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Abstract: This article presents the formulation and application of a reduced-order thermomechanical
finite strain shape memory alloy (SMA)-based microactuator model for switching devices under ther-
mal loading by Joule heating. The formulation is cast in the generalized standard material framework
with an extension for thermomechanics. The proper orthogonal decomposition (POD) is utilized for
capturing a reduced basis from a precomputed finite element method (FEM) full-scale model. The
modal coefficients are computed by optimization of the underlying incremental thermomechanical
potential, and the weak form for the mechanical and thermal problem is formulated in reduced-order
format. The reduced-order model (ROM) is compared with the FEM model, and the exemplary mean
absolute percentage errors for the displacement and temperature are 0.973% and 0.089%, respectively,
with a speedup factor of 9.56 for a single SMA-based actuator. The ROM presented is tested for
single and cooperative beam-like actuators. Furthermore, cross-coupling effects and the bistability
phenomenon of the microactuators are investigated.

Keywords: microactuators; shape memory alloy; thermomechanics; reduced-order modeling; proper
orthogonal decomposition

1. Introduction

Since the discovery of shape memory alloys (SMAs), they have been used in various
applications. For example, as orthodontic appliances, in mobile phones, valves, space
robotics and microactuators [1,2]. Their frequent use in these applications stems from their
unique properties, namely the super-elasticity and the shape memory effect [3–6]. SMA-
based microactuators are in increased demand [7,8] because they have a high mechanical
strength and work density, which results in lightweight structures that can repeatedly
generate large forces with small device sizes [9,10]. SMA-based actuators have the disad-
vantage of low actuation speed caused by the latency of thermal cooling, which is strongly
size-dependent. Song et al. [11] proposed a smart soft composite actuator that is capable of
large deformations with fast bending actuation. Stachiv et al. [12] proposed an approach to
use SMA in combination with an elastic substrate as tunable active layer. Samal et al. [13]
investigated the bending stiffness and radius of curvature of polymethyl methacrylate
(PMMA) and NiTi SMA composites upon application of an external thermal load. The
discussed actuator in this paper is based on a concept explored by Winzek et al. [14]. They
investigated a combination of SMA and polymer that leads to the actuator behaving in a
bistable manner.

These SMA-based actuators usually undergo transformation due to a thermal loading
during their operation. Therefore, it is necessary to understand the complex, nonlinear
thermomechanical behavior of the SMA-based actuator, which makes the numerical imple-
mentation challenging [15].

The shape memory and super-elastic effect occur in SMAs due to a phase transfor-
mation between austenite and martensite, which is induced by thermomechanical load-
ings [9,16–18]. SMA models can be developed based on a continuum thermodynamics
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framework. In this work, we take into account the thermomechanical potential devel-
oped by Yang et al. [19] and assume a potential including internal variables [5,17,20].
Sielenkämper et al. [21] extended the SMA potential formulation from Sedlak et al. [22]
to the finite strain case, which was developed for small-strain SMA modeling. It captures
the super-elasticity and shape memory effect, as well as the volume change due to phase
transformation, which is found in some SMAs [23]. Frost et al. [24] also developed a ther-
momechanical model for SMAs within the framework of generalized standard materials
that could predict the martensite transformation and its localization. Solomou et al. [25]
proposed a coupled thermomechanical SMA-based actuator model that is capable of simu-
lating heat transfer and convection effects in the actuator. There, the constitutive equations
for SMAs from Lagoudas’ model [10] are used to predict the coupled thermomechanical
response of an SMA beam.

