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Abstract: We analyse the spectral content and parametric resonant dynamics of an array of elastically
and electrostatically coupled interdigitated micro cantilevers assembled into two identical half-arrays.
In this uncommon arrangement, within each of the half-arrays, the beams are coupled only elastically.
The half-arrays are intercoupled only electrostatically, through fringing fields. First, by using the
reduced order (RO) model, we analyse the voltage-dependent evolution of the eigenvalues and the
eigenvectors of the equivalent mass-spring system, starting from the small two, three and four beams
arrays and up to large beams assemblies. We show that at the coupling voltages below a certain
critical value, the shape of the eigenvectors, the frequencies of the veering and of the crossing are
influenced by the electrostatic coupling and can be tuned by the voltage. Next, by implementing the
assumed modes techniques we explore the parametric resonant behavior of the array. We show that
in the case of the sub critical electrostatic coupling the actuating voltages required to excite parametric
resonance in the damped system can be lower than in a strongly coupled array. The results of the
work may inspire new designs of more efficient resonant sensors.

Keywords: cantilevers array; tunable electrostatic coupling; crossing; veering; reduced-order
modeling; parametric resonance

1. Introduction

The dynamics of large arrays of coupled micro- or nanoelectromechanical (MEMS/NEMS)
structural elements have been intensively studied theoretically and experimentally for more
than two decades [1] (e.g., see reviews [2–4], see [5–10] for more recent contributions). Micro-
and nanodevices manifest rich behavior and may serve as a convenient platform for in-
vestigation of exciting dynamic phenomena, such as parametric resonances (PR) [7,11–17],
intrinsic localized modes [4,18,19], pattern selection [20,21] and synchronization [8], to
name just a few. Within the applied physics and engineering communities, the interest
in microscale arrays is motivated by their applicability as mass, chemical and biological
multi-point sensors [5,9,10,22–26], efficient band pass filters or active metamaterials.

In most of the cases, the MEMS arrays are realized as assemblies of cantilevered or
double clamped beams, attached at their ends to a thin flexible plate (an “overhang”)
serving as a source of the elastic coupling [4,26]. In these devices, both the onsite (OS) and
intersite (IS) stiffness, along with the OS and IS nonlinearities are of the mechanical nature,
are fully dictated by design and cannot be varied (stiffness tuning using an integrated
piezoelectric actuator was reported in [19,27]; stiffness modulation by laser was explored
in [28]). In contrast, electrostatic (ES) coupling makes it possible to change the effective OS
and IS stiffness of the array [29,30] and opens new possibilities for a plethora of operational
scenarios. Note that while frequency tuning in ES actuated microarrays was intensively
investigated, much less attention was paid to the influence of the nonlinear ES forces on the
eigenvectors of the arrays. In the architectures based on the beams moving towards each
other [12–14,20,31], the attractive ES force has a softening effect on the stiffness. As a result,
the ES component of the IS stiffness of the equivalent mass-spring system is negative [11].
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An alternative design introduced in [16,17] and further studied in [7,21] is based
on the beams interacting through fringing ES fields. In these devices, the ES force is
restoring and the IS stiffness increases with the voltage. For convenience, the architecture
of this structure is briefly reviewed here. The array shown in Figure 1 is composed of N
interdigitated cantilevers and is configured as two partially overlapping half-arrays with
the voltage difference V applied between them. Each half-array contains N/2 beams with
the rectangular cross section of the width b and thickness h. The length Ln of the cantilevers
can be uniform along the array [17,21] or may vary between Lmin and Lmax [7,32]. The
beams, designed to deflect in the vertical, z direction, are attached to a compliant overhang
of the length Lo and of the thickness h identical to that of the beams. The distance between
the centerlines of the neighboring beams within the half-arrays is 2B, the pitch between
the adjacent beams of the array is B. The length of the overlap between the beams of
the opposite half-arrays (the electrode length) is Le, and the gap between the beams is g.
Unmovable fixed beams positioned at the ends of the array serve as the end electrodes and
are provided to enforce the zero-deflection of the endpoints of the array [12,17]. The devices
reported in [7,17,32] were fabricated from single crystal silicon using a silicon-on-insulator
(SOI) wafer with the device layer of the thickness h.

Figure 1. A schematic view of the array.

One of the key, distinguishing, features of the device shown in Figure 1 is the way
it combines, in an unusual manner, both the elastic and the ES couplings. Specifically,
in absence of the voltage, the cantilevers of the opposite half-arrays are decoupled while
the beams of the same half-arrays are coupled only elastically. Application of the voltage
results in the appearance of the ES coupling between the two sets of the cantilevers. As we
show here, this mirror-type symmetry and well-defined parity may result in interesting
modal behavior, when the odd and the even eigenvectors do not mix. Note that an
array of similar architecture, which was excited parametrically was considered in [17],
the further investigation of the PR dynamics in these arrays was reported in [21]. It was
shown that the ES coupling between the half-arrays affects both the natural frequencies
and the eigenvectors. However, the influence of the ES coupling on the arrays spectral
content, veering and crossing phenomena, were not explored in [21]. The effect of the time-
independent (DC) voltage on the natural frequencies in an array incorporating mechanically
decoupled electrostatically interacting beams (an architecture different than ours) were
studied in [29,30]. While the frequency tuning and veering were demonstrated, the crossing
and the voltage-dependent evolution of the eigenvectors was not addressed in these works.

In the first part of the present work, the influence of the ES coupling on the eigenfre-
quencies and eigenvectors of the array represented as the associated linearized mass-spring
chain is explored. In the second part, the resonant parametric dynamics of the array are
studied using the RO model. The eigenvectors obtained numerically for the specific values
of the ES coupling voltage are used as the base vectors. The analytical model predictions
are compared to the numerical results. The main findings of the work are summarized in
the conclusions.

2. Formulation

In our development, we follow the general lines of the description in [21,32]. The vi-
brational dynamics of each beam are described in the framework of the Euler–Bernoulli



Actuators 2023, 12, 386 3 of 24

model, the electrostatic force between the cantilevers is approximated by the Pad’e fit.
Implementation of the Galerkin order reduction procedure results is the following system
of nonlinear ordinary differential equations in terms of the non-dimensional endpoint
deflections un(t) of the beams

ün +
l2
n

Qn
u̇n + l4

nun + εnlu3
n −

η(un+2 − 2un + un−2) − ηnl
[
(un+2 − un)

3 − (un − un−2)
3
]
−

β V2
[

(un+1 − un)

1 + (un+1 − un)2 − (un − un−1)

1 + (un − un−1)2

]
= 0, (n = 2 . . . N − 1), (1)

where n = 1, ..., N represents the vibrating beams numbers. Note that the first n = 1
and the last n = N equations corresponding to the first and the last beams are modified
to take into account the presence of the fixed electrodes at the two ends of the array.
The over-dot ˙(•) = d/dt denotes the derivative with respect to the non-dimensional time,
ln = Lmax/Ln ≥ 1 is the length ratio parameter, where Lmax is the length of the longest
beam of the array; Qn is the quality factor associated with the OS damping, and εnl is the
OS nonlinearity coefficient. The coefficients η and ηnl are associated with the linear and
nonlinear closest neighbor (within each half-array) elastic IS coupling [4], respectively. The
last line in Equation (1) represent the IS electrostatic force. The geometrical dimensions
of the array used in all the calculations in the present work are as in [17,32], Table 1.
The corresponding non-dimensional parameters are: εnl = 1.606 × 10−4, η = 0.0548
ηnl = η/10 ; the latter was obtained by re-scaling the ratio ηnl/η from [4] (see also [33]) in
conjunction with the actual device geometry; β = 4.35× 10−5 is the voltage parameter.

