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Abstract: A gas turbine cooling system is a typical multivariable, strongly coupled, nonlinear system;
however, the randomness and large disturbances make it difficult to control the variables precisely.
In order to solve the problem of precise process control for multi-input and multi-output coupled
systems with flow, pressure, and temperature, this article conducts the following research: (1) Design-
ing a secondary circuit for waste hot water and establishing a water-circulating gas turbine cooling
system to improve the efficiency of waste heat utilization. (2) Identifying the coupled system model
and establishing a mathematical model of the coupling relationship based on the characteristic data
of input and output signals in the gas turbine cooling system. (3) Designing a coupled-system decou-
pling compensator to weaken the relationships between variables, realizing the decoupling between
coupled variables. (4) An Opposition-based Learning Jumping Spider Optimization Algorithm is
proposed to be combined with the PID control algorithm, and the parameters of the PID controller
are adjusted to solve the intelligent control problems of heat exchanger water inlet flow rate, pressure,
and temperature in the gas turbine cooling system. After simulation verification, the gas turbine
cooling system based on an Opposition-based Learning Jumping Spider Optimization Algorithm
can realize the constant inlet flow rate, with an error of no more than 1 m3/h, constant inlet water
temperature, with an error of no more than 0.2 ◦C, and constant main-pipe pressure, with an error
of no more than 0.01 MPa. Experimental results show that a gas turbine cooling system based on
the Opposition-based Learning Jumping Spider Optimization Algorithm can accurately realize the
internal variable controls. At the same time, it can provide a reference for decoupling problems
in strongly coupled systems, the controller parameter optimization problems, and process control
problems in complex systems.

Keywords: gas turbine cooling system; system identification; decoupled control; intelligent
optimization algorithms; opposition-based learning

1. Introduction

Currently, high-power gas turbines with combustion efficiency exceeding 40% are
widely used, and the outlet temperature of the combustion chamber usually reaches 1500 ◦C.
The turbine impeller operates under high-pressure, high-temperature, and high-speed con-
ditions [1]. Under the influence of sustained high temperature, thermal stress will cause
deformation and cracks in the internal walls of the combustion chamber; these cracks
cannot be eliminated artificially, which will eventually lead to the failure of the combustion
chamber. In these circumstances, the cooling system of the gas turbine is an important
link to maintain its long-term stable operation, and it is an important and hot issue in the
industrial system. Gas turbine cooling systems have different structures and technolo-
gies. The gas turbine cooling system proposed by Hamed at the University of Adelaide
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consists of an absorption cooler, a drying rotor, and an evaporative cooler [2], the waste
heat generated by the gas turbine is used to operate the absorption cooler and the drying
rotor. The condensate from the absorption cooler can supply a portion of the water for the
evaporative cooler. The advantages of this system are that water resources can be recycled
and reused, and the limitation is that the maintenance costs are high. Samira has made
efforts to improve the utilization of water resources. Firstly, the air is cooled to a dew-point
temperature using M-cycle technology. Then, the absorption cooler further cools it down.
Both the absorption cooler and the recirculation cooler consume very little electricity, and
the source of the energy for the refrigeration and cooling of the water for recirculation
comes from the waste heat of the gas turbine and the condensate of the evaporative cooler,
respectively, which reduces the amount of cooling water needed for the recirculation con-
siderably [3]. Seoul National University have designed a circulation system consisting of
gas turbines, carbon dioxide turbines, and liquefied natural gas power plants. Combining
the waste heat of gas turbines with the cold energy of liquefied natural gas [4]. There
have been some achievements from the perspective of energy recycling, but the systems
are substantial and require combined-cycle power plants, which are relatively lacking in
general applicability. Barakat has combined atomized cooling systems and Exhaust Gas
Recirculation to improve gas turbine performance and increase the effectiveness of its
cooling system in hot and humid regions [5]. There is another kind of cooling system
that uses water as coolant and realizes the cooling of components at all levels of the gas
turbine through the heat transfer effect of the heat exchanger [6–8]. These systems are
typical process control systems, and usually have more than one controlled variable such
as rate of flow, pipeline pressure, and coolant temperature, etc. These variables have strong
coupling, and each input interferes and interacts with the others. This phenomenon is very
common in multivariable systems [9]. Decoupling techniques can realize separate control of
different controlled objects through some mathematical methods or equations, weakening
the connections between different variables [10]. Currently, the commonly used intelligent
decoupling methods include neural network decoupling control [11], fuzzy decoupling
control [12], etc. The commonly used traditional decoupling methods include feedforward
compensation decoupling [13], inverted decoupling [14], diagonal matrix decoupling [15],
and unit matrix decoupling. The advantages of traditional decoupling methods are simple
structure, easy implementation, and significant effectiveness. Intelligent decoupling meth-
ods, including fuzzy decoupling and neural network decoupling, can achieve multi-input
and multi-output mapping, approximate any function with any accuracy, and have strong
self-learning functions. The decoupling control methods are summarized as shown in
Table 1.