It is often time-consuming to perform an experimental investigation for the design
optimization of new components [26]. For nonlinear multiphysics problems, such optimiza-
tions are usually perceived by numerical simulations [27,28], which might have millions of
degrees of freedom (DOF), and can thus be computationally expensive [29] and also require
a continuously evolving discretized model for nonlinear problems [30–32]. Performing
simulations using an FEM model sometimes becomes unfeasible when performing hun-
dreds of simulations for different, varying parameters such as different loading conditions,
different values of Young’s modulus and Poisson’s ratio to design a new structure [26,33].
Therefore, we need a reduced-order model to reduce the computational cost with respect to
solving parametrized nonlinear partial differential equations (PDEs) [32]. Different model
order reduction techniques that perform well in reducing the computational time while
preserving model accuracy have been utilized. Model order reduction (MOR) is a class of
techniques to approximate a higher dimensional system by a low-dimensional model [26].
POD has been utilized by many researchers as a basis for MOR techniques [34–36].

Reduced-order modeling for a compact FEM model could speed up the investigation
process significantly while keeping a certain level of model accuracy. Vettermann et al. [37]
developed a strategy for coupled thermomechanical problems with nonlinear boundary
conditions for faster simulations of machine tools. Ummunakwe et al. [38] developed
a reduced-order thermomechanical model for packaged chips using Krylov subspace
methods with excellent model accuracy.

JinXiu et al. [39] used POD to analyze transient heat conduction problems and pro-
posed a fast reduced-order model that could interpolate and extrapolate the field variable
at an unknown time. Jia et al. [40] proposed a reduced-order thermal model for a multifin
field effect transistor, which provides accurate solutions. Bikora et al. [41] developed a
low-order model to predict the thermal deformation in reticles for extreme ultraviolet
lithography, which is based on a large-scale thermomechanical FEM model. Hernandez
et al. [42] worked on a thermomechanical reduced-order model for machine tools that pre-
dicts the thermal response in a frequency range and also predicts the coupling between the
mechanical and thermal responses. Das et al. [43] proposed a thermomechanical reduced-
order model using POD to simulate the thermomechanical processes that occur during the
fabrication of photovoltaic cells.

The objective of this paper is to develop a fast and reliable reduced-order model
for the FEM model developed by Sielenkämper et al. [21]. The novelty of this ROM is
the application to the coupled thermomechanical potential, which was first considered
by Yang et al. [19]. First, samples of snapshots are generated from high-fidelity FEM
solutions for different parameter sets. This so-called offline computation is computationally
expensive. Subsequently, a reduced basis that could best represent the full snapshot matrix
is obtained from the snapshots through statistical tools. Then, the most significant modes
contained in the reduced basis are used to predict the overall behavior of the nonlinear
SMA actuator model.

The article is organized as follows: The second section provides, in compact form, all
necessary equations for the thermomechanical SMA-based model. Then, a reduced-order
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model is presented. Section 3 presents the application of the ROM to different examples.
Finally, Section 4 concludes the paper, along with suggestions for future work.

We used bold letters for first- and second-order tensors, as well as tensor-valued
functions such as P, and light face letters for scalars and scalar valued functions such as T.

2. Modeling of the Thermomechanical SMA-Based Actuator

This section briefly presents the mathematical formulation for the SMA-based actuator
model.

2.1. Continuum Model

Within a continuum body with reference configuration B0, the displacement vector
u of a material point with reference position vector X at time t is defined as the differ-
ence between the current and reference position vectors x and X, respectively (u(X, t) =
x(X, t) − X). The deformation gradient F describes the mapping of infinitesimal line
elements from the reference to the current configuration and can be expressed as

F = Grad(x(X, t)) (1)

In the reference configuration, the linear momentum balance for a body B0 can be
written as

DivP + ρ0b = 0, (2)

where b is the body force, ρ0 is the reference mass density and P is the first Piola–Kirchoff
stress tensor. The boundary conditions are u = ū on ∂B0u and t̂ = PN on ∂B0t, with the
given traction vector t̂ and the external normal N in the reference configuration.