Table 1. Dimensions of the array.

Quantity Description Value (µm)

Lo Overhang length 100
Lmax The longest beam length 500
Lmin The shortest beam length 350

b Beam width 16
h Thickness of the beam/overhang 5
Le Electrode length (overlap) 150
g Gap between the beams 5
B Pitch between the adjacent beams 21

Taylor series expansion of the last term of Equation (1) (representing the ES force) up
to the cubic order of un(t) yields

ün +
l2
n

Qn
u̇n + l4

nun + εnlu3
n − η(un+2 − 2un + un−2)−

β V2(un+1 − 2un + un−1)− ηnl
[
(un+2 − un)

3 − (un − un−2)
3
]
+

β V2
[
(un+1 − un)

3 − (un − un−1)
3
]
= 0, (n = 2 . . . N − 1).

(2)

Equations (1) and (2) have clear physical interpretation and describe a chain (a lattice)
of masses attached to a substrate and coupled by linear and nonlinear elastic and effective
ES springs. To further highlight the contribution of various parameters influencing the array
response, it is instructive to consider the linearized undamped counterpart of Equation (2)

ün + l4
nun − η(un+2 − 2un + un−2)− β V2(un+1 − 2un + un−1) = 0. (3)

Note that (in contrast to [12–14,20,31]) both elastic and electrostatic IS forces are
restoring and the associated coefficients η and β are positive. Since one of our goals
is to analyze the influence of the ES coupling on the array dynamics, for clarity and
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completeness, we briefly present here the main results of the dispersion analysis of the
linearized system, Equation (3). Assuming an infinite uniform (ln = 1) array, the steady,
time-independent voltage V = Vdc and substituting un = eikn−iωt (where ω is the non-
dimensional frequency, κ = 2πB/λ is the non-dimensional wavenumber and λ is the
wavelength) into Equation (3) allows us to obtain the dispersion relation of the array [21]

ω =
√

1 + 2η(1− cos(2κ)) + 2β V2
dc(1− cos(κ)). (4)

Figure 2 depicts the dispersion curves ω = ω(κ) for several values of the cou-
pling voltage Vdc. The propagation band is bounded by the lower ωL = 1 and the tun-
able upper ωU cut-off frequencies. When Vdc = 0, the coupling is purely elastic and
ωU = ωMECH

U =
√

1 + 4η. The corresponding wavenumber is κU = π/2. Since η is dic-
tated by the material properties and the geometry, ωU cannot be changed without re-design.
With the increase in Vdc, ωU increases in accordance with Equation (4) where κ is replaced
by its upper cut-off value

κU = π − arccos

(
β V2

dc
4η

)
,

(π

2
≤ κ ≤ π

)
. (5)

Figure 2. Dispersion curves ω = ω(κ), Equation (4), of an infinite uniform array for different values
of the coupling voltage Vdc (numbers). Here, η = 0.0548 and β = 4.35× 10−5. Dashed red line
corresponds to the upper cut-off frequency. At Vdc ≥ Vcrit = 2

√
η/β = 70.98 V, κU = π and is

independent of Vdc.

At certain critical finite value Vdc = Vcrit = 2
√

η/β = 70.98 V, the wavenumber

reaches its maximum κU = π. The corresponding upper cut-off ωU = ωcrit
U =

√
1 + 4β V2

crit
is independent of the mechanical coupling parameter η (since within each half-array all
un are identical; see Figure 2). For Vdc ≥ Vcrit, the electrostatic coupling is dominant, and,
while ω ≥ ωcrit

U increases with increasing Vdc, κU = π is voltage-independent.
This is the case, hereafter referred as the “fully coupled” or “supercritical”, which

was analyzed in [21]. It was shown that at Vdc > Vcrit the increase in the voltage has only
minor influence on the shape of the eigenvectors. For this reason, it was possible to use
the eigenvectors of a uniform linear mass-spring chain, described by simple analytical
expressions, as the base vectors in the assumed modes ansatz. In contrast, when Vdc ≤ Vcrit
the ES coupling may have a strong influence on the eigenvectors shape. In this case the
use of the simple eigenvectors adopted in [21] as the base vectors in the order reduction
procedure can be inappropriate. The present work is focused on the array dynamics in the
case of weak, not fully developed, ES coupling, when Vdc ≤ Vcrit.
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3. Eigenvalues and Eigenvectors of Electrostatically Coupled Arrays

In this section, several cases of small arrays assembled of two, three and four beams are
first considered followed by the analysis of the mid size arrays containing 8 and 16 beams.
The results for the large 200 beams array are also presented. We show that interesting
phenomena, such as eigenvalue crossing and veering, occur during the voltage increase.
The analysis of the voltage-dependent eigenvectors is important in order to lie foundations
for the appropriate reduced order modeling methodology of the arrays.

3.1. Two-Beams System

Two ideally clamped cantilevers (with additional fixed “electrodes” at each side) of
the length L1 = Lmax and L2 = L1 − ∆L are coupled only through the electrostatic force,
Figure 3a. In this case η = 0 and , recalling that l1 = 1, Equation (3) takes the form

ü1 +
(
1 + 2β V2)u1 − β V2u2 = 0,

ü2 − β V2u1 +
(
l4
2 + 2β V2)u2 = 0.

(6)

We re-scale time τ = t
√

1 + 2β V2 and obtain

ü1 + u1 − γu2 = 0,
ü2 − γu1 + χ2u2 = 0,

(7)

where the overdot is re-defined as ˙(•) = d/dτ. The ES coupling parameter 0 ≤ γ < 1/2
and the detuning parameter χ2 ≥ 1 defined in Table 2 are not independent since they are
both parameterized by the voltage.

Figure 3. Schematic view of (a) two, (b) three and (c) four beams array. In (a) the beams are coupled
only electrostatically; in (b,c) the beams are also coupled elastically within the half-arrays. The beams
shown in orange color are unmoving to enforce the “boundary conditions” of the array.

Table 2. Non-dimensional parameters used in the development.

Parameter Two Beams Array Three+ Beams Array

ES coupling γ = β V2/(1 + 2β V2) γ = β V2/(1 + 2η + 2β V2)

Detuning χ2 = (l4
2 + 2β V2)/(1 + 2β V2) χn = (l4

n + 2η + 2β V2)/(1 + 2η + 2β V2)

Elastic coupling η̃ = η/(1 + 2η + 2β V2)
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The eigenvalues analysis yields

λr =
1
2

[
1 + χ2 + (−1)r

√
4γ2 + (χ2 − 1)2

]
, r = 1, 2, (8)

λ1 = 1, λ2 = χ2, (uncoupled case γ = 0), (9)

λ1 = 1− γ, λ2 = 1 + γ, (symmetric case χ2 = 1). (10)

The influence of the ES coupling γ and of the detuning χ2 on the eigenvalues is shown
in Figure 4a,b, respectively, their influence on the eigenvalues ratio λ2/λ1 are depicted in
Figure 4c,d. As expected [34], crossing, namely the situation when λ1 = λ2, is possible
only in the symmetric uncoupled case χ2 = 1, γ = 0. Presence of coupling results in the
frequency split (veering). In accordance with Table 2 and Equation (8), at large voltages,
γ → 1/2, χ2 → 1 and λ2/λ1 → 3, suggesting that the influence of the detuning on the
array spectral content decreases with the increasing voltage. This feature could be useful in
applications as a means to overcome undesirable detuning due to the fabrication-related
deviations in the beams geometry.

