the preceding research work, and it proposes an original neural network-based self-adaptive law that achieves an accurate estimation of the unknown weights.
2. Mathematical Model of the System
2.1. Cart-Pendulum Robot
2.2. External Attacks
2.3. Objectives
3. Design of an Adaptive Sliding-Mode Controller
3.1. Estimates of Unknown Weights
3.2. Design of an Adaptive Control Scheme
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shao, Y.; Li, J. Modeling and switching tracking control for a class of cart-pendulum systems driven by DC motor. IEEE Access 2020, 8, 44858–44866. [Google Scholar] [CrossRef]
- Deng, C.; Wen, C.; Wang, W.; Li, X.; Yue, D. Distributed adaptive tracking control for high-order nonlinear multi-agent systems over event-triggered communication. IEEE Trans. Autom. Control 2022. [CrossRef]
- Vo, A.T.; Kang, H.J. An adaptive terminal sliding mode control for robot manipulators with non-singular terminal sliding surface variables. IEEE Access 2018, 7, 8701–8712. [Google Scholar] [CrossRef]
- Ma, Y.; Che, W.; Deng, C.; Wu, Z. Observer-based event-triggered containment control for MASs under DoS attacks. IEEE Trans. Cybern. 2021, 52, 13156–13167. [Google Scholar] [CrossRef]
- Ma, Y.; Che, W.; Deng, C.; Wu, Z. Distributed model-free adaptive control for learning nonlinear MASs under DoS attacks. IEEE Trans. Neural Netw. Learn. Syst. 2021. [Google Scholar] [CrossRef]
- Yang, H.; Ye, D. Observer-based fixed-time secure tracking consensus for networked high-order multi-agent systems against DoS attacks. IEEE Trans. Cybern. 2022, 52, 2018–2031. [Google Scholar] [CrossRef] [PubMed]
- Lu, A.Y.; Yang, G.H. Observer-based control for cyber-physical systems under denial-of-service with a decentralized event-triggered scheme. IEEE Trans. Cybern. 2020, 50, 4886–4895. [Google Scholar] [CrossRef] [PubMed]
- An, L.; Yang, G. Decentralized adaptive fuzzy secure control for nonlinear uncertain interconnected systems against intermittent DoS attacks. IEEE Trans. Cybern. 2019, 49, 827–838. [Google Scholar] [CrossRef]
- Sun, Z.; Zheng, J.; Man, Z.; Wang, H. Robust control of a vehicle steer-by-wire system using adaptive sliding mode. IEEE Trans. Ind. Electron. 2015, 63, 2251–2262. [Google Scholar] [CrossRef]
- Jin, X.; Wang, S.; Qin, J.; Zheng, W.X.; Kang, Y. Adaptive fault-tolerant consensus for a class of uncertain nonlinear second-order multi-agent systems with circuit implementation. IEEE Trans. Circuits Syst. I Reg. Pap. 2018, 5, 2243–2255. [Google Scholar] [CrossRef]
- Jin, X.; Lü, S.; Yu, J. Adaptive NN-based consensus for a class of nonlinear multi-agent systems with actuator faults and faulty networks. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 3474–3486. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Ma, Q.; Yi, P.; Wang, L. Multiagent interval consensus with flocking dynamics. IEEE Trans. Autom. Control 2022, 67, 3965–3980. [Google Scholar] [CrossRef]
- Shi, P.; Sun, W.; Yang, X.; Rudas, I.; Gao, H. Master-slave synchronous control of dual drive gantry stage with cogging force compensation. IEEE Trans. Syst. Man Cybern. Syst. 2022. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, W.; Yu, X.; Rodríguez-Andina, J.J.; Gao, H. Approximation-free robust synchronization control for dual-linear-motors-driven systems with uncertainties and disturbances. IEEE Trans. Ind. Electron. 2022, 69, 10500–10509. [Google Scholar] [CrossRef]