We consider the free energy density (with respect to the reference configuration)
ψ = ψ(C, T, Z), which depends on the right Cauchy–Green tensor C = FT F, the absolute
temperature T and an array of internal variables Z. Inserting this function into the Clausius–
Planck inequality and using Coleman and Noll’s reasoning, we can write

P =
∂ψ

∂F
; s = −∂ψ

∂T
, (3)

where s denotes the entropy density per unit reference volume.
We assume a scalar dissipation potential for the isothermal case (the nonisothermal

case is discussed below, see Equation (7)) φ(Ż, Z) to depend on internal variables Z and
the rate of the internal variables Ż. For general standard dissipative solids, the rates of the
internal variables are identified by solving Biot’s equation

∂ψ

∂Z
+

∂φ

∂Ż
3 0, (4)

where ∂φ/∂Ż in general denotes a subdifferential. We obtain the dissipation density as

D =
∂φ(Ż, Z)

∂Ż
· Ż. (5)

Then, the balance of energy with Fourier’s law, for simplicity taken as Q = −κGradT,
where κ is the heat conductivity and Q is the heat flux vector in the reference configuration,
can be represented as

Tṡ = −Div(κQ) + w +D, (6)

where w represents the heat source density. The Dirichlet boundary condition for the
thermal part is T = T̄ on ∂B0T. The Robin-type boundary condition is given as Q · N =
α(T− Ta) on ∂B0Q. Here, α is the heat transfer coefficient and Ta is the ambient temperature.
Neumann-type boundary conditions are not considered.
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Consider the following rate potential for the nonisothermal case in its time-discrete
format for the material modeling of the SMA (compare Yang et al. [19]).

ψ(C, T, Z)− (en − Tsn) + ∆tφ
( T

Tn
Z̊, Z

)
, (7)

where en and sn are the internal energy density and entropy density at time tn, respectively.
Z̊ is a numerical approximation of the time derivative of Z. This means that any Z̊ satisfying
lim∆t→0 Z̊ = Ż is admissible. A typical example is Z̊ = ∆Z/∆t. Additionally, ∆tφ is
denoted as φ∆ and is assumed homogeneous of degree one in its first variable in the
following. Note that the major difference of the dissipation potential in the nonisothermal
case compared with the isothermal case is the factor T/Tn in the first argument.

The temperature and the displacement vector are the unknown state variables. Fourier’s
heat conduction law is assumed along with dissipative terms. Both state variables are
coupled through the following time-discrete potential

π∆ = ψ− (en − Tsn) + φ∆ − κ
∆t

2Tn
‖GradT‖2+κ

∆tT
T2

n
‖GradTn‖2, (8)

where the last two terms in Equation (8) represent the heat conduction in the body. The
integral form of the incremental potential is expressed as follows:

Π∆ =
∫
B0

π∆dV −
∫

∂B0t

t̂ · udS−
∫
B0

ρ0b · udV −
∫

∂B0Q

α∆t
2Tn

(T − Tn)
2dS +

∫
B0

∆t
T
Tn

wdV. (9)

Now, the state variables and internal variables are obtained by solving the following
saddle point problem

inf
u∈κu

sup
T∈κT

inf
Z

Π∆. (10)

Here, κu = {u : u = ū on ∂B0u} is the set of admissible displacement values fulfilling
the Dirichlet boundary conditions on the boundary ∂B0u, and κT = {T : T = T̄ on ∂B0T}
is the set of admissible temperatures that fulfill the Dirichlet boundary conditions on the
boundary ∂B0T .

The weak form of the quasi-static linear momentum balance can be obtained by
applying a variation of the potential with respect to the displacement:

δuΠ∆ =
∫
B0

P : δF dV −
∫

∂B0t

t̂ · δu dS−
∫
B0

ρ0b · δudV, (11)

where δF and δu are the variations of the deformation gradient and displacement vector,
respectively. In the same way, the weak form of the energy balance can be obtained by the
variation with the temperature T as follows:

δTΠ∆ =
∫
B0

((∂ψ

∂T
+ sn +

1
Tn

φ∆(Z̊, Z)
)

δT − κ∆t
Tn

Grad(T) ·Grad(δT)

+ ∆t
δT
T2

n
κ‖Grad(Tn)‖2+

∆t
Tn

w

)
δTdV −

∫
B0Q

α
∆t
Tn

(T − Tn)δTdS = 0. (12)

It can be easily verified that Equations (11) and (12) yield Equations (2) and (6), as
well as the corresponding boundary conditions in the limit ∆t → 0, which proves the
consistency of the time-discrete potential with the time-continuous theory.