Figure 4. Two beams array: (a) Dependence of the eigenvalues λ1, λ2, Equation (8), on the ES coupling
parameter γ for several values of the detuning parameter χ2; (b) λr as the function of the detuning χ2

for several values of γ. (c,d) depict the same dependencies of the eigenvalues ratios λ2/λ1.

3.2. Three Beams Array

Three beams system, Figure 3b, is the smallest array where both the mechanical and
the electrostatic coupling are present and the frequency crossing could be possible at γ 6= 0.
The non-dimensional equations of motion are

ü1 +
(

1 + 2η + 2β V2
)

u1 − β V2u2 − ηu3 = 0,

ü2 − β V2u1 +
(

l4
2 + 2η + 2β V2

)
u2 − β V2u3 = 0, (11)

ü3 − ηu1 − β V2u2 +
(

l4
3 + 2η + 2β V2

)
u3 = 0.
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By normalizing the time by
√

1 + 2η + 2β V2, we obtain the characteristic determinant∣∣∣∣∣∣
1− λ −γ −η̃
−γ χ2 − λ −γ
−η̃ −γ χ3 − λ

∣∣∣∣∣∣ = 0, (12)

where the non-dimensional parameters η̃, γ, χn, n = 1, 2, 3 are given in Table 2. The char-
acteristic equation associated with Equation (12) is cubic in terms of λ, so the eigenvalues
λr, r = 1 . . . 3 can be found analytically in a closed form. In a general case, these expressions
are too cumbersome to be presented explicitly. Here, the results are summarized in Table 3
for four particular cases: (i) a uniform array χn = 1; (ii) a symmetric array χ1 = χ3 = 1,
χ2 > 1; (iii) a general array with purely mechanical coupling and γ = 0; (iv) a symmetric
array χ1 = χ3 = 1, χ2 > 1 with purely electrostatic coupling and η = 0.

Table 3. Case study—eigenvalues of the three beams arrays. Non-dimensional parameters are
presented in Table 2.

Case Uniform Array Symmetric Array
χn = 1 χ1 = χ3 = 1, χ2 > 1

λ1 1− η̃+
√

η2+8γ2

2
1
2

(
1 + χ2 − η̃ −

√
(η̃ + χ2 − 1)2 + 8γ2

)
λ2 1 + η̃ 1 + η̃

λ3 1− η̃−
√

η2+8γ2

2
1
2

(
1 + χ2 − η̃ +

√
(η̃ + χ2 − 1)2 + 8γ2

)
Case Pure mechanical coupling Symmetric array, pure ES coupling

γ = 0 η = 0, χ1 = χ3 = 1, χ2 > 1

λ1
1
2

(
χ3 + 1 +

√
4η̃2 + (χ3 − 1)2

)
1
2

(
1 + χ2 −

√
(χ2 − 1)2 + 8γ2

)
λ2 χ2 1

λ3
1
2

(
χ3 + 1−

√
4η̃2 + (χ3 − 1)2

)
1
2

(
1 + χ2 +

√
(χ2 − 1)2 + 8γ2

)

The influence of the ES coupling on the eigenvalues and the eigenvectors is illustrated
in Figure 5. The evolution of the ratios λr/λ1, r = 2, 3 with the change of γ (as usual, λr ≤
λr+1) in the case of a uniform (χn = 1) and symmetric non-uniform (χ1 = χ3 = 1, χ2 > 1)
array are shown in Figure 5a. Since λ2, λ3 both grow at a different rate with increasing
γ, eigenvalue crossing λ2 = λ3 may take place at a certain value of γ = γ×. Figure 5a
suggests that the crossing values of λr are influenced by the detune and the voltage. In
general, the crossing occurs when γ follows a certain path on the γ− χ2 plane, as illustrated
in Figure 5b. For a given η and χ2, γ× =

√
η̃(η̃ − χ2 + 1). By substituting into this relation

the expressions for η̃ and χn from Table 2 we obtain V× = 4
√

η(1 + η − l4
n)/
√

β. This result
suggests that the crossing is possible when η ≥ l4

n − 1. One may conclude therefore that
in the arrays with higher initial detuning, higher coupling is required to achieve crossing.
In the uniform array where χ2 = 1, the crossing occurs at γ = γ× = η̃ ≈ 0.045, or, in terms
of the voltage, V× =

√
η/β. This value is smaller than the critical voltage Vcrit = 2

√
η/β

(hereafter also denoted as Vinf
crit), separating the weakly and the fully coupled cases in the

infinite array. For the adopted parameters, Table 1, we obtain V× ≈ 35.5 V.
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Figure 5. Three beams array: (a) Dependence of the eigenvalues ratios λ2/λ1 and λ3/λ1 on the ES
coupling γ of a symmetric non-uniform array, χ1 = χ3 = 1, and three different values of the detuning
χ2 (colors). Dashed and solid lines correspond to the different modes of the system. (b) Eigenvalues
ratios λ2/λ1 and λ3/λ1 of a symmetric non-uniform array vs. γ and χ2. Crossing is depicted by the
dashed line. (c) The eigenvectors of a uniform array for two different values of γ below and above the
crossing point γ = γ×. Ψ(r) and (m)Ψ denote the eigenvectors ordered by the eigenvalue λr and by
the number of nodes m, respectively. The horizontal axis shows the beams numbers. (d) Evolution
of the eigenvectors Ψ(r) with the increase in γ for the case of the uniform (χn = 1) array. (e) The
evolution of (m)Ψ. Color bars in (d,e) represent the normalized displacements.

The full sets of the eigenvectors of a uniform array for two values of γ below and
above the crossing γ× are shown in Figure 5c. The eigenvectors Ψ(r), r = 1, 2, 3 are ordered
based on the increasing associated eigenvalues λr. For further discussion, we also adopt an
alternative ordering based on the number of nodes m. The nodes are the geometric points
(not including the array’s ends) where the imaginary line connecting the masses of the array
(dashed lines in Figure 5c) crosses zero. Hereafter, to distinguish between the two ordering
approaches, the notation (m)Ψ, m = 0, . . . , N − 1 is adopted to denote the eigenvectors
sorted by m. Figure 5c suggests that the order of (m)Ψ may change, depending on the
voltage. At the value of γ = 0.043 < γ× = 0.045 the second eigenvector Ψ(2) = (2)Ψ is
symmetric, while the third Ψ(3) = (1)Ψ is anti symmetric. At γ = 0.047 > γ×, as expected,
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the eigenvectors Ψ(2) and Ψ(3) flip over. The situation is further illustrated in Figure 5d,e
where the evolution of the eigenvectors Ψ(r), (m)Ψ with γ is shown. Note that while the
eigenvectors are discrete, their visualization as a continuous function is convenient for the
illustration of the eigenvectors shape evolvement with γ. In accordance with Figure 5d,e,
in Ψ(1) = (0)Ψ within the entire range of γ. In Figure 5d, the discontinuity in Ψ(2), Ψ(3)

is solely the result of the adopted eigenvectors ordering. The evolution of (m)Ψ is smooth
within the entire range of γ including the crossing point, Figures 5e.