Table 1. A review of decoupling methods.

Decoupling Methods Advantages Drawbacks

neural network decoupling Low requirement of mathematical models [16] It is easy for the weight learning of neural network to
fall into local optimum [17]

fuzzy decoupling
The establishment of corresponding fuzzy
rules can solve the coupled system with no

clear mapping relationship [18]

It has more parameters to set, making it difficult to
formulate fuzzy rules [19]

feedforward compensation decoupling The general expression of the model is easier
to obtain and implement [20]

Depend on process channel characteristics, require
high model accuracy

inverted decoupling Decoupled models are easy to express and less
computationally difficult [21]

There are too many results from decoupling matrices
of multidimensional systems [22].

diagonal matrix decoupling Transforming MIMO systems into multiple
complementary single loop systems [23]

Transfer function models for complex industrial
systems are complex and difficult to compute

unit matrix decoupling Decoupling significantly improves system
performance

Completely dependent on process dynamics,
difficult to apply in engineering

The development and application of decoupling control in multivariable industrial
systems need further research and improvement because the uncertainty and randomness
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of a complex gas turbine cooling system have great impacts on the system in addition to
the strong coupling between variables. In the middle-latitude and high-latitude regions,
the temperature difference between day and night is large. There is a greater difference
in temperature between different seasons. The temperature of cooling water does not
even exceed 10 ◦C in winter. Too-low operating parameters will shorten the service life
of the heat exchanger; the fluctuating inlet temperature of the heat exchanger can also
affect the cooling effect. In addition, it is difficult to realize the complete decoupling of
the industrial system, and the inaccuracy of system parameters or some kind of drift in
operation will destroy the complete decoupling. Due to unavoidable mathematical errors
in the mathematical model and decoupling compensation model, weak coupling still exists
in each process channel after decoupling. This weak coupling phenomenon also affects the
control effect of the system and poses a huge challenge for tuning the controller parameters
of the process channel. It can be seen that the gas turbine cooling system is a typical
complex process control system which is multivariable, and has strong coupling, large
disturbance, and uncertainty. These complexities make it difficult to accurately tune the
controller parameters of the system, which makes it difficult to accurately control the
internal variables.

The tuning of the controller parameters is also an important factor affecting the
system. The optimization of the controller parameters is also a typical issue in complex
industrial systems. Usually, traditional control algorithms are combined with intelligent
optimization algorithms to optimize controller parameters. At present, there are many kinds
of mature intelligent optimization algorithms, such as Particle Swarm Optimization [24],
Genetic Algorithm [25], and so on. With the development of gradually more complex
industrial systems, the classical optimization algorithms have gradually exposed some
limitations, such as insufficient global search ability and slow convergence speed. The
optimization issue has also become a hotspot for scholars to study extensively. Both the
improvement of the original algorithms and new optimization algorithms show their
potential to solve many optimization problems. The advantages of population intelligence
algorithms are that they can solve nonlinear, time-varying, black-box model problems
in a multidimensional space. Certain behaviors of intelligent individuals can be applied
to explore the optimal solution. Jumping Spider Optimization Algorithm (JSOA) is a
biomimetic optimization algorithm, proposed in December 2021, which can tune a PID
controller with very fine control [26]. Compared to optimization algorithms such as Coot
optimization algorithm [27], Chaos game optimization [28] and Archimedes Optimization
Algorithm [29], the JSOA has achieved good results in benchmark function testing of
performance evaluation, with strong global search ability and fast convergence speed.
However, the PID controller parameters optimized by the JSOA are not applicable to the
gas turbine cooling system through simulation verification. There may be a significant
deviation between the initial position of the population and the optimal position, which can
result in the controller parameters not achieving the control effect of the controlled variable.
In order to obtain better PID control parameters for the gas turbine cooling system, more
research is needed on the mathematical expression of JSOA’s population initialization.