Furthermore, the variation of the potential with respect to the internal variables yields
the nonisothermal form of Biot’s equation, which represents the stationarity condition with
respect to the internal variables:

δZΠ∆ =
∂ψ

∂Z
+ ∆t

∂φ

∂Z
3 0. (13)
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2.2. Reduced-Order Modeling

After solving a fully resolved FEM model for a wide range of certain parameter values,
snapshots (i.e., the model state variable vectors) are stored in a snapshot matrix. After
applying POD on the snapshot matrix, a reduced basis that can best represent the solution
in terms of a few displacement “modes” ψi(X) (i = 1, . . . Nu) and temperature modes
χi(X) (m = 1, . . . NT) is obtained. The reduced solution for the displacement vector with
the mode coefficient xi(t) can be expressed using this reduced basis as

ũ(X, t) =
Nu

∑
i=1

ξi(t)ψi(X); Gradũ(X, t) =
Nu

∑
i=1

ξiGradψi(X). (14)

Likewise, the reduced solution for the temperature can be expressed via the modes as:

T̃(X, t) =
NT

∑
m=1

µm(t)χm(X); GradT̃(X, t) =
NT

∑
m=1

µm(t)Gradχm(X), (15)

where the subscript Nu and NT represent the number of modes selected for displacement
and temperature calculation, respectively. Furthermore, ũ(X, t) and T̃(X, t) are the reduced
approximations of the displacement vector and temperature that depend on the position
vector X and time t.

Now, the aim is to obtain a weak formulation of the thermomechanical model but with
a reduced number of dimensions, which therefore can be solved faster. The major novelty
in this work is to combine the MOR-scheme described above with the incremental ther-
momechanical potential (Equation (9)). This enables a further performance enhancement,
as the existence of a potential automatically ensures a symmetric tangent, which in turn
enables the use of more efficient linear equation solvers compared with the nonsymmetric
case. Furthermore, the potential-based formulation may be useful for the formulation of
advanced nonlinear equation solvers and when mathematically analyzing the reduced-
order model, which is beyond the scope of the work at hand. The weak form for the linear
momentum balance in reduced-order format is given as

δξ Π∆ =
Nu

∑
i=1

δξi

[∫
B0

τ : gs
i dV −

∫
∂B0t

t̂ ·ψidS−
∫
B0

ρ0b ·ψidV
]

︸ ︷︷ ︸
Ru

i

, (16)

where τ = FSFT is the Kirchhoff stress tensor, S = F−1P is the second Piola–Kirchhoff
stress tensor and gs

i is the symmetric part of GiF−1, with Gi = Gradψi(X).
Likewise, the weak form of the energy balance can be expressed as

δTΠ∆ =
∫
B0

(
∂π∆

∂T
δT +

∂π∆

∂GradT
·GradδT

)
dV −

∫
∂B0Q

∂πs
∆

∂T
δTdS +

∫
B0

∆t
Tn

wδTdV. (17)

After rearranging and inserting Equation (15), it reads

δTΠ∆ =
NT

∑
m=1

δµm

[∫
B0

((∂π∆

∂T
+

∆t
Tn

w
)

χm +
∂π∆

∂GradT
·Wm

)
dV −

∫
∂B0Q

∂πs
∆

∂T
χmdS

]
︸ ︷︷ ︸

RT
m

, (18)

where Wm = Gradχm(X) and πs
∆ = α∆t(T − Tn)2/(2Tn).