3.3. Four Beams Array

The four beams array is the simplest architecture where the beams of each of the
half-arrays are coupled elastically while the half-arrays are interacting through the ES
forces. In this case the characteristic determinant takes the form∣∣∣∣∣∣∣∣

1− λ −γ −η̃ 0
−γ χ2 − λ −γ −η̃
−η̃ −γ χ3 − λ −γ
0 −η̃ −γ χ4 − λ

∣∣∣∣∣∣∣∣ = 0. (13)

In accordance with Equation (13) the array’s spectral content is defined by five param-
eters. For simplicity, we choose to focus on (i) symmetric arrays, such that χ4 = χ1 = 1
and χ3 = χ2 (see Figure 3c) and (ii) uniform arrays χn = 1, n = 1 . . . 4. In the symmetric
case, the number of parameters is reduced to three. In the case of a uniform array, only
two independent parameters η̃ and γ affect the array’s behavior. The eigenvalues of the
symmetric array are

λ1,2 =
1
2
(χ2 + 1 + γ)± 1

2

√
4(η̃ − γ)2 + γ2 + 2γ(χ2 − 1) + (χ2 − 1)2,

λ3,4 =
1
2
(χ2 + 1− γ)± 1

2

√
4(η̃ + γ)2 + γ2 − 2γ(χ2 − 1) + (χ2 − 1)2, (14)

and in the uniform case

λ1,2 = 1 +
γ

2
± 1

2

√
4(η̃ − γ)2 + γ2 + 2,

λ3,4 = 1− γ

2
± 1

2

√
4(η̃ + γ)2 + γ2 − 2. (15)

Figure 6a shows the evolvement of the eigenvalues ratios λr/λ1, r = 1, 2, 3, 4 of
the uniform array with the increase in γ. In the absence of the ES coupling, γ = 0, two
pairs of repeated eigenvalues λ1 = λ2 and λ3 = λ4 are obtained. With the increase in
γ, the repeated frequencies split and four different eigenvalues emerge. Dissimilarly to
the case of the three beams array, both veering and crossing phenomena are observed
here. The crossing between λ3 and λ4 occurs at γ = γ× =

√
3η̃, which corresponds to

V× =
√√

3η/β (smaller than Vinf
crit = 2

√
η/β of the infinite array). 3D rendering of the

eigenvalues ratio evolution in the symmetric array χ1 = χ4 = 1 and χ2 = χ3 is shown in
Figure 6b. The crossing manifests itself as a line in the γ− χ2 plane. The full sets of the
eigenvectors of a uniform array for γ = 0 and three other values of γ in the vicinity of the
veering value γ�, as well as slightly below and above the crossing value γ× (shown by the
vertical dashed lines in Figure 6a), are depicted in Figure 6c. Similarly to the thee-beams
case, Figure 5c, the first mode Ψ(1) = (0)Ψ is symmetric for any γ. When γ passes through
the the veering or crossing values, part of the vectors flip over. When γ becomes larger
than the highest γ×, the number of nodes m increases monotonically with r (such that
Ψ(r−1) = (m)Ψ). The evolution of the eigenvectors Ψ(r) and (m)Ψ with the increase in the
ES coupling is illustrated in Figure 6d,e, respectively. The m-based ordering eliminates
the discontinuity in Ψ(3), Ψ(4) at γ = γ×. In contrast, in the case of veering, γ = γ�,
the evolution of Ψ(2), Ψ(3) is smooth, Figure 6d, whereas the evolution of (1)Ψ, (3)Ψ is
discontinuous, Figure 6e.
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Figure 6. Four beams array: (a) Dependence of the eigenvalues ratio λr/λ1, r = 1 . . . 4 of a uniform
χn = 1 array on the ES coupling parameter γ. Numbers and colors correspond to the number of
nodes m in the eigenvectors: m = 0 (blue), m = 1 (purple), m = 2 (green), and m = 3 (orange).
(b) Eigenvalues ratios λr/λ1, r = 2, 3, 4 of a symmetric non-uniform array vs. coupling γ and
detunings χ2 = χ3. Crossing is depicted by the dashed line. (c) The eigenvectors of the uniform array
for γ in the vicinity of the veering γ� and the crossing γ× values, shown by the vertical dashed lines
in (a). The horizontal axis shows the beams numbers. (d) Evolution of the eigenvectors Ψ(r) with the
increase in γ for the case of the uniform array. (e) The evolution of (m)Ψ. Color bars in (d,e) represent
the normalized displacements. Vertical dashed lines correspond to the values of γ in (c). Ψ(r) and
(m)Ψ in (c–e) denote the eigenvectors ordered by the eigenvalue λr and by the number of nodes m,
respectively.
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3.4. Large Uniform Arrays

To analyse the behavior of larger arrays, we limit our consideration to the uniform
arrays [17,21]. For convenience, the results are presented for smaller eight and sixteen beam
arrays. The extension to an even larger array results in qualitatively similar bahavior. In
the case of the uniform eight beams array, the characteristic determinant is∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− λ −γ −η̃ 0 0 0 0 0
−γ 1− λ −γ −η̃ 0 0 0 0
−η̃ −γ 1− λ −γ −η̃ 0 0 0
0 −η̃ −γ 1− λ −γ −η̃ 0 0
0 0 −η̃ −γ 1− λ −γ −η̃ 0
0 0 0 −η̃ −γ 1− λ −γ −η̃
0 0 0 0 −η̃ −γ 1 −γ
0 0 0 0 0 −η̃ −γ 1− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0, (16)

and contains only two parameters, γ and η̃.
Figure 7a presents the evolution of the eigenvalues ratios λr/λ1, r = 2 . . . 8 with the

increase in the ES coupling. Figure 7b presents the “frequency curves”—the full set of
λr/λ1 for several values of γ. (The lines connecting the markers corresponding to the same
γ are drawn only for convenience, see Figure 2). In the electrostatically uncoupled array the
eigenvalues are repeated pairs; as γ increases, the pairs split and the deviation between the
eigenvalues of each initially degenerated pair grows, Figure 7b. While the lowest cut-off
eigenvalue λ1 is always equal to unity due to the normalization, an increase in γ results in
an increase in the upper cut-off λN and, consequently, in the wider propagation band. The
evolution of the eigenvectors Ψ(r) with γ is illustrated in Figure 7c. The switching between
the eigenvectors is through the veering or crossing mechanism.

