Integrated Vehicle Controller for Path Tracking with Rollover Prevention of Autonomous Articulated Electric Vehicle Based on Model Predictive Control
Abstract
:1. Introduction
- The proposed algorithm determines the control inputs for lateral and longitudinal motion simultaneously. Thus, the control moment for the AFS mechanism and front-wheel torque are determined to follow the reference path and improve the roll stability.
- The proposed controller is designed to track the reference states, which can be calculated regardless of the road geometry. Therefore, the proposed approach can be applied to various kinds of roads.
- The desired acceleration is derived to prevent the rollover by considering the lateral acceleration of the front and rear bodies of the AAEV. With the lateral acceleration threshold, an MPC-based controller determines the desired longitudinal acceleration for rollover prevention while considering the actuation delay.
2. Overall Architecture
3. Articulated Vehicle Model
4. Integrated Controller for Articulated Vehicle
4.1. Reference State Decision
4.2. MPC-Based Reference State Tracker
4.3. Low-Level Controller
5. Simulation Results
5.1. Vehicle Model for Simulation
5.2. Base Algorithm
5.3. Simulation Results
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hildenbrand, J. Developments in Heavy Construction Equipment. Purdue Road Sch. 1979, 12, 124–140. [Google Scholar]
- Holm, I.C. Articulated, wheeled off-the-road vehicles. J. Terramechanics 1970, 7, 19–54. [Google Scholar] [CrossRef]
- Dongtao, H.; Jinhao, L.; Jiangming, K.; Weiguo, T. Analysis of a Kinematic Model for a Forestry Six-Wheeled Luffing Articulated Vehicle Chassis. Open J. Mech. Eng. 2015, 9, 670–677. [Google Scholar] [CrossRef] [Green Version]
- Polotski, V.; Hemami, A. Control of articulated vehicle for mining applications: Modeling and laboratory experiments. In Proceedings of the 1997 IEEE International Conference on Control Applications, Hartford, CT, USA, 5–7 October 1997. [Google Scholar]
- Boulanger, A.G.; Chu, A.C.; Maxx, S.; Waltz, D.L. Vehicle electrification: Status and issues. Proc. IEEE 2011, 99, 1116–1138. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, V.; Afonso, J.A.; Ferreira, J.C.; Afonso, J.L. Vehicle electrification: New challenges and opportunities for smart grids. Energies 2018, 12, 118. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Taylor, N.; Kringos, N. Electrification of roads: Opportunities and challenges. Appl. Energy 2015, 150, 109–119. [Google Scholar] [CrossRef]
- 8Fast Facts U.S. Transportation Sector GHG Emissions. Available online: https://www.epa.gov/greenvehicles/archives-fast-facts-us-transportation-sector-greenhouse-gas-emissions (accessed on 26 September 2022).
- Prassler, E.; Ritter, A.; Schaeffer, C.; Fiorini, P. A short history of cleaning robots. Auton. Robots 2000, 9, 211–226. [Google Scholar] [CrossRef]
- Prassler, E.; Schwammkrug, D.; Rohrmoser, B.; Schmidl, G. A robotic road sweeper. In Proceedings of the 2000 ICRA Millennium Conference IEEE International Conference on Robotics and Automation, Symposia Proceedings, San Francisco, CA, USA, 24–28 April 2000. [Google Scholar]
- Yin, X.; Zhu, L. Structure Design and Kinematics Analysis for a New-type All-electric Sweeper. In Proceedings of the 2015 3rd International Conference on Mechanical Engineering and Intelligent Systems, Yinchuan, China, 15–16 August 2015. [Google Scholar]
- Jeon, J.; Jung, B.; Koo, J.C.; Choi, H.R.; Moon, H.; Pintado, A.; Oh, P. Autonomous robotic street sweeping: Initial attempt for curbside sweeping. In Proceedings of the 2017 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 8–10 January 2017. [Google Scholar]