The square bracket terms in Equations (16) and (18) are the residuals for the mechanical
and thermal subproblems, respectively. Now, we can linearize both subproblems with
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respect to the DOFs ξi and µm to obtain the tangent moduli required for the global Newton
scheme. Subsequently, the global residual vector and global tangent moduli are expressed as

R =

[
Ru

RT

]
; K =

[
Kuu KuT

KTu KTT

]
, (19)

where K is symmetric as a result of the potential-based formulation.

3. Results and Discussion

This section presents the results obtained from MOR. The constitutive models (in
particular the SMA model) are taken from Sielenkämper et al. [21]. For the material
properties of SMA and PMMA, see Table 1 and Section 4.3.2, respectively, in [21]. The FEM
model is solved using the finite element program FEAP [44], and the snapshots for the
displacement and the temperature are stored. These snapshots are then used in the MOR
scheme, which is written in FORTRAN. The visualization of the results is carried out in
Paraview [45].

A bistable microactuator beam is investigated, which is made up of three layers: an
SMA NiTiHf layer, a molybdenum layer, and a PMMA layer, as shown in Figure 1. To
achieve bistability, the polymer layer plays a very important role. On the one hand, if the
polymer layer is too thick, it will make the actuation speed slower with a higher energy
consumption. On the other hand, if it is too thin, it will not be able to hold its shape.
At t = 0, we assume the initial conditions to be given by zero displacements and room
temperature at 20 ◦C. At the left face, Dirichlet boundary conditions are applied for the
displacement, and for the temperature, where a constant value of 20 ◦C is considered.
Initially, thermal eigenstrains are introduced, as described in [21], such that the actuator
would be stress-free at 500 ◦C (annealing temperature). Joule heating is cyclically realized
by a heat source applied to the molybdenum and SMA material in the beam. A sine function
is used to model the magnitude of the heat source (see Equation (A1) in Appendix A).

Figure 1. Dimensions of the actuator assembly, which is clamped at the left side. The red layer is
polymer, blue is SMA and gray is molybdenum.

The heat convection is realized by applying a Robin-type boundary condition to the
top and bottom faces of the actuator. The heat convection term at the remaining air enclosed
surfaces is neglected. The bistability actuation principle of the presented actuator depends
upon the difference in the coefficients of thermal expansion (CTE) between the layers, the
shape memory effect and the difference in volume between the austenite and martensite
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phases. To achieve this bistability in the actuator, a heating cycle is applied as follows. From
the annealing temperature (500 ◦C), the actuator cools down and the polymer stiffens when
the glass transition temperature Tg is reached. Upon further cooling, austenite transforms to
unoriented (twinned) martensite. Then, the actuator is heated (this is where the simulation
actually starts) just until the glass transition temperature Tg of the polymer is reached,
which softens the PMMA layer and causes martensite to twin, and thus the actuator to
relax. Then, cooling down will lock the position of the actuator in place due to the polymer
stiffening below Tg, which makes the actuator take its first stable state at room temperature.
Again, heating the actuator above the austinite finish temperature will bend it up due to
SMA phase transformation, and then cooling to room temperature will lock this position,
because the polymer hardens before the martensite finish temperature, obtaining the second
stable state at room temperature. The tip displacement difference between the two stable
states is called the bistable stroke, as shown in Figure 7 (see Section 3.3). A typical aim
is to maximize the bistable stroke while keeping the actuator small, which comes with a
low power consumption [21]. We utilized trilinear elements with reduced integration and
hourglass stabilization for all materials for the FEM computations. We refer to [21] for more
information on the fully resolved FEM model.