Three full sets of the eigenvectors of the 16-beam arrays for three different values of γ
are depicted in Figure 8. The shape of the first eigenvector Ψ(1) = (1)Ψ (the first left image
in the rows 1, 3, 5 in Figure 8) is qualitatively similar to that of a uniform mass-spring chain
with fixed ends. However, since the array is built as two initially decoupled half-arrays,
the shape of the higher eigenvectors Ψ(r), r = 2 . . . N within the set is affected by the ES
coupling. For example, for γ = 0, the shapes of the eigenvectors Ψ(r), Ψ(r+1) corresponding
to the repeated pairs λr = λr+1, r = 1, 3, 5 . . . 15 are in accordance with the following
pattern (the two upper rows in Figure 8): Ψ(1) = (0)Ψ and Ψ(2) = (7)Ψ; Ψ(3) = (1)Ψ and
Ψ(4) = (6)Ψ; Ψ(5) = (2)Ψ and Ψ(6) = (5)Ψ; Ψ(7) = (3)Ψ and Ψ(8) = (4)Ψ. In the more
general case of even larger uniform arrays, the pattern is similar, such that for the pairs
λr = λr+1, r = 1, 3, 5 . . . N− 1 the corresponding eigenvectors are Ψ(r) = ((r+1)/2−1)Ψ and
Ψ(r+1) = (N−(r+1)/2)Ψ. As an example, the γ-dependent evolution of the eigenvector (15)Ψ

position within the r-set is illustrated in Figure 8. Hereafter, the eigenvector distinguished
by the the maximal number of the nodal points m = N − 1 is also denoted as Ψ(∗)), such
that Ψ(∗) = (N−1)Ψ. It is marked by the red frame in Figure 8. At γ = 0, (15)Ψ = Ψ(2).
When γ increases, the number r of the eigenvalue λr, that (15)Ψ is associated with, increases
as well. For example, for γ = 0.033 ≤ γcrit, (15)Ψ = Ψ(6). At γ ≥ γcrit (where γcrit = γmax

×
is the highest γ at which crossing occurs), (15)Ψ = Ψ(16). In this “supercritical” case, the
number of nodes m in the eigenvector Ψ(r) associated with the eigenvalue λr is independent
of γ and increases with the mode number r in accordance with the relation m = r− 1. While
the shapes of several lower eigenvectors are qualitatively similar to that of a uniform linear
mass-spring chain with fixed ends, the highest eigenvectors are still different, apparently
due to the influence of the “boundary conditions” of the array. This behavior is illustrated
in the two bottom rows of Figure 8.
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Figure 7. Uniform eight beams array: (a) Evolution of the eigenvalues ratios λr/λ1, r = 2 . . . 8 with
the ES coupling parameter γ. (b) Frequency curves−the full set of the eigenvalues ratios λr/λ1 for
several values of γ. (c) Evolution of the eigenvectors Ψ(r) (ordered by the eigenvalue λr) with γ.

Finally, we present the results for the large 200-beam array. Recall that all the calcula-
tions are carried out for the array with dimensions reported in [17,21], Table 1. Figure 9
shows the full set of the eigenvalues ratios λr/λ1 for few values of γ below and above
the critical value γcrit = 0.1415 (also, here, the markers corresponding to the same γ are
connected by a line). Note that in accordance with our results, the critical ES coupling
parameter for an infinite array γinf

crit = 4η/(1 + 10η) can serve as a limiting value of γcrit
for a (sufficiently large) finite array. One observes that for 0 < γ < γcrit, the specific mode
number r = rfold exists, such that there is a discontinuity (fold) in the slope of the curve.
The eigenvector Ψ(∗) = (N−1)Ψ corresponding to r = rfold is the vector with the maximal
number of the nodal points. For r < rfold, the eigenvectors resemble those of the fully
coupled array (as in the first five images of the third row in Figure 8). On the other hand,
for r > rfold, the eigenvectors are in a sense similar to the independent modes of each of the
half-arrays. This behavior is attributed to the fact that the relative displacement between
the adjacent elements of the arrays is more pronounced for higher modes, and therefore a
higher voltage is required to achieve full coupling.
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Figure 8. Unform 16 beams array: three full sets of the eigenvectors Ψ(r), r = 1 . . . 16 for three
different values of the ES coupling parameter γ. The horizontal axis shows the beams numbers.
The number in the upper left corner is the associated eigenvalue number r. The two upper rows
correspond to the ES uncoupled case γ = 0; the two bottom rows depict the case of the full coupling
γ > γcrit; the middle two rows correspond to γ < γcrit = 0.134. The vector Ψ(∗) with the largest
number of nodal points is marked by the bold red frame.

Figure 9. Uniform 200 beams array: the normalized eigenvalues λr/λ1 for a few differing values of γ

γ = 0, γ = 0.056, γ = 0.110 and γ = 0.167 > γcrit. Inset shows the frequencies ratio for a few lowest
modes r = 1 . . . 10.

4. Parametric Resonances and Pattern Switching in an Array with Subcritical
ES Coupling

To illustrate the influence of the ES coupling on the array dynamics, the response
of a uniform array undergoing parametric excitation is analyzed in this section. The
actuating voltage V(t) = Vdc + Vac cos(ωt) applied between the two halves of the array
contains both the steady (dc) and the time-harmonic (ac) components. The emphasis is

on the weakly coupled case Veff < Vcrit (where Veff =
√

V2
dc + V2

ac/2 is the effective dc
voltage). The analysis for the fully coupled case Vdc > Vcrit has been presented in [21]. The
eigenvectors obtained in Section 3 are used as the base vectors in the RO model construction.
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4.1. Single Degree of Freedom Reduced Order Model

The vector u(t) = {un(t)}, n = 1 . . . N of the normalized deflections at the beam’s
endpoints is approximated using the expression

u(t) ≈ Ψv, (17)

where v(t) = {vr(t)}, (r = 1 . . . N) is the vector of the generalized (modal) coordinates
and Ψ=

[
Ψ(1), Ψ(2),. . .Ψ(N)

]
is the (unit mass-orthonormal) N × N modal matrix, whose

columns Ψ(r) = {ψ(r)
n } are the eigenvectors of Equation (3). In contrast to the approach

implemented in [21], where the voltage-independent base vectors were used, here, the
base vectors Ψ(r) are affected by the time-independent (dc) component of the voltage Veff.
The vectors are found by replacing V by Veff in Equation (3), and then numerically solving
the resulting eigenvalue problem each time for the specific value of Veff. In the framework
of the assumed modes procedure [35], Equation (17) is substituted into Equation (2) and
multiplied by ΨT to yield

v̈ + Cv̇ + Kv− F = 0. (18)

Here, K = IΛ is the diagonal stiffness matrix (where Λ = {λr} is the vector of eigen-
values) and C is the damping matrix. All the nonlinearities including the OS nonlinearity,
as well as the mechanical and the electrostatic nonlinear IS coupling terms, are incorporated
into the vector F = F(v, V(t)).

We consider the vibrations at one particular rth mode of the array and chose the
driving signal frequency ω to be close to twice the natural frequency Ωr =

√
λr associated

with the rth mode. In this case, the parametric excitation is predominantly due to the term
2VdcVac cos(ωt). As a result, and the equation of motion, Equation (18), takes the form

v̈r+
1
Q

v̇r+ [λr+Pr cos(ωt)]vr + [Gr+ Hr cos(ωt)]v3
r = 0, (r = 1..N), (19)

where

λr = 1 + 2η(1− brr) + 2β(1− frr) V2
eff,

Pr = 4β(1− frr) V2
ac

√(
Veff
Vac

)2
− 1

2
,

Gr = εκnl
rr − ηnlbnl

rr + β V2
eff f nl

rr ,

Hr =
Pr

2

(
f nl
rr

1− frr

)
. (20)

The summation coefficients appearing in Equation (20)

brr =
N

∑
n=1

ψ
(r)
n ψ

(r)
n+2,

frr =
N

∑
n=1

ψ
(r)
n ψ

(r)
n+1,

κnl
rr =

N

∑
n=1

(
ψ
(r)
n

)4
,

bnl
rr =

N

∑
n=1

ψ
(r)
n

[(
ψ
(r)
n+2 − ψ

(r)
n

)3
−
(

ψ
(r)
n − ψ

(r)
n−2

)3
]

,

f nl
rr =

N

∑
n=1

ψ
(r)
n

[(
ψ
(r)
n+1 − ψ

(r)
n

)3
−
(

ψ
(r)
n − ψ

(r)
n−1

)3
]

(21)
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are calculated for each value of Veff using the voltage-dependent base vectors Ψ(r). Note
that for the adopted parameters |Hr/Pr| � 1.

