Optimal Design Method of Post-Assembly Magnetizing Device with Field–Circuit Coupling Analysis
Abstract
:1. Introduction
2. Investigated Magnetizing Fixture and Design Guidelines
2.1. Structure of Investigated Post-Assembly Magnetizing Device
2.2. Design Guidelines
3. Equivalent Models and Field–Circuit Coupling Analysis
3.1. Magnetic Equivalent Circuit Model of Rotor
3.2. Magnetic Equivalent Circuit Model of Stator
3.3. Equivalent Circuit of Eddy Currents in Permanent Magnet
- The applied magnetic field is uniform and perpendicular to the surface of the PMs.
- and are constant.
3.4. Field–Circuit Coupling Analysis
4. Optimization Design of Auxiliary Stator-Type Magnetizing Device
5. Experiment
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PM | Permanent Magnet |
FEA | Finite Element Analysis |
FCCA | Field–Circuit Coupling Analysis |
IPMSM | Interior Permanent Magnet Synchronous Motor |
MEC | Magnetic Equivalent Circuit |
SPMSM | Surface-Mounted Permanent Magnet Synchronous Motor |
MMF | Magnetomotive Force |
FE | Finite Element |
GA | Genetic algorithm |
References
- Dorrell, D.G.; Hsieh, M.F.; Hsu, Y.C. Post Assembly Magnetization Patterns in Rare-Earth Permanent-Magnet Motors. IEEE Trans. Magn. 2007, 43, 2489–2491. [Google Scholar] [CrossRef]
- Li, L.; Huang, X.; Wu, A.; Thompson, P.; Ranze, R.; Yu, H.; Laskaris, T.; Amm, K. Development of a Large Bore Long Pulse Magnet at GE Global Research Center. IEEE Trans. Appl. Supercond. 2006, 16, 1672–1675. [Google Scholar] [CrossRef]
- Kim, K.S.; Park, M.R.; Kim, H.J.; Chai, S.H.; Hong, J.P. Estimation of Rotor Type Using Ferrite Magnet Considering the Magnetization Process. IEEE Trans. Magn. 2016, 52, 8101804. [Google Scholar] [CrossRef]
- Hsieh, M.F.; Hsu, Y.C.; Chen, P.T. Analysis and Experimental Study of Permanent Magnet Machines with In-Situ Magnetization. IEEE Trans. Magn. 2013, 49, 2351–2354. [Google Scholar] [CrossRef]
- Hsieh, M.F.; Hsu, Y.C.; Dorrell, D.G. Design of Large-Power Surface-Mounted Permanent-Magnet Motors Using Postassembly Magnetization. IEEE Trans. Ind. Electron. 2010, 57, 3376–3384. [Google Scholar] [CrossRef]
- Wang, Q.; Ding, H.; Zhang, H.; Zhou, J.; Wang, G.; Lv, Y.; Li, L. Research of Post-Assembly Magnetization of Large-Power Surface-Mounted Rare-Earth Permanent Magnet Machines With Integrated Magnetizing Winding. IEEE Trans. Appl. Supercond. 2020, 30, 5204505. [Google Scholar] [CrossRef]
- Ho, S.L.; Li, H.L.; Fu, W.N. A Post-Assembly Magnetization Method of Direct-Start Interior Permanent Magnet Synchronous Motors and Its Finite-Element Analysis of Transient Magnetic Field. IEEE Trans. Magn. 2012, 48, 3238–3241. [Google Scholar] [CrossRef]
- Fu, W.N.; Chen, Y. A Post-Assembly Magnetization Method for a Line-Start Permanent-Magnet Motor. IEEE Trans. Appl. Supercond. 2016, 26, 0602604. [Google Scholar] [CrossRef]
- Lv, Y.; Xia, D.; Wang, Q.; Li, L. Post-assembly magnetization of high speed PM rotor with metallic sleeve. In Proceedings of the 2017 20th International Conference on Electrical Machines and Systems (ICEMS), Sydney, Australia, 11–14 August 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Angara, R.C.S.B.; Hsu, K.W.; Villar, P.J.; Sheth, N.K. Influence of Soft Magnetic Material Type in Fixture Components on the Magnetization of Bonded Neo Magnet and Motor Performance. IEEE Trans. Magn. 2018, 54, 2101305. [Google Scholar] [CrossRef]
- Lv, Y.; Yang, Y.; Xia, D.; Xu, B.; Peng, T.; Xiao, H.; Li, L. Saddle-Shaped Post-Assembly Magnetization Coil for a 300 kW 2-Pole High-Speed Permanent Magnet Rotor. IEEE Trans. Appl. Supercond. 2020, 30, 5206705. [Google Scholar] [CrossRef]
- Kwon, S.J.; Lee, B.H.; Kim, K.S.; Jung, J.W. Design Process of Post-Assembly 3-Times Magnetizer for 10-Poles of Flux Concentrated Rotor Considering Eddy Current Effect. IEEE Access 2023, 11, 34476–34485. [Google Scholar] [CrossRef]