3.1. Single SMA Actuator

We consider here a single actuator for one heat load cycle with appropriate boundary
conditions for reduced-order modeling and simulation. For this example, the training
data are obtained for different values of Young’s modulus and Poisson’s ratio, replacing
the molybdenum layer by solving the full-order model as shown in Table 1. No external
force is applied for all the examples, only Joule heating is performed. The snapshots are
collected for one heat load cycle. One cycle in which the maximum temperature succeeds
the austenite finish temperature (A f ) is enough to observe the actuation behavior of our
bistable actuator. We acquire 150 snapshots that represent the solution obtained through
Equations (16) and (18), respectively. We determine solutions for a wide range of parameter
values, as mentioned in Table 1. In total, we collect 1350 snapshots for different material
properties. The larger our snapshot matrix, the more accurately we can determine the
optimal reduced basis.

POD [34–36] is utilized separately to obtain the reduced bases for the displacement
and temperature. The model is trained in an offline computation phase. During the online
phase, we predict the actuator behavior using any value in the considered parameter
range. We minimize the thermomechanical potential (Equation (9)) with respect to the
mechanical degrees of freedom to obtain the residual equation for the displacement and,
simultaneously, we maximize the same potential with respect to thermal degrees of freedom
to obtain the residual equation for the temperature. Then, we obtain the modes which are
the global Galerkin ansatz functions for the state variables (displacement and temperature)
separately. In this sense, displacements and temperature are comparable and of equal
“value” or importance. Moreover, the snapshots calculated from FEM contain nonvanishing
Dirichlet boundary conditions for temperature (20 ◦C), which is technically realized by a
homogeneous temperature mode in addition to the other modes, which are normalized
by subtracting from all nodes of a given mode the temperature at the clamping position
(at x = 0), such that the modes are zero at that location. In the reduced-order model,
temperature Dirichlet boundary conditions are realized, for simplicity, through a penalty
approach in the form of a Robin-type boundary condition with very high heat transfer
coefficient. The material model developed in [21] was fitted to experimental tensile tests
performed at different temperatures and tensile loads. The FEM model predicts reasonable
results, and the dependency on the temperature is also captured accurately. Please see
Figure 2 in Curtis et al. [46]. In that paper, further experiments with bimorph beam
structures similar to the one in this manuscript are also discussed.
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Table 1. Parameter data set for training the reduced-order model for beam type trimorph actuator.

Parameter Set Set 1 Set 2 Set 3

E (MPa) 300 300 300
ν 0.31 0.40 0.49

Set 4 Set 5 Set 6

E (MPa) 325 325 325
ν 0.31 0.40 0.49

Set 7 Set 8 Set 9

E (MPa) 350 350 350
ν 0.31 0.40 0.49

We use the following percentage error measure (Eper) between FEM and MOR

Eper =
1

NNd

NNd

∑
i=1

|uMOR
i − uFEM

i |
|uFEM

i |
× 100%, (20)

where uMOR is the displacement solution calculated using MOR, uFEM is the displacement
solution calculated for FEM and NNd is the total number of nodes taken for the error
calculation. The error measure used for the temperature is defined in analogy. In addition
to this global error measure, we use the local measures specified below.

Figures 2 and 3 illustrate the results for FEM and MOR for an “untrained” parameter
set, i.e., using values for E and ν, which were not used when computing (see caption of
Figure 2) the snapshot matrix. These displacement and temperature graphs are obtained at
the left tip of the beam actuator, as marked in the Figure 2 with green circles. We consider
10 and 34 modes for the displacement computations based on the frequency graph of the
modes that were obtained after POD computations, as shown in Figure 4. The number of
temperature modes taken is equal to the number of displacement modes.

FEM
MOR

Figure 2. FEM and MOR result comparison for temperature for an “untrained” parameter set with 10
modes (E = 331 MPa and ν = 0.35).
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The total time to run the full-scale model for one complete heat cycle and for one
parameter value is ∼132 s. Considering the three sets of values for E and ν, this takes
∼1188 s in total to train the MOR against these parameters in an offline stage. After training
the MOR against these parameters, the online computations are carried out for an untrained
set of parameters. These simulations are carried out on an Intel® Core™ i7-8850H CPU @
2.60 GHz with 32 GB RAM. The speedup factors obtained for this example are summarized
in Table 2.