By re-scaling time τ = ωt, introducing the small parameter εr = Pr/λr � 1 and
the new generalized coordinate qr = vr

√
εr, assuming that the linear damping term is of

the order of O(εr), and then neglecting terms of O
(
ε2

r
)
, Equation (19) is reduced to the

canonical nonlinear Mathieu’s (Mathieu–Duffing) equation [36]

d2qr

dτ2 + εrµr
dqr

dτ
+ (δr + εr cos τ)qr + εrαrq3

r = 0, (22)

where
δr =

λr

ω2 , εr =
Pr

ω2 , αr =
Gr

ω2 , µr =
1

εrωQ
=

ω

PrQ
. (23)

We first consider the linearized counterpart of Equation (22) (by setting αr = 0) and
find the transition curves in terms of the physical parameters ω, Veff and Vac. While carrying
out the mapping, the values of Vac and Veff are set, Veff is held constant and the modulation
of Pr is achieved only by varying the ac voltage. The dc voltage Vdc is expressed in terms of

Vac and Veff by requiring that
√

V2
dc + V2

ac/2 is equal to the adopted Veff value. Note that
since Veff is held constant, as the ac voltage increases, the dc voltage decreases. Substituting
Equation (23) into the expression for the transition curves [36]

δr =
1
4
± εr

2

√
1− µ2

r +O
(

ε2
r

)
(24)

yields the expression for the boundaries of the parametric tongues

ω2
1,2 = 4λr −

2
Q2 ± 2

√
P2

r −
4λr

Q2 +
1

Q4 (25)

where Pr = Pr(Vac) and λr are defined in Equations (20) and (21).
Figure 10a shows the transition curves in terms of ω and Vac for Veff = 40 V. Each curve

corresponds to the case when the arrays vibrate at one of the modes r varying between
mode #70 up to mode #80. Figure 10b depicts the same curves for higher modes #129
to #140.

Figure 10. Single DOF model results. Transition curves in terms of the physical parameters—the
excitation signal frequency ω and voltage Vac—for Veff = 40 V and different modes of the array
(numbers): (a) modes #70 to #80, (b) modes #129 to #140. Solid lines correspond to the quality factors
of Q = 2000, dashed lines correspond to the undamped case.
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To excite PR in a damped system, the magnitude εr of the time-harmonic term modu-
lation in Equation (22) should be higher than a certain threshold value [36]. It is instructive
to illustrate the role of the ES coupling on the actuating threshold. Substituting εr, µr from
Equation (23) into the threshold condition µr = 1, using the notations Equation (20), while
taking into account that at PR ω = 2Ωr yields the threshold value of the ac voltage

Vth
ac =

√√√√V2
eff −

√
V4

eff −
λr

2Q2β2(1− frr)2 . (26)

Here, in accordance with Equation (20), λr depends only on Veff and not on Vdc and Vac
separately. Figure 11 illustrates the influence of the mode number on Vth

ac for two different
values of Veff below Vcrit, namely Veff = 30 V, Veff = 40 V, and one above it Veff = 80 V
(the fully coupled case). In general, an increase in Veff results in a decrease in Vth

ac . In
addition, Vth

ac is generally higher for lower modes of the array. However, the behavior is
quite different for the subcritical Veff < Vcrit and supercritical fully coupled Veff ≥ Vcrit
cases. In the fully coupled case Vth

ac monotonically decreases with the mode number. In
contrast, in the subcritical case, this monotonic dependence is preserved only for r below
rfold, which is the mode number corresponding to the eigenvector Ψ(∗) = (N−1)Ψ and to
the fold in the frequency curve, Figure 9. At r = rfold the pronounced decrease in Vth

ac
occurs, and for r > rfold, the dependence of Vth

ac on r becomes to be irregular. In accordance
with Figure 11, for certain r, excitation of PR in the subcritical case can be achieved at lower
Veff and Vac voltages than in the fully coupled case. This behavior can be attributed to
the fact that at r > rfold the array vibrates at a predominantly staggered mode, when the
beams of the two half-arrays vibrate at the anti-phase. In this case, each of the half-arrays
is in a sense excited independently, when the beams of the opposite half-array serve as
an electrode. It is remarkable that when the eigenvectors Ψ(r) = sin[πnr/(N + 1)] of a
uniform “fully coupled” mass-spring chain are used as the base vectors in the assumed
modes procedure, the decrease in the threshold voltage and the irregular dependence of
Vth

ac on the mode number r > rfold are not captured by the (singe DOF) model.

Figure 11. Evolution of the parametric threshold voltage Vth
ac with the mode number for three different

values of Veff: 30 V, 40 V and 80 V (fully coupled case) and for Q = 2000.

Looking now for the solution of the nonlinear Mathieu equation, Equation (22), we
consider the undamped case where µr = 0. The well-known asymptotic solution to this
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equation in the vicinity of the primary PR is obtained by setting δr = 1/4 + εr δ̃r (where
δr, εr are defined in Equation (23) and δ̃r is the detuning parameter), which yields [36]

qr(t) = Rr cos
(

t
2
− θ

)
, (27)

Rr =

√
− 4

3αr

(
cos(2θ)

2
+ δ̃r

)
, (28)

where Rr is the amplitude and αr is defined in Equation (23). Here, θ takes the values of
0, π/2, π and 3π/2, depending on the branch of the solution. Equation (28) describes
curves on the δr-εr plane corresponding to the nontrivial solutions of the undamped
nonlinear Mathieu equation. Mapping of the stable and unstable branches (for Gr < 0)
based on Equation (28) allows us to build the frequency-response curves of the array
vibrating at a specific mode in terms of the physical parameters

vU
r =

√
−4Ωr + 2Pr −ω2

3Gr
, (unstable), (29)

vS
r =

√
−4Ωr − 2Pr −ω2

3Gr
, (stable), (30)

where Ωr =
√

λr, Pr and Gr are given by Equation (23); vU
r and vS

r denote the amplitudes
corresponding to the unstable and stable branches, respectively. In the case of Gr > 0,
the solution Equation (29) becomes stable, and the branch Equation (30) becomes unstable.
In accordance with Equations (29) and (30), for each mode, the two critical values of the
excitation signal frequency

ωU
r =

√
4Ωr + 2Pr, ωS

r =
√

4Ωr − 2Pr, (31)

correspond to the points on the ω axis, where vU
r (ω

U
r ) = 0, vS

r (ω
S
r ) = 0 and where the

unstable and stable branches emerge from. The unique stable non-trivial solution exists
within the interval ωU

r < ω < ωS
r .