- Brahmi, B.; Laraki, H.; Brahmi, A. Improvement of sliding mode controller by using a new adaptive reaching law: Theory and experiment. ISA Trans. 2020, 97, 261–268. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, F.; Lang, J.; Chen, X.; Wang, J. Sliding mode control of persistent dwell-time switched systems with random data dropouts. Appl. Math. Comput. 2021, 400, 126087. [Google Scholar] [CrossRef]
- El Makrini, I.; Rodriguez-Guerrero, C.; Lefeber, D.; Vanderborght, B. The variable boundary layer sliding mode control: A safe and performant control for compliant joint manipulators. IEEE Robot. Autom. Let. 2016, 2, 187–192. [Google Scholar] [CrossRef]
- Song, Y.; Tang, Y.; Ma, B.; Xu, B. A singularity-free online neural network-based sliding mode control of the fixed-wing unmanned aerial vehicle optimal perching maneuver. Optim. Control Appl. Methods 2022. [Google Scholar] [CrossRef]
- Ping, Z.; Zhou, M.; Liu, C.; Huang, Y.; Yu, M.; Lu, J.-G. An improved neural network tracking control strategy for linear motor-driven inverted pendulum on a cart and experimental study. Neural Comput. Appl. 2022, 34, 5161–5168. [Google Scholar] [CrossRef]
- Deng, C.; Jin, X.-Z.; Che, W.-W.; Wang, H. Learning-based distributed resilient fault-tolerant control method for heterogeneous MASs under unknown leader dynamic. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 5504–5513. [Google Scholar] [CrossRef]
- Xie, X.; Wei, C.; Gu, Z.; Shi, K. Relaxed resilient fuzzy stabilization of discrete-time Takagi-Sugeno systems via a higher order time-variant balanced matrix method. IEEE Trans. Fuzzy Syst. 2022, 30, 5044–5050. [Google Scholar] [CrossRef]
- Fu, Y.; Sun, N.; Yang, T.; Qiu, Z.; Fang, Y. Adaptive coupling anti-swing tracking control of underactuated dual boom crane systems. IEEE Trans. Syst. Man Cybern. Syst. 2021, 52, 4697–4709. [Google Scholar] [CrossRef]
- Ao, W.; Song, Y.; Wen, C. Adaptive cyber-physical system attack detection and reconstruction with application to power systems. IET Control Theory Appl. 2016, 10, 1458–1468. [Google Scholar] [CrossRef]
- Yin, X.; Zhang, W.; Jiang, Z.; Pan, L. Adaptive robust integral sliding mode pitch angle control of an electro-hydraulic servo pitch system for wind turbine. Mech. Syst. Signal Pr. 2019, 133, 105704. [Google Scholar] [CrossRef]
- Ren, C.; Li, X.; Yang, X.; Ma, S. Extended state observer-based sliding mode control of an omnidirectional mobile robot with friction compensation. IEEE Trans. Ind. Electron. 2019, 66, 9480–9489. [Google Scholar] [CrossRef]
- Lü, S.; Jin, X.; Ding, L.; Tan, Q. Adaptive sliding-mode control of a class of disturbed cyber-physical systems against actuator attacks. Comput. Electr. Eng. 2022, 96, 107492. [Google Scholar] [CrossRef]
- Hoang, N.B.; Kang, H.J. Neural network-based adaptive tracking control of mobile robots in the presence of wheel slip and external disturbance force. Neurocomputing 2016, 188, 12–22. [Google Scholar] [CrossRef]
- Raeisi, Y.; Shojaei, K.; Chatraei, A. Output feedback trajectory tracking control of a car-like drive wheeled mobile robot using RBF neural network. In Proceedings of the 6th Power Electronics, Drive Systems & Technologies Conference (PEDSTC2015), Tehran, Iran, 3–4 February 2015; IEEE: New York, NY, USA, 2015; pp. 363–368. [Google Scholar]
- Jin, X.; Che, W.W.; Wu, Z.G.; Wang, H. Analog control circuit designs for a class of continuous-time adaptive fault-tolerant control systems. IEEE Trans. Cybern. 2020, 56, 4209–4220. [Google Scholar] [CrossRef] [PubMed]