- Lee, C.; Kwon, B.; Kim, B.T.; Woo, K.; Han, M. Analysis of magnetization of magnet in the rotor of line start permanent magnet motor. IEEE Trans. Magn. 2003, 39, 1499–1502. [Google Scholar] [CrossRef]
- Lee, C.K.; Kwon, B.I. Design of post-assembly magnetization system of line start permanent-magnet motors using FEM. IEEE Trans. Magn. 2005, 41, 1928–1931. [Google Scholar] [CrossRef]
- Wang, Q.; Ding, H.; Zhang, H.; Lv, Y.; Guo, H.; Li, L. Study of a Post-Assembly Magnetization Method of a V-Type Rotor of Interior Permanent Magnet Synchronous Motor for Electric Vehicle. IEEE Trans. Appl. Supercond. 2020, 30, 5206205. [Google Scholar] [CrossRef]
- Negahdari, A.; Toliyat, H.A. Post-assembly magnetization of rare-earth permanent magnet materials in permanent magnet assisted synchronous reluctance motors. In Proceedings of the 2017 IEEE International Electric Machines and Drives Conference (IEMDC), Miami, FL, USA, 21–24 May 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Hsieh, M.F.; Lien, Y.M.; Dorrell, D.G. Post-Assembly Magnetization of Rare-Earth Fractional-Slot Surface Permanent-Magnet Machines Using a Two-Shot Method. IEEE Trans. Ind. Appl. 2011, 47, 2478–2486. [Google Scholar] [CrossRef]
- Bland, D.R. The Method of Separation of Variables. In Solutions of Laplace’s Equation; Bland, D.R., Ed.; Springer: Dordrecht, The Netherlands, 1961; pp. 15–28. [Google Scholar] [CrossRef]
- Trout, S. Use of Helmholtz coils for magnetic measurements. IEEE Trans. Magn. 1988, 24, 2108–2111. [Google Scholar] [CrossRef]
- Ramu, T.S. On the Estimation of Life of Power Apparatus Insulation Under Combined Electrical and Thermal Stress. IEEE Trans. Electr. Insul. 1985, EI-20, 70–78. [Google Scholar] [CrossRef]
- Sun, P.; Sima, W.; Yang, M.; Wu, J. Influence of thermal aging on the breakdown characteristics of transformer oil impregnated paper. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 3373–3381. [Google Scholar] [CrossRef]
- Polyakov, D.A.; Nikitin, K.I.; Novozhilov, A.N.; Kletsel, M.Y. Research of Electro-Thermal Aging Process of Cross-Linked Polyethylene. J. Phys. Conf. Ser. 2018, 1050, 012061. [Google Scholar] [CrossRef]
Parameter Name | Parameter Value |
---|---|
Power | 1300 W |
Speed | 15,000 r/min |
Number of poles | 4 |
Rotor outer diameter | 42 mm |
Rotor stack length | 46.2 mm |
Magnet thickness | 2.8 mm |
Magnet width | 11.2 mm |
Iron core material | FeSi laminations |
PM material | Nd-Fe-B (N42SH) |
Parameter Name | Parameter Value |
---|---|
Number of poles | 4 |
Air gap length | 0.5 mm |
Auxiliary stator outer diameter | 72.4 mm |
Auxiliary stator inner diameter | 43 mm |
Auxiliary stator length | 46.2 mm |
Pole angle | 43 degree |
Pole length | 4.4 mm |
Yoke thickness | 6.6 mm |
Number of coil layers | 2 |
Number of turns per coil | 10 |
Number of parallel branches | 1 |
Wire gauge | 1.8 mm |
Bare wire diameter | 1.5 mm |
Magnetizer capacitance | 2 mF |
Discharging voltage | 700 V |
Auxiliary stator material | Silicon Laminations |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Z.-A.; Wang, Y.-C.; Qin, X.-F.; Yao, L.; Gyselinck, J.; Shen, J.-X. Optimal Design Method of Post-Assembly Magnetizing Device with Field–Circuit Coupling Analysis. Actuators 2023, 12, 383. https://doi.org/10.3390/act12100383
Zhu Z-A, Wang Y-C, Qin X-F, Yao L, Gyselinck J, Shen J-X. Optimal Design Method of Post-Assembly Magnetizing Device with Field–Circuit Coupling Analysis. Actuators. 2023; 12(10):383. https://doi.org/10.3390/act12100383
Chicago/Turabian StyleZhu, Zi-Ang, Yun-Chong Wang, Xue-Fei Qin, Lei Yao, Johan Gyselinck, and Jian-Xin Shen. 2023. "Optimal Design Method of Post-Assembly Magnetizing Device with Field–Circuit Coupling Analysis" Actuators 12, no. 10: 383. https://doi.org/10.3390/act12100383
APA StyleZhu, Z. -A., Wang, Y. -C., Qin, X. -F., Yao, L., Gyselinck, J., & Shen, J. -X. (2023). Optimal Design Method of Post-Assembly Magnetizing Device with Field–Circuit Coupling Analysis. Actuators, 12(10), 383. https://doi.org/10.3390/act12100383