- Lei, T.; Wang, J.; Yao, Z. Modelling and stability analysis of articulated vehicles. Appl. Sci. 2021, 11, 3663. [Google Scholar] [CrossRef]
- He, Y.; Khajepour, A.; McPhee, J.; Wang, X. Dynamic modelling and stability analysis of articulated frame steer vehicles. Int. J. Heavy Veh. Syst. 2005, 12, 28–59. [Google Scholar] [CrossRef]
- Michałek, M.M.; Patkowski, B.; Gawron, T. Modular kinematic modelling of articulated buses. IEEE Trans. Veh. Technol. 2020, 69, 8381–8394. [Google Scholar] [CrossRef]
- Sun, T.; He, Y. Phase-Plane Analysis for Evaluating the Lateral Stability of Articulated Vehicles; SAE Technical Paper; No. 2015-01-1574; SAE: Pittsburgh, PA, USA, 2015. [Google Scholar]
- Van de Molengraft-Luijten, M.F.J.; Besselink, I.J.; Verschuren, R.M.A.F.; Nijmeijer, H. Analysis of the lateral dynamic behaviour of articulated commercial vehicles. Veh. Syst. Dyn. 2012, 50, 169–189. [Google Scholar] [CrossRef]
- Bao, J.-H.; Li, J.-L.; Yan, Y. Lateral stability analysis of the tractor/full trailer combination vehicle. In Proceedings of the 2011 International Conference on Electric Information and Control Engineering, Wuhan, China, 15–17 April 2011. [Google Scholar]
- Sharifzadeh, M.; Farnam, A.; Senatore, A.; Timpone, F.; Akbari, A. Delay-dependent criteria for robust dynamic stability control of articulated vehicles. In Proceedings of the International Conference on Robotics in Alpe-Adria Danube Region, Torino, Italy, 21–23 June 2017. [Google Scholar]
- Azad, N.L.; McPhee, J.; Khajepour, A. Off-road lateral stability analysis of an articulated steer vehicle with a rear-mounted load. Int. J. Veh. Syst. Model. Test. 2005, 1, 106–130. [Google Scholar] [CrossRef]
- Wang, B.; Zha, H.; Zhong, G.; Li, Q.; Wang, X. Integrated active steering control strategy for autonomous articulated vehicles. Int. J. Heavy Veh. Syst. 2020, 27, 565–599. [Google Scholar] [CrossRef]
- Zhang, Y.; Khajepour, A.; Ataei, M. A universal and reconfigurable stability control methodology for articulated vehicles with any configurations. IEEE Trans. Veh. Technol. 2020, 69, 3748–3759. [Google Scholar] [CrossRef]
- Zhang, Y.; Khajepour, A.; Hashemi, E.; Qin, Y.; Huang, Y. Reconfigurable model predictive control for articulated vehicle stability with experimental validation. IEEE Trans. Transp. Electrif. 2020, 6, 308–317. [Google Scholar] [CrossRef]
- Wang, W.; Fan, J.; Xiong, R.; Sun, F. Lateral stability control of four wheels independently drive articulated electric vehicle. In Proceedings of the 2016 IEEE Transportation Electrification Conference and Expo (ITEC), Dearborn, MI, USA, 27–29 June 2016. [Google Scholar]
- Sahin, H.; Akalin, O. Articulated Vehicle Lateral Stability Management via Active Rear-Wheel Steering of Tractor Using Fuzzy Logic and Model Predictive Control. SAE Int. J. Commer. Veh. 2020, 13, 115–129. [Google Scholar] [CrossRef]
- Rehnberg, A.; Drugge, L.; Stensson Trigell, A. Snaking stability of articulated frame steer vehicles with axle suspension. Int. J. Heavy Veh. Syst. 2010, 17, 119–138. [Google Scholar] [CrossRef]
- Esmaeili, N.; Kazemi, R.; Tabatabaei Oreh, S.H. An adaptive sliding mode controller for the lateral control of articulated long vehicles. Proc. Inst. Mech. Eng. K J. Multi-Body Dyn. 2019, 233, 487–515. [Google Scholar] [CrossRef]
- Saeedi, M.A. A new effective nonlinear strategy for lateral stability increment of an articulated vehicle rigid cargo. Proc. Inst. Mech. Eng. D J. Automob. Eng. 2021, in press. [Google Scholar] [CrossRef]
- Saeedi, M.A.; Kazemi, R.; Azadi, S. A new robust controller to improve the lateral dynamic of an articulated vehicle carrying liquid. Proc. Inst. Mech. Eng. K J. Multi-Body Dyn. 2017, 231, 295–315. [Google Scholar] [CrossRef]