Intelligent population algorithms are based on “population”, using different heuristic
optimization rules to search for and obtain the optimal solution. The methods of popula-
tion initialization are different, including Pseudo-random Number Generators (PRNGs),
Chaotic Number Generators (CNGs), Quasi-random Sequence (QRS), Uniform Design
(UD), Centroidal Voronoi Tessellation (CVT), etc. [30]. At present, the initialization strategy
of many optimization algorithms is the most basic PRNGs, which may not be able to obtain
good results in some specific problems. It is necessary to apply more advanced population
initialization strategies to more intelligent and new algorithms. In addition to PRNGs, an
increasing number of initialization strategies are being developed and applied. The current
research on population initialization is shown in Table 2.
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Table 2. A review of population initialization techniques for intelligence algorithms.

Population Initialization Techniques Advantages Drawbacks

PRNGs The most commonly
used population initializers [31]

PRNGs cannot produce perfect evenly
distributed points

CNGs Randomness and regularity are desirable [32] It can
hardly be generalized to higher dimensions

QRS QRS techniques have strong theoretical advantages
over stochastic

Population size is relatively smaller than it
should be to satisfy the underlying

assumptions [33]

UD UD is directly applicable to nominal and discrete
optimization problems High cost of assessing and counting stocks [34]

CVT Producing geometrically uniform populations without
using any objective function evaluations

The performance of the algorithm depends on
the internal zoning or distance metric,

introducing additional parameters

Opposition-based learning is a typical multi-step algorithm [35]. Opposition-based
learning calculates the fitness values of the original population and the opposite popu-
lation, and uses strategies such as population merging or cross fusion to obtain a new
initialized population. This strategy can effectively expand the search range, prevent
falling into local optimum, and improve the effect and accuracy of simulation optimization.
Opposition-based learning has been verified and applied to the Golden Jackal Optimization
Algorithm [36], the Hunger Games Search Algorithm [37], and Particle Swarm Optimiza-
tion [38]. With continuous development and application, the population initialization
strategy based on opposition-based learning shows many advantages, but it has not been
developed or applied to many new intelligent algorithms, such as the Walrus Optimization
Algorithm (WaOA) [39], the Mantis Search Algorithm (MSA) [40], etc.

In order to solve the optimization problem of gas turbine cooling system controller pa-
rameters, this article decouples the strong coupling between variables through feed-forward
compensation. Then, the Opposition-based Learning Jumping Spider Optimization Algo-
rithm (Obl-JSOA) is proposed. The Obl-JSOA is applied to the PID controller-parameter
tuning of gas turbine cooling system to solve the problems of long response time and
difficult controller parameter tuning of gas turbine cooling system under traditional PID
control. By comparing traditional PID control with PSO optimized PID control and JSOA
optimized PID control, we prove that the Obl-JSOA is more suitable for gas turbine cooling
systems. We establish a PID feedforward compensation decoupling control system, com-
bining the control algorithm and intelligent algorithm, which aims to improve the control
effect and control accuracy of each controlled variable in the gas turbine cooling system.

2. Gas Turbine Cooling Control System
2.1. Operating Principle and Characterization

In order to maintain the stable operation of the gas turbine and extend the service life
of the heat exchanger of the cooling system, the secondary water circulation loop of the
heat exchanger cooling module is designed in this section, and the waste heat of the gas
turbine is used to control the cold water temperature within an appropriate range. This
is because low temperatures may lead to increased wear and reduced energy efficiency,
while high temperatures can affect cooling efficiency [41]. The waste hot water is mixed
with the cold water input from the cold water tank, and the appropriate ratio is adjusted
by controlling the valve opening and motor speed to keep the heat exchanger inlet water
flow constant, the inlet water temperature constant, and the pressure of the main pipeline
constant [42], so as to form a gas turbine cooling control system with constant temperature,
flow, and pressure. The system structure diagram is illustrated in Figure 1.
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Figure 1. Gas turbine cooling system structure.