Table 2. Speedup factor for the model considered for one parameter set and one heat load cycle.

CPU Time FEM Displacement
Modes

CPU Time
MOR Speedup Displacement

Error

132 s 10 4.5 s 29.33 2.489%
132 s 34 14.2 s 9.29 0.973%
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We also carried out the MOR computations for different untrained sets of parameter
values (E = 320 MPa and ν = 0.38, E = 330 MPa and ν = 0.33), and the displacement error
value is similar for these calculations (Eper = 0.98%, Eper = 0.971%).

3.2. Cross-Coupling between Actuators

The purpose of this analysis is to comprehend the cross-sensitivities and coupling
effects if two actuators cooperate, as well as to investigate the performance of the MOR
for a more complicated geometry. In confined spaces, actuating one microactuator that is
part of an array might have an influence on the other actuators for cooperative multistable
operation. These are unwanted effects that cause a loss of precision in the actuation. For
example, if there is a huge cross-coupling between the actuators, activating one actuator
through Joule heating will cause the neighboring actuators to actuate, which restricts
the design space of the actuator. These cross-coupling effects need to be understood
properly [47].

Two actuators are connected at the base to a molybdenum block. The bottom and
back-face of the molybdenum base are fixed. A zero Dirichlet boundary condition is applied
for the displacement at the fixed locations, and we have a nonzero Dirichlet boundary
condition at the back-face of the molybdenum block for temperature, which is 20 ◦C, and
the heat load is applied only at the left actuator. We investigate cross-coupling at different
distances d between the actuators using our developed ROM after training the model
against different size scales of the actuators. For this case, the snapshots are obtained
for the parameters shown in Table 3. The predictions are given for the untrained case of
dimensions, which are 500 × 150 × 24 µm. Figure 5 illustrates the simulation results for
the cross-coupling effect due to thermal load application for FEM and MOR.

Table 3. Parameter training data set for cross-coupling effect investigation.

Scale
Dimensions of
One Actuator

L ×W × T
d1 d2 d3

mm 5 × 1.5 × 0.34 1 0.5 0.1
µm 5 × 1.5 × 0.34 1 0.5 0.1
nm 500 × 150 × 3.4 100 50 10

Figure 6 compares the FEM and MOR results for cross coupling sensitivities. The
MOR results generated for this graph are for 52 modes of displacement. The number of
temperature modes is taken to be equal to the number of displacement modes. These
graphs are obtained for the point at the right tip of the first actuator and the point at the
base of second actuator, as illustrated in Figure 5 with green circles. For this analysis,
actuating the left actuator has a minor influence on the neighboring actuator, i.e., the
sensitivity is not very high. When the temperature reaches 440 K at the left actuator, at
a distance of 100 micrometers between the actuators (see Figure 6c), the maximum rise
in temperature is 20 K, which is measured at the base of the second actuator, where the
maximum temperature is found. This increase in temperature is not enough to initiate the
actuation of the second actuator, because the temperature increase in the second actuator
has not yet reached Tg of the PMMA and the phase transformation temperature of SMA.
The heat is transferred via conduction. The base that connects the two actuators plays
an important role as, if we use any material that has a higher conductivity, we may see
cross-coupling effects between the actuators.

For the displacement, the error for a small number of modes is large (see Table 4). By
enriching the basis with more modes, the error decreases. Table 4 summarizes this finding,
including the speedup factor for this example.
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FEM
MOR

Figure 5. FEM and MOR temperature results for cross-coupling effect investigation for an untrained
actuator geometry (500 × 150 × 24 µm).

Table 4. Speedup factors for the model considered for one parameter set and one heat load cycle at
d = 100 µm.