- Badue, C.; Guidolini, R.; Carneiro, R.V.; Azevedo, P.; Cardoso, V.B.; Forechi, A.; Jesus, L.; Berriel, R.; Paixão, T.; Mutz, F.; et al. Self-driving cars: A survey. Expert Syst. Appl. 2021, 165, 113816. [Google Scholar] [CrossRef]
- Tian, J.; Zeng, Q.; Wang, P.; Wang, X. Active steering control based on preview theory for articulated heavy vehicles. PLoS ONE 2021, 16, e0252098. [Google Scholar] [CrossRef] [PubMed]
- Jujnovich, B.A.; Cebon, D. Path-following steering control for articulated vehicles. J. Dyn. Syst. Meas. Control 2013, 135, 031006. [Google Scholar] [CrossRef]
- De Bruin, D.; Damen, A.A.H.; Pogromsky, A.; Van Den Bosch, P.P.J. Backstepping control for lateral guidance of all-wheel steered multiple articulated vehicles. In Proceedings of the ITSC2000. 2000 IEEE Intelligent Transportation Systems. Proceedings, Dearborn, MI, USA, 1–3 October 2000. [Google Scholar]
- Felez, J.; GarcíA-Sanchez, C.; Lozano, J.A. Control design for an articulated truck with autonomous driving in an electrified highway. IEEE Access 2018, 6, 60171–60186. [Google Scholar] [CrossRef]
- Dou, F.; Huang, Y.; Liu, L.; Wang, H.; Meng, Y.; Zhao, L. Path planning and tracking for autonomous mining articulated vehicles. Int. J. Heavy Veh. Syst. 2019, 26, 315–333. [Google Scholar] [CrossRef]
- Guan, H.; Kim, K.; Wang, B. Comprehensive path and attitude control of articulated vehicles for varying vehicle conditions. Int. J. Heavy Veh. Syst. 2017, 24, 65–95. [Google Scholar] [CrossRef]
- Tan, S.; Zhao, X.; Yang, J.; Zhang, W. A path tracking algorithm for articulated vehicle: Development and simulations. In Proceedings of the 2017 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), Harbin, China, 7–10 August 2017. [Google Scholar]
- Yao, D.; Xie, H.; Qiang, W.; Liu, Y.; Xiong, S. Accurate trajectory tracking with disturbance-resistant and heading estimation method for self-driving vibratory roller. IFAC-Pap. 2018, 51, 754–758. [Google Scholar] [CrossRef]
- Dou, F.; Liu, W.; Huang, Y.; Liu, L.; Meng, Y. Modeling and path tracking for articulated steering vehicles. In Proceedings of the 2017 Chinese Automation Congress (CAC), Jinan, China, 20–22 October 2017. [Google Scholar]
- Shi, G.; Yang, J.; Zhao, X.; Li, Y.; Zhao, Y.; Li, J. A-infinity control for path tracking with fuzzy hyperbolic tangent model. J. Control Sci. Eng. 2016, 2016, 9072831. [Google Scholar] [CrossRef] [Green Version]
- Wei, K.; Liu, X.; Wei, C.; Feng, R. Path Tracking Control of the Wheeled off-road Articulated Vehicle with Actuator Saturation. Metall. Min. Ind. 2013, 9, 1024–1029. [Google Scholar]
- Zhao, X.; Yang, J.; Zhang, W.; Zeng, J. Feedback linearization control for path tracking of articulated dump truck. Telkomnika 2015, 13, 922–929. [Google Scholar] [CrossRef] [Green Version]
- Nayl, T.; Nikolakopoulos, G.; Gustfsson, T. Switching model predictive control for an articulated vehicle under varying slip angle. In Proceedings of the 2012 20th Mediterranean Conference on Control & Automation (MED), Barcelona, Spain, 3–6 July 2021. [Google Scholar]
- Nayl, T.; Nikolakopoulos, G.; Gustafsson, T. A full error dynamics switching modeling and control scheme for an articulated vehicle. Int. J. Control Autom. Syst. 2015, 13, 1221–1232. [Google Scholar] [CrossRef] [Green Version]
- Bai, G.; Meng, Y.; Liu, L.; Luo, W.; Gu, Q.; Li, K. A new path tracking method based on multilayer model predictive control. Appl. Sci. 2019, 9, 2649. [Google Scholar] [CrossRef]
- Bai, G.; Liu, L.; Meng, Y.; Luo, W.; Gu, Q.; Ma, B. Path tracking of mining vehicles based on nonlinear model predictive control. Appl. Sci. 2019, 9, 1372. [Google Scholar] [CrossRef] [Green Version]
- Jeong, Y.; Kim, W.; Yim, S. Model Predictive Control Based Path Tracking and Velocity Control with Rollover Prevention Function for Autonomous Electric Road Sweeper. Energies 2022, 15, 984. [Google Scholar] [CrossRef]