The system consists of three main pipelines:

(1) DN400 is a flow pipe. The flow rate of the inlet water to the heat exchanger of the
cooling module (flowmeter 01 in Figure 1) is controlled by regulating the electric
valve 01.

(2) DN200 is a pressure pipe that controls the inlet water pressure (P1 in Figure 1) by
adjusting pressure relief valve 02.

(3) DN350 is a temperature pipe, regulating the return water flow through the pump
and valve 03, which controls the inlet water temperature in the heat exchanger (T2 in
Figure 1).

DN400 is connected to the hot tank through the heat exchanger, and the cooling water
inside the pipeline consists of two parts. One is cold water in the tank, the other is the
waste hot water after heat conduction with the hot tank. The constant inlet temperature
of the heat exchanger is achieved by mixing cold and hot water. DN200 is the pressure
relief pipe. The pipeline pressure is adjusted by changing the opening of pressure reducing
valve 02. The function of the check valve is to prevent wastewater backflow. A portion of
the hot water is transported to DN400 through a pump, compensating for the heat of the
cold water flowing into DN400 from the tank, and realizing a constant and controllable
temperature of the heat exchanger inlet water. Therefore, the inlet flow rate in the heat
exchanger is affected by cold-water flow and hot-water flow, which are controlled by valve
01 and valve 03, respectively. Inlet pressure is affected by valve 01 and pressure relief
valve 02. The inlet water temperature in the heat exchanger is affected by the cold water
temperature, the outlet temperature of the heat exchanger, and temperature loss. Input
and output characteristic curves are obtained from the experimental data of the test run
as shown in Figure 2, which includes the opening of valves, pipeline pressure, flowmeter
feedback, motor current feedback, etc.
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and (h) heat exchanger inlet water temperature.
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Figure 2a,c are the valve opening signals, Figure 2e is the booster pump current signal,
and these are the input signals of the process channel. Figure 2b,d,h are the rate of flow,
pressure, and temperature signals under the action of the valve and booster pump. The
signal in the figure is the data source that constitutes the three-input and three-output
coupling model. We obtained the system coupling model through data source identification,
providing a model basis for decoupler design. In Figure 2e,f, the current signal is enhanced
and the motor speed is increased, which means that the flow rate of pipeline DN350 is
increased. At this time, the opening of valve 01 is reduced and the opening of pressure
relief valve 02 is increased, resulting in a decrease in cold water inflow, which maintains
the balance of inflow flow. As hot water is increased and cold water is reduced, the
inlet temperature of the heat exchanger gradually rises. According to the input–output
relationship analysis and data curves, it can be seen that there is a strong coupling between
the system variables:

F = f (u1, u2, u3) (1)

P = p(u1, u2) (2)

T = t(u1, u3, T1, T3, ∆T) (3)

where u1 is the valve 01 opening signal, u2 is the valve 02 opening signal, and u3 is current
signal of the booster pump in DN350. T1 is temperature of the cold water tank, T3 is the
heat exchanger output hot water temperature, and ∆T is the pipeline temperature loss.
F, P, T are DN400 electromagnetic flowmeter flow values, cold water tank outlet pressure
(P1), and heat exchanger inlet temperature (T2), respectively. f, p, and t are constraint
functions between variables that are difficult to express precisely. The inlet valve input
temperature, temperature loss, and heat exchanger output temperature have uncertainties
and the system has large value perturbations; these complexities make it difficult to control
the variables precisely [43].

2.2. Model Identification of Coupled Gas Turbine Cooling System

According to the working principle of the system and the analysis of the coupling
characteristics, it can be seen that the gas turbine cooling system has three inputs signals,
which are valve 01 opening signal, pressure relief valve 02 opening signal, and the current
signal of the booster pump in DN350, corresponding to the controlled objects which are
the heat exchanger inlet water flow rate, pipeline pressure, and the heat exchanger inlet
temperature. The block diagram of the coupling system is shown in Figure 3.
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Mathematical descriptions of the inputs and outputs are obtained from the block
diagram of the coupled model:F

P
T

 =

G11 G21 G31
G12 G22 G32
G13 G23 G33

u1
u2
u3

 (4)

The coupled system model is obtained through the MATLAB system identification
toolbox identification and the coupled model is as follows:

G11 = 0.7541s+0.002914
s2+0.08358s+0.0002578

G12 = 2.009e−08s−3.537e−08
s2+10.27s+0.0002804

G13 = 4.721e−05s−3.809e−06
s2+0.2304s+4.309e−14

G21 = 128.2s+0.3503
s2+8.233s+0.02682

G22 = 0.3726s+0.001166
s2+48.44s+0.1836

G23 = 0.743s+0.00235
s2+1.572s+0.005354

G31 = 24.65s+0.02572
s2+2.529s+0.003538

G32 = 3.967e−04s+7.18e−07
s2+0.07784s+0.0001874

G33 = 0.354s+0.0006877
s2+1.189s+0.002565

2.3. Comprehensive Analysis of Model Error

The system transfer function model can be obtained through the system identification
toolbox, providing a model basis for the subsequent design of decoupling compensators
and the implementation of control over various controlled variables. This section selects
300 sets of data as the data source for establishing the mathematical model of the process
control channel, and verifies the correctness of the simulation model of the three-input and
three-output coupled system. Comparing the output results of the simulation model of
each controlled variable with the actual on-site output results, the output results of each
variable are shown in Figures 4–6:
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2.3. Comprehensive Analysis of Model Error 
The system transfer function model can be obtained through the system identifica-

tion toolbox, providing a model basis for the subsequent design of decoupling compensa-
tors and the implementation of control over various controlled variables. This section se-
lects 300 sets of data as the data source for establishing the mathematical model of the 
process control channel, and verifies the correctness of the simulation model of the three-
input and three-output coupled system. Comparing the output results of the simulation 
model of each controlled variable with the actual on-site output results, the output results 
of each variable are shown in Figures 4–6: 

 
Figure 4. Rate of flow output results. Figure 4. Rate of flow output results.
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We calculated the error between model output and actual output. For the flow coupling
models, the average error is 6.22%, for pressure coupled models, the average error is 3.21%,
and for temperature coupled models, the average error is 5.82%. The flow output error
mainly comes from the initial stage, and the maximum error after the system stabilizes
is only 3.57%. The maximum error in pressure is 5.17%, but the average error does not
exceed 0.01 Mpa. The maximum temperature error does not exceed 2.84%, and its main
error also comes from the initial stage. The simulation model output results for each
controlled variable are basically consistent with the actual output results, which can verify
the correctness of the coupling model. After comprehensive error analysis, a three-input
and three-output coupling system model is obtained.

2.4. Decoupling Compensator

In this section, a typical decoupling method is selected. Feedforward compensation
decoupling is applied to the gas turbine cooling system. Feedforward compensation
decoupling designs a compensation device, decoupling the original coupled system through
the compensation device. We obtained the new transfer function after calculating the
original transfer function model, and decoupling the multi-input and multi-output systems
into multiple single loop systems, so as to weaken the correlation between variables. The
gas turbine cooling system selects the second-order model in the model identification.
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There are some limitations when using other decoupling methods, which may lead to the
following problems:

(1) Diagonal matrix decoupling makes it difficult to compute the decoupling compen-
sation matrix for a third-order MIMO system, and the matrix equation is difficult
to express.

(2) There are 27 matrix configuration cases that need to be discussed for inverted de-
coupling, increasing the experimental complexity, and discussing the effects and
feasibility of different decoupling matrices is also complicated work.

(3) The principle of unit matrix decoupling is similar to that of diagonal matrix decou-
pling, but the calculation is more difficult to realize.

The block diagram of the gas turbine cooling system feedforward compensation
decoupling is shown in Figure 7.
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G11, G22, and G33 are transfer function models for flow, pressure, and temperature
control, respectively. Gij(i 6= j) are perturbations between different controlled variables.
Realizing decoupling between variables needs to be satisfied:

u1N12G22 + u1G12 = 0
u1N13G33 + u1G13 = 0
u2N21G11 + u2G21 = 0
u2N23G33 + u2G23 = 0
u3N31G11 + u3G31 = 0
u3N32G22 + u3G32 = 0

(5)
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The decoupling compensation model can be calculated from Equation (5) and the
transfer function model: 

N12 = −G12/G22
N13 = −G13/G33
N21 = −G21/G11
N23 = −G23/G33
N31 = −G31/G11
N32 = −G32/G22

(6)