The character of the nonlinearity (softening vs. hardening)) of Equation (19) is dictated
by the sign of Gr, defined in Equation (20) (e.g., see [37]), which, in turn, depends on the
mode number r and the voltage Veff (directly, Equation (20) and, due to the dependence
of Ψ(r), and therefore of the summation coefficients, Equation (21), on Veff). Figure 12
presents the value of Gr as a function of Veff and of the mode number. At lower modes
Gr > 0, and the system exhibits hardening nonlinearity. As the mode number increases, Gr
decreases untill its sign changes to negative and the system exhibits softening nonlinearity.
The transition boundary subdividing the regions of positive and negative Gr are shown by a
dotted line in Figure 12a. Note that for low Veff (when compared to Vcrit), there are isolated
regions on the map Gr(r, Veff) where the system can also exhibit hardening nonlinearity
at higher mode numbers. A discontinuity in Figure 12a corresponds to r = rfold, which
is associated with the eigenvector Ψ∗ = (N−1)Ψ. For a given Veff < Vcrit and r < rfold
(left on the discontinuity line), as well as for Veff ≥ Vcrit (above the discontinuity line),
the eigenvectors of the array are similar to those of a uniform mass-spring chain. In contrast,
for Veff < Vcrit and r > rfold, the device would behave, to a large extent, as two individual
half-arrays. The transition boundary rfold = rfold(Veff) is shown by the white dashed line
in Figure 12a. The behavior of Gr within the region of small mode numbers and small Veff
is detailed in Figure 12b.

Figure 13 illustrates the single mode undamped response of the array at few specific
modes r = 40, 50, 60, 70 and 80. The left column Figure 13a,c presents the weakly coupled
case where Veff = 30 V > Vcrit, while the right column presents the case of the full coupling
Veff = 80 V. The differences in the (single mode) parametric resonant responses of the array
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subject to the strong Veff ≥ Vcrit and weak Veff < Vcrit ES coupling manifest themselves in
several aspects. As expected, for the same mode, higher Veff results in the stiffening of the
array and therefore in the shifting of the frequencies where the PR is exited toward higher
values. For example, in the subcritical case and for r = 70, the width of the PR region
is such that ωU

70 = 2.131 and ωS
70 = 2.185 (Figure 13c, purple line). In the supercritical

case, Figure 13d, the values are higher and the band is narrower, such that ωU
70 = 2.41 and

ωS
70 = 2.446. An additional difference is the overlap between the modes, namely, the range

of frequencies where PR can be excited. In the subcritical case, the PR frequency bands
corresponding to the modes 60, 70, and 80 are almost fully overlapped, Figure 13a,c; no
overlap is observed in the supercritical case, Figure 13b,d.

Figure 12. (a) The value of the nonlinear parameter Gr in Equation (19) as a function of Veff and
the mode number r. The black dotted line corresponds to the transition from hardening Gr > 0 to
softening Gr < 0. (b) Zoomed-in view of (a) for low mode numbers and low coupling voltages.

Figure 13. Single DOF RO model: Transition curves corresponding to the modes r = 40, 50, 60, 70
and 80 (numbers) for (a) the case of a weak ES coupling Veff = 30 V and (b) the fully coupled case
Veff = 80V > Vcrit. (c,d) show the corresponding frequency responses for the same number of mode
r as in (a,b) and for the same actuating ac voltage of Vac = 6 V shown by a horizontal orange line in
(a,b). Thin solid and dashed black lines correspond to the stable and unstable asymptotic solutions,
Equations (29) and (30), respectively. Colored lines represent the response which would be obtained
by up-swiping the driving frequency.
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4.2. Numerical Analysis

Equation (2) completed by small non-zero initial conditions (of the order of 10−9,
to make the excitation of the PR in the homogeneous equation possible) was solved nu-
merically using the Verlet algorithm implemented in Matlab. The results are obtained
for the mid-size array containing 16 beams. The model allowed us to capture the key
features of the large arrays dynamic responses, while being small enough to conve-
niently represent and analyze the results. Two additional fixed beams were added at
each end of the array, n = −1, 0, N + 1, N + 2, to account for the “fixed” boundary
conditions u−1 = u0 = uN+1 = uN+2 = 0 (see Figure 3). The actuation voltage was
V(t) = Vdc + Vac cos(ωt). The calculations were performed for Q = 100, for the cases of
the full ES coupling Veff = 80 V > Vcrit and for Veff = 30 V < Vcrit. In all the cases, the ac
voltage was Vac = 6 V. In the framework of the adopted excitation scenario, the up-sweep of
the frequency was used within the frequency range covering the entire propagation band.

The amplitude–frequency response, in terms of the spatially averaged deflection
amplitudes ∑N

1

√
u2

n/N is shown in Figure 14a for Veff = 30 V, the same response for
Veff = 80 V is depicted in Figure 14b. In both cases, excitation frequency ω increases starting
from the value below the PR band of the entire array. The response follows the trivial stable
branch until the frequency ωU

r , Equation (31), corresponding to the left transition curve of
the lowest excited mode is reached. Since, in our case, the actuating voltage Vac is lower
than the parametric threshold Vth

ac for the few lowest modes, these modes are not excited
through the PR mechanism. Following the jump at ω = ωU

r , the response follows the stable
branch, Equation (30). The amplitude decreases either down the trivial stable response at
ωS

r , or until the excitation frequency reaches the value corresponding to the unstable branch
of the next mode in the sequence. The comparison of the responses shown in Figure 14a,b
indicates that in the weakly coupled case, the full overlap between the modes is observed
within the entire range of frequencies where the PR is excited, starting from the mode
r = 6. In contrast, in the fully coupled case, the lowest modes excited through the PR
mechanism are not interacting (modes 5 to 8) and the overlap is observed starting from
the mode r = 9. In addition, consistently with the asymptotic analysis for the single-mode
response, the range of the excitation frequencies, where the PR is excited, is wider in the
fully coupled case. Moreover, since Vth

ac is generally higher for smaller Veff, the first mode
excited in the weakly coupled case is r = 6 (which for this Veff also corresponds to the
rfold, as in Figure 8, the third row), as opposed to r = 5 in the fully coupled case. The
situation is further illustrated in Figure 14c,d where the standing wave pattern for the
cases described above are shown. The separation between the first excited modes 5 to 8
in Figure 14d is clearly observed. In contrast, in Figure 14c the modes are overlapping
within the entire frequency range where the PR is excited. Note that since the colors in
Figure 14c,d represent the modal amplitudes, the negative deflections are not shown (e.g.,
see [17]). For this reason, in the fully coupled arrays, namely Figure 14d, the pattern of the
modes r = (N + 1)/2 + 1/2 + j and r = (N + 1)/2− 1/2− j look qualitatively similar. In
contrast, in the case of the weak coupling, Figure 14c, the first mode excited through the PR
is r = 6 = rfold, which looks similar to the mode r = 1. As a result, the “wavelength” of the
modes always decreases with the increase in the frequency above the value associated with
rfold. This behavior is consistent with the results shown in Figure 8.