- Nayl, T.; Nikolakopoulos, G.; Gustafsson, T. Effect of kinematic parameters on MPC based on-line motion planning for an articulated vehicle. Robot. Auton. Syst. 2015, 70, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Jung, C.; Kim, H.; Son, Y.; Lee, K.; Yi, K. Parameter adaptive steering control for autonomous driving. In Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), Qingdao, China, 8–11 October 2014. [Google Scholar]
- Yoon, J.; Kim, D.; Yi, K. Design of a rollover index-based vehicle stability control scheme. Veh. Syst. Dyn. 2007, 45, 459–475. [Google Scholar] [CrossRef]
- Yoon, J.; Yim, S.; Cho, W.; Koo, B.; Yi, K. Design of an unified chassis controller for rollover prevention, manoeuvrability and lateral stability. Veh. Syst. Dyn. 2010, 48, 1247–1268. [Google Scholar] [CrossRef]
- Zeilinger, M.N.; Jones, C.N.; Morari, M. Robust stability properties of soft constrained MPC. In Proceedings of the 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA, USA, 15–17 December 2010. [Google Scholar]
- Mattingley, J.; Boyd, S. CVXGEN: A code generator for embedded convex optimization. Optim. Eng. 2021, 13, 1–27. [Google Scholar] [CrossRef]
- Coulter, R.C. Implementation of the Pure Pursuit Path Tracking Algorithm; ADA255524; Carnegie-Mellon UNIV Pittsburgh PA Robotics INST: Pittsburgh, PA, USA, 1992. [Google Scholar]
- Thrun, S.; Montemerlo, M.; Dahlkamp, H.; Stavens, D.; Aron, A.; Diebel, J.; Fong, P.; Gale, J.; Halpenny, M.; Hoffmann, G.; et al. Stanley: The robot that won the DARPA Grand Challenge. J. Field Robot. 2006, 23, 661–692. [Google Scholar] [CrossRef]
- Andersson, J.A.; Gillis, J.; Horn, G.; Rawlings, J.B.; Diehl, M. CasADi: A software framework for nonlinear optimization and optimal control. Math. Program. Comput. 2019, 11, 1–36. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
0.8 m | 0.1 s | ||
1.0 m | 20 | ||
1 | 1 | ||
15 | 0 m/s | ||
20 | 30 deg | ||
10 | 30 deg/s | ||
−3 m/s2 | 30 deg/s2 | ||
1 m/s2 | 10 m/s3 |
Criteria | Pure Pursuit | Stanley | Model-Free | MPC | NMPC | Proposed |
---|---|---|---|---|---|---|
Mean (SD) of lateral error [m] | 0.2426 (0.2116) | 0.0461 (0.0593) | 0.0722 (0.0797) | 0.0553 (0.0576) | 0.0126 (0.0123) | 0.0118 (0.0121) |
Max of lateral error [m] | 0.6316 | 0.2096 | 0.2080 | 0.2787 | 0.0440 | 0.0421 |
Mean (SD) of heading error [deg] | 6.1436 (5.9071) | 1.5757 (2.3618) | 1.8167 (3.1763) | 2.2813 (3.0603) | 1.0446 (1.8025) | 1.0055 (1.7717) |
Max of heading error [deg] | 19.3495 | 12.6665 | 17.2790 | 14.2206 | 9.7883 | 9.5770 |
Max of ay [m/s2] | 1.4818 | 1.6575 | 3.5317 | 1.5958 | 0.6046 | 0.7955 |
Max of LTR | 0.3798 | 0.4734 | 1.0839 | 0.5300 | 0.1628 | 0.2210 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, Y. Integrated Vehicle Controller for Path Tracking with Rollover Prevention of Autonomous Articulated Electric Vehicle Based on Model Predictive Control. Actuators 2023, 12, 41. https://doi.org/10.3390/act12010041
Jeong Y. Integrated Vehicle Controller for Path Tracking with Rollover Prevention of Autonomous Articulated Electric Vehicle Based on Model Predictive Control. Actuators. 2023; 12(1):41. https://doi.org/10.3390/act12010041
Chicago/Turabian StyleJeong, Yonghwan. 2023. "Integrated Vehicle Controller for Path Tracking with Rollover Prevention of Autonomous Articulated Electric Vehicle Based on Model Predictive Control" Actuators 12, no. 1: 41. https://doi.org/10.3390/act12010041
APA StyleJeong, Y. (2023). Integrated Vehicle Controller for Path Tracking with Rollover Prevention of Autonomous Articulated Electric Vehicle Based on Model Predictive Control. Actuators, 12(1), 41. https://doi.org/10.3390/act12010041