For complex industrial systems represented by gas turbine cooling systems, it is a
difficult challenge to achieve complete decoupling, and the decoupling technique is only
used for better realization of accurate control of internal controlled variables. The coupled
cooling system model structure is simplified by the feedforward compensation decoupling
method. After adding the decoupling compensation, each variable is controlled by the
positional PID control algorithm:

u(k) = KPe(k) + KI ∑
i=0

e(i) + KD[e(k)− e(k− 1)] (7)

where e is the error between the set and measured values of flow, pressure, and temperature
of the controlled variables for the gas turbine cooling system. The gas turbine cooling
system decoupling control simulation is shown in Figure 8.
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The parameters of the PID controller are adjusted empirically. The results of flow,
pressure and temperature control are shown in Figure 9.
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The control objective of the gas turbine cooling system is to maintain a constant inlet
flow rate of the heat exchanger, with a target set value of 600 m3/h and an error of no
more than 5 m3/h; the inlet temperature of the heat exchanger is constant, with a target
setting of 22 ◦C and an error of no more than 0.2 ◦C; the maximum temperature overshoot
is less than 2 ◦C; the pressure of the main pipeline is constant, not exceeding 0.3 MPa. After
decoupling compensation, although each controlled variable can be controlled within the
technical indicators, some problems, such as long adjustment time and reliance on staff
experience, can reduce production efficiency.

3. Opposition-Based Learning Jumping Spider Optimization Algorithm
3.1. Opposition-Based Learning Population Initialization Strategy

Opposition-based learning is based on individual fitness values, mixing and modify-
ing population individuals to form a new initial population. Opposition-based learning
population initialization involves three steps:

(1) Generating an original population. The original population is a pseudo-random
number generated by a random algorithm, which can be either PRNGs or CNGs.

(2) Generating an oppositive population of the same size according to a heuristic rule.
The heuristic rule is:

xobl = upper_bound + lower_bound− xori (8)

xobl is individual position of oppositive population, upper_ Bound is the upper bound of the
feasible region of the initial solution, lower_ Bound is the lower bound of the feasible region
of the initial solution, and xori is the original population generated by PRNGs.
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(3) Selecting the appropriate individual as the new population based on the calculated
individual fitness value. An opposition-based learning population initialization
flowchart is shown in Figure 10:
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Opposition-based learning population initialization utilizes fitness values to optimize
the individual positions of the population during the population initialization stage. For
heuristic algorithms, the distance between the individual positions of the population and
the optimal individual position determines the convergence speed of the algorithm. If
the individual positions are closer to the optimal position, the convergence speed of the
individual population will be significantly improved during calculation. If PRNGs are used
to generate purely random individuals, the convergence speed cannot be predicted. An
opposition-based learning strategy analyzes the position of each individual and the position
of an opposition-based individual, calculates the fitness value, and categorizes individuals
with more suitable fitness into the final population, forming the final population, and then
performs optimization iterations.

3.2. Principles of Obl-JSOA

The JSOA is a new heuristic population algorithm, which has good performance in
benchmark function tests. However, the population initialization strategy of the JSOA
has not been studied and other forms of mathematical representations have not been fully
developed. This section applies the opposition-based learning strategy to the JSOA and an
opposition-based Learning Jumping Spider Optimization Algorithm is proposed, which
is applied to optimize the parameter tuning of the PID controller of a gas turbine cooling
system. The steps of the Obl-JSOA tuning PID controller are as follows:

(1) Defining the number of populations and the maximum number of iterations, which
are set to 50 and 30, respectively. PRNGs are used to randomly generate the locations
of individual jumping spiders and then a population of opposition-based jumping
spiders is generated according to the opposition-based learning heuristic rule.