Actuators 2023, 12, 386 20 of 24

Figure 14. Results of the numerical solution of Equation (2): (a) Resonant curve—spatially averaged
deflection amplitudes ∑N

1

√
u2

n/N for the case of parametric excitation V(t) = Vdc + Vac cos(ωt)
and for the weakly coupled case Veff = 30 V < Vcrit. (b) The fully coupled case Veff = 80 V > Vcrit.
The actuating ac voltage is Vac = 6 V in both cases. (c,d) depict the corresponding standing wave
patterns—vibrational amplitudes for each of the beams of the array. For visualization purposes,
the displacements are connected by a line, which results in smooth vibration patterns.

5. Discussion

The primary goal of this work was to investigate the electrostatically coupled arrays
dynamics, and, specifically, the influence of the electrostatic coupling on the eigenvalues
and eigenvectors of these structures. We believe however that the results of the work could
also be of practical significance. In contrast to the elastic coupling, which is dictated by the
array geometry and cannot be changed, the ES coupling can be easily controlled by the
voltage. An efficient tuning of the modal behavior of the system, of its natural frequencies
and modes, the veering and the crossing points, may open up opportunities for the new
operational scenarios of resonant micro- and nano-scale sensors. The sensitivity of resonant
sensors is usually lower in the vicinity of veering [38]. An ability to shift the veering
frequencies away from the working frequencies of the sensor or replacing veering by
crossing may avoid this undesirable sensitivity degradation. The unique ability to tailor the
eigenvectors shape, for example, by tuning the veering or crossing frequencies, may allow
to change the position of the specific (nth) beam of the array within the vector from the node
where the displacement is close to zero up to locations where the modal amplitude is maximal.
This feature could be beneficial in so-called “mode localization” based sensors [5,39,40], where
the ratio between the modal amplitudes, rather than the frequency shifts, are monitored.

While exploration of possible sensing scenarios, without even mentioning possible
design and performance considerations, is out of the scope of the present work, it is
instructive to illustrate the influence of the disturbance of the array parameters on its
spectral contents and associated modal patterns. Figure 15a shows the evolution of the
unperturbed uniform eight-beam array eigenvectors with the increase in the ES coupling
parameter γ. The increase in the mass # 3 by 2% results in a clearly visible change in the
modal patterns, Figure 15b. (Relatively large mass perturbation was chosen for the clarity
of illustration.) The differences between the perturbed and the unperturbed patterns are
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shown in Figure 15c. The actual perturbed and unperturbed eigenvectors, obtained for
a specific value of the ES coupling, are depicted in Figure 15d. Figures 15e and 15f show
the eigenvectors perturbation engendered by the 2% mass increase in the beams # 2 and #
4, respectively. The results suggest that the mass perturbation has a significant influence
on the array modal response, especially in the case of higher eigenvectors 5, 6, 7 and 8.
Moreover, the same mass added to different beams of the array may result in very different,
clearly distinguishable, modal patterns. The change in the location (in terms of γ) of the
veering and the crossing points is also very pronounced. In contrast, the largest relative
change in the eigenvalues due to the 2% mass perturbation of different beams is no higher
than 0.38%. The relative change in the sum of the eigenvectors is close to the relative added
mass. This result is expected since the eigenvalues of a cantilever depend linearly on a small
added mass. Note that extremely small, attogram [41] and even zeprogram, masses were
shown to be detectable by nanoelectromechanical (NEMS) cantilever sensors. However,
eigenvectors, and not only eigenvalues, monitoring in large arrays may open possibilities
for identification of the perturbed beams of the array. This feature can be potentially used
for multi-sensing without a need to individually address each of the beams. Note that
this scenario can be realized in an actual experiment, for example, by identifying and
monitoring the resonant frequency associated with the specific mode while sweeping the
coupling voltage.

Figure 15. Influence of the local mass perturbation on the modal pattern: (a) Evolution of the
eigenvectors (ordered by the eigenvalue) with the ES coupling parameter γ for the uniform eight
beams array, Figure 7c. (b) The mass #3 is increased by 2%. The color bar limits are [−0.707, 0.707].
(c) The difference between the perturbed and the unperturbed patterns shown in (a,b), respectively.
The color bar limits are [−1.414, 1.414]. (d) The eigenvectors of the unperturbed (blue) and perturbed
(brown) array for γ = 0.079 (shown by the vertical dashed lines in (a,b). The horizontal axis shows
the beams numbers. (e) The mass #2 is increased by 2%. (f) The mass #4 is increased by 2%. The color
bar limits are [−0.707, 0.707] .
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6. Conclusions

In this work, we analyze the eigenfrequencies, eigenvectors, and parametric resonant
dynamics of an array of elastically and electrostatically coupled micro beams. One of the
unique features of the considered architecture is that it is realized as two identical half-
arrays. Within each half-array, the beams are coupled only elastically. Application of the
voltage between the halves of the array results in an ES coupling. The main goal of this work
was to explore the interplay between the elastic and the ES coupling and their influence on
the arrays’ spectral content and the parametric resonant responses. The emphasis is on the
cases in which the ES coupling between the two half-arrays is not dominant.

In the first part of the work, the influence of the ES coupling on the eigenfrequencies
and the eigenmodes of the array is analyzed. Meanwhile, at zero voltage, the eigenvalues
are obtained as repeated degenerate pairs (due to the unique mirror symmetry of the arrays),
strengthening of the ES coupling introduces frequency veering and crossing. We show
that variation in the ES coupling may allow us to change the frequencies corresponding
to the veering and the crossing points, as well as the width (in terms of frequencies) of
the propagation band. One of the main conclusions of this work is that the ES coupling
affects not only the eigenvalues, but also the eigenvectors of the array. To illustrate the
influence of the voltage on the modal shapes, we use two approaches to the eigenvectors
ordering. When the eigenvectors are sorted based on the associated ascending eigenvalues,
the eigenvectors’ order is unaffected by the voltage. However when the sorting is based
on the number of eigenvectors’ nodal points (the points at which the imaginary line
connecting the masses of the array crosses zero), the increasing ES coupling may alter,
through the crossing or veering mechanism, the order of the eigenvectors within the set. In
the considered array, the critical voltage Vcrit can be found such that no frequency crossing
or veering, and consequently no changes in the (nodal points-based) eigenvector order,
takes place above this value. In the “fully coupled” case, the eigenvector Ψ∗ with the largest
number of the nodal points corresponds to the largest eigenvalue. The entire array, its
eigenvectors, and its eigenvalues behave similarly to those of a uniform mass-spring chain.
In contrast, for the voltages below Vcrit, the number r = rfold of the eigenvector Ψ∗ within
the set depends on the voltage. In this case, the uniform mass-spring chain behavior is
observed at the lower modes r < rfold. For r > rfold, the arrays behave, in a sense, as two
independent half-arrays.

In the second part of the work, the influence of the weak ES coupling on the parametric
resonant behavior of the array is illustrated using the RO model, and also numerically. We
show that the weak and the strong couplings may result in qualitatively different behavior.
For example, in the case of a full coupling, the threshold voltage Vth

ac necessary to excite
the PR in a damped system decreases monotonically with the mode number. In contrast,
in the case of a weak coupling, Vth

ac decreases abruptly at r = rfold. In the case of a higher
coupling voltage, lower modes can be excited through the PR mechanism, and the entire
band of frequencies at which the PR is excited is wider. We also show the importance of
the use of not just admissible but actual eigenvectors of the associated linearized problem
as the base vectors in the RO model.
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