CPU Time FEM Displacement
Modes

CPU Time
MOR Speedup Displacement

Error

202 s 10 12.2 s 16.5 6.54%
202 s 52 42 s 4.8 1.29%
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Figure 6. Temperature and displacement graphs for different distances between actuators for the
investigation of cross-coupling effects: (a) Temperature prediction at d = 1000 µm. (b) Displacement
prediction at d = 1000 µm. (c) Temperature prediction at d = 100 µm. (d) Displacement prediction at
d = 100 µm.
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3.3. Bistability

The term bistability describes the actuator’s ability to be able to hold two stable states
at room temperature, which is useful for energy efficient switching of microdevices [48].
We investigate the trimorph NiTiHf/Mo/PMMA-based microactuator’s bistable stroke
capabilities using the proposed reduced-order model. The resulting stable states at room
temperature are shown in Figure 7. This phenomenon was already discussed in Section 3.
Please see, respectively, Sections 4.3 and 3.4 in [21,46] for further details about the bistability
phenomenon.

For the bistability performance investigation, we apply two heat load cycles for
observing the two stable states of the actuator. We examine the actuator dimensions
of 10 × 5 × 0.19 mm3 with 10, 20 and 160 µm thicknesses for NiTiHf, Mo and PMMA,
respectively.

Figure 7 illustrates the bistability and shows the comparison of FEM and MOR results
for displacement and temperature. The first heat cycle heats the actuator just above the
polymers glass transition temperature Tg and the second cycle just above the austenite
finish temperature of the SMA. The two stable positions at room temperature obtained
with the SMA-based actuator are depicted in Figure 7. Here, for the displacement and
temperature, using 10 POD modes, the FEM and MOR results agree well. The speedup
factor acquired for this analysis is 58.29, with 1061 s and 18.2 s for the FEM and MOR
computations, respectively.

Stable state II

Stable state I

Bistable stroke
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Figure 7. MOR results for displacement magnitude at two different stable states (left): Bistable
positions for the selected actuator with FEM and MOR comparison (right).

4. Conclusions

A reduced-order model for a thermomechanical finite strain shape memory alloy actu-
ator is presented in this paper. Using POD, the reduced basis is obtained. The weak forms
of the mechanical and thermal problem are formulated in the reduced-order format. As a
major novelty, the reduced-order model is derived from an incremental thermomechanical
potential, which ensures a symmetric tangent, and thus allows for efficient solvers and may
enable a mathematical model analysis and the employment of enhanced solution methods.
The ROM is tested for a single actuator example, cross-coupling effects for two actuators
and bistability performance. It was shown from the numerical examples that the model
can predict the properties of a parameterized actuator model with controlled accuracy and
with less computational effort. The error can be reduced further if the snapshot matrix is
enriched with more offline computations.

The ROM developed in this paper still needs further improvement in predicting new
parameter values more accurately in less computational time. Therefore, we intend to
perform hyper-reduction, in which instead of using each integration point, a reduced set of
integration points is evaluated to reduce the computational time.
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Appendix A

For a geometry in millimeter scale as in for single actuator example 1, we realized the
heating of the actuator through the following sine function:

w = 3107
∣∣∣sin

(
0.1
(

t
s
+ 6
))
− 0.6

∣∣∣∆t
Tn

mWmm−3, (A1)

where t is the simulation time in seconds, ∆t is the time step size and Tn is the temperature
at tn. For a geometry in micrometer scale as in example 2, we realized the heating of the
actuator through the following sine function:

w = 273460
∣∣∣sin

(
0.1
(

t
s
+ 6
))
− 0.6

∣∣∣∆t
Tn

mWmm−3, (A2)

In example 3, two heat loading cycles are applied, one just above the Tg and the second
cycle above the austenite finish temperature to visualize the bistability phenomenon

wu = 807
∣∣∣sin

(
0.1
(

t
s
+ 6
))
− 0.6

∣∣∣∆t
Tn

mWmm−3, (A3)

wl = 1491
∣∣∣sin

(
0.1
(

t
s
+ 6
))
− 0.6

∣∣∣∆t
Tn

mWmm−3, (A4)

where wu and wl are the upper and lower heat load cycles.
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