(2) The sum of the relative error of each controlled variable and the output standard
deviation is used as the fitness function to calculate the individual fitness values
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of the original population and opposition population. In the union of the original
population and the opposing population (100 individuals), 50 individuals with better
fitness values are selected as the new original population to complete the population
initialization of the opposition-based learning strategy, and the fitness values of the
original and opposition-based populations are shown in Figure 11.
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If the 50 individuals with the smallest fitness values are chosen as the initial population,
it can greatly improve the convergence speed, but it is equally easy to converge prematurely
and fall into the local optimal solution. In order to balance the convergence of the algorithm
and the global search ability, the pseudo-code for the new population is determined
as follows:

Opposition-based Learning population initialization strategy

1. Initializing population pop through pseudo-random number generators
2. Calculating fitness value ori_fitness
3. Generating opposition-based population obl_pop bt Equation (3)
4. Calculating opposition-based population fitness value obl_fitness
5. For i = 1: SearchAgents
6. If obl_fitness(i) < ori_fitness(i)
7. pop(i) = obl_pop(i)
8. orifitness(i) = oblfitness(i)
9. End if
10. End for
11. Return pop and orifitness
12. Ending procedure

(3) Iterative optimization: each iteration updates the individual positions according to
the algorithmic optimization strategy (persecution strategy, jumping strategy, etc.),
which in turn updates the parameters of the PID controller.

(4) Calculating the pheromone concentration based on the individual fitness value, and
determining whether the current individual needs to update its position according to
the pheromone model discrimination condition.



Actuators 2023, 12, 396 15 of 21

(5) Updating the position of the best individual in the recorded population and the best
fitness value until the completion of the iteration, and transporting the optimal PID
controller parameters into the simulink model through the sim function.

There are some things that need special attention:
JSOA is a meta-heuristic algorithm that requires problem features when solving prac-

tical problems. Both Pseudo-random Number Generators and opposition-based learning
require prior knowledge. To put it another way, if the controller parameters or some other
parameters that need to be optimized are completely unknown, the Obl-JSOA may produce
poor results. The individual positions generated by PRNGs are not guided by prior knowl-
edge or fitness values, which may result in no competitiveness and complete substitution
by opposing populations. This circumstance can lead to the algorithm falling into a local
optimal solution, and the obtained parameters are not suitable for the control system. If
there is a lack of prior knowledge and it is uncertain whether it is beneficial for the system,
it is not recommended to directly introduce an opposition-based learning strategy.

The Obl-JSOA flowchart is shown in Figure 12.
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4. Simulation Results of the Gas Turbine Cooling Control System

After completing the system model establishment, decoupling compensator establish-
ment, control algorithm, and optimization algorithm design, simulation experiments are
carried out with the following steps:

(1) Establishing a simulation model of the gas turbine cooling system and setting the
parameters of the PID controller as variables, which are represented as the position of
individual jumping spiders in the Obl-JSOA.

(2) Using an opposition-based learning strategy to initialize the individual positions of
the population in order to initialize the PID controller parameters.

(3) Iterative calculation: updating individual positions according to algorithm optimization
strategies for each iteration, and then updating the parameters of the PID controller.

In this section, traditional PID control, PSO optimized PID control, JSOA optimized
PID control, and Obl-JSOA optimized PID control are compared. In order to make the
results more intuitive, the rise time, systematical errors, and overshoot are selected as the
performance indexes, and a comparison of flow, pressure, and temperature control effects
on the gas turbine cooling control system is shown in Figures 13–15:

Actuators 2023, 12, x FOR PEER REVIEW 17 of 22 
 

 

Figure 12. Obl-JSOA flowchart. 

4. Simulation Results of the Gas Turbine Cooling Control System 
After completing the system model establishment, decoupling compensator estab-

lishment, control algorithm, and optimization algorithm design, simulation experiments 
are carried out with the following steps: 
(1) Establishing a simulation model of the gas turbine cooling system and setting the 

parameters of the PID controller as variables, which are represented as the position 
of individual jumping spiders in the Obl-JSOA. 

(2) Using an opposition-based learning strategy to initialize the individual positions of 
the population in order to initialize the PID controller parameters. 

(3) Iterative calculation: updating individual positions according to algorithm optimiza-
tion strategies for each iteration, and then updating the parameters of the PID con-
troller. 
In this section, traditional PID control, PSO optimized PID control, JSOA optimized 

PID control, and Obl-JSOA optimized PID control are compared. In order to make the 
results more intuitive, the rise time, systematical errors, and overshoot are selected as the 
performance indexes, and a comparison of flow, pressure, and temperature control effects 
on the gas turbine cooling control system is shown in Figures 13–15: 

 
Figure 13. Flow control results. 

 
Figure 14. Pressure control results. 

Figure 13. Flow control results.

Actuators 2023, 12, x FOR PEER REVIEW 17 of 22 
 

 

Figure 12. Obl-JSOA flowchart. 