- An, L.; Yang, G.H. Improved adaptive resilient control against sensor and actuator attacks. Info. Sci. 2018, 423, 145–156. [Google Scholar] [CrossRef]
- Jin, X.; Haddad, W.M.; Jiang, Z.P.; Kanellopoulos, A.; Vamvoudakis, K.G. An adaptive learning and control architecture for mitigating sensor and actuator attacks in connected autonomous vehicle platoons. Int. Adapt. Control Signal Process. 2019, 33, 1788–1802. [Google Scholar] [CrossRef]
- Jin, X.; Zhao, X.; Yu, J.; Wu, X.; Chi, J. Adaptive fault-tolerant consensus for a class of leader-following systems using neural network learning strategy. Neural Netw. 2020, 121, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, Z.; Jin, X.; Huang, Y.; Kong, H.; Yu, M.; Ping, Z.; Sun, Z. Adaptive integral terminal sliding mode control for automobile electronic throttle via an uncertainty observer and experimental validation. IEEE Trans. Veh. Technol. 2018, 67, 8129–8143. [Google Scholar] [CrossRef]
- Wang, H.; Mi, C.; Cao, Z.; Zheng, J.; Man, Z.; Jin, X.; Tang, H. Precise discrete-time steering control for robotic fish based on data-assisted technique and super-twisting-like algorithm. IEEE Trans. Ind. Electron. 2020, 67, 10587–10599. [Google Scholar] [CrossRef]
- Shao, K.; Zheng, J.; Huang, K.; Wang, H.; Man, Z.; Fu, M. Finite-time control of a linear motor positioner using adaptive recursive terminal sliding mode. IEEE Trans. Ind. Electron. 2019, 67, 6659–6668. [Google Scholar] [CrossRef]
- Shao, K.; Zheng, J.; Wang, H.; Xu, F.; Wang, H.; Liang, B. Recursive sliding mode control with adaptive disturbance observer for a linear motor positioner. Mech. Syst. Signal Pr. 2021, 146, 107014. [Google Scholar] [CrossRef]
- Sakai, S.; Osuka, K.; Fukushima, H.; Iida, M. Watermelon harvesting experiment of a heavy material handling agricultural robot with LQ control. IEEE/RSJ Int. Conf. Intell. Robot. Syst. IEEE 2002, 1, 769–774. [Google Scholar]
- Huang, X.; Dong, J. Reliable control of cyber-physical systems under sensor and actuator attacks: An identifier-critic based integral sliding-mode control approach. Neurocomputing 2019, 361, 229–242. [Google Scholar] [CrossRef]
Parameters | Characters | Units |
---|---|---|
Moving distance of cart | x | m |
Rotation angle of pendulum | rad | |
The moment of inertia | I | kg· |
Barycenter distance | l | m |
Mass of cart | kg | |
Kinematic viscosity coefficient of cart | Ns/m | |
Mass of pendulum | kg | |
Kinematic viscosity coefficient of pendulum | Ns/m | |
Control signal | N·m | |
Gravitational acceleration | g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Jin, X.; Deng, C.; Che, W. Adaptive Sliding-Mode Path-Following Control of Cart-Pendulum Robots with False Data Injection Attacks. Actuators 2023, 12, 24. https://doi.org/10.3390/act12010024
Liu J, Jin X, Deng C, Che W. Adaptive Sliding-Mode Path-Following Control of Cart-Pendulum Robots with False Data Injection Attacks. Actuators. 2023; 12(1):24. https://doi.org/10.3390/act12010024
Chicago/Turabian StyleLiu, Jiadong, Xiaozheng Jin, Chao Deng, and Weiwei Che. 2023. "Adaptive Sliding-Mode Path-Following Control of Cart-Pendulum Robots with False Data Injection Attacks" Actuators 12, no. 1: 24. https://doi.org/10.3390/act12010024
APA StyleLiu, J., Jin, X., Deng, C., & Che, W. (2023). Adaptive Sliding-Mode Path-Following Control of Cart-Pendulum Robots with False Data Injection Attacks. Actuators, 12(1), 24. https://doi.org/10.3390/act12010024