4. Simulation Results of the Gas Turbine Cooling Control System 
After completing the system model establishment, decoupling compensator estab-

lishment, control algorithm, and optimization algorithm design, simulation experiments 
are carried out with the following steps: 
(1) Establishing a simulation model of the gas turbine cooling system and setting the 

parameters of the PID controller as variables, which are represented as the position 
of individual jumping spiders in the Obl-JSOA. 

(2) Using an opposition-based learning strategy to initialize the individual positions of 
the population in order to initialize the PID controller parameters. 

(3) Iterative calculation: updating individual positions according to algorithm optimiza-
tion strategies for each iteration, and then updating the parameters of the PID con-
troller. 
In this section, traditional PID control, PSO optimized PID control, JSOA optimized 

PID control, and Obl-JSOA optimized PID control are compared. In order to make the 
results more intuitive, the rise time, systematical errors, and overshoot are selected as the 
performance indexes, and a comparison of flow, pressure, and temperature control effects 
on the gas turbine cooling control system is shown in Figures 13–15: 

 
Figure 13. Flow control results. 

 
Figure 14. Pressure control results. Figure 14. Pressure control results.



Actuators 2023, 12, 396 17 of 21Actuators 2023, 12, x FOR PEER REVIEW 18 of 22 
 

 

 
Figure 15. Temperature control results. 

The technical indicators of the gas turbine cooling system are as follows: the rate of 
flow is 600 m3/h, and the error does not exceed 5 m3/h; the pressure remains constant at 
0.3 MPa, with an error not exceeding 0.01 Mpa; the inlet temperature of the heat exchanger 
remains constant at 22 °C, with an error of no more than 0.2 °C, and the maximum over-
shoot does not exceed 2 °C. The data from the test run shows that the cold water temper-
ature in the water tank does not exceed 20 °C. It takes almost 30 min to increase the inlet 
temperature of the original coupling system to 22 °C without affecting the flow rate and 
pressure. After adjustment using the PID controller and decoupling compensator, it also 
takes 50 s. The combination of the Obl-JSOA and the PID control algorithm greatly accel-
erates the adjustment time of the controlled variable and improves the control effect. 

As shown in Figure 2f, the current signal of the booster pump increases, and the re-
turn water flow rate of the DN350 pipeline increases. At the same time, the opening of 
valve 01 decreases, while the opening of pressure relief valve 02 increases, as shown in 
Figure 2a,c, maintaining a constant inlet flow rate in the heat exchanger. Due to an increase 
in circuit water and a decrease in inlet water, the inlet water temperature of the heat ex-
changer gradually increases. Finally, each controlled variable reaches the set value. Accu-
rate control of controlled variables in the gas turbine cooling system has been achieved. 

In addition, there are some explanations that have to be mentioned: 
(1) Whether in simulation or experiment, there may be situations where the pressure 

exceeds 0.3 MPa. The system can accept it as long as it does not seriously exceed 0.3 
MPa  for a long time, as the strength and toughness of pipeline materials are usually 
high. 

(2) Plate heat exchangers and pipelines both dissipate heat towards the surrounding en-
vironment, and the flow rate and heat transfer coefficient are not constant. The tem-
perature will not rise this fast in actual experiments. 

(3) The coupling model is established based on on-site input and output signals, and 
there are significant disturbances that result in inaccurate transfer function models 
describing the system. There is an error between the model pressure output result 
and the actual pressure output result. If the coupling between pressure and other 
variables is strong, the existing error can lead to poor control effects, and even over-
load pressure. 
The rise times, systematical errors, and overshoots for the four methods are shown 

in Tables 3–5. 
  

Figure 15. Temperature control results.

The technical indicators of the gas turbine cooling system are as follows: the rate of
flow is 600 m3/h, and the error does not exceed 5 m3/h; the pressure remains constant at
0.3 MPa, with an error not exceeding 0.01 Mpa; the inlet temperature of the heat exchanger
remains constant at 22 ◦C, with an error of no more than 0.2 ◦C, and the maximum
overshoot does not exceed 2 ◦C. The data from the test run shows that the cold water
temperature in the water tank does not exceed 20 ◦C. It takes almost 30 min to increase the
inlet temperature of the original coupling system to 22 ◦C without affecting the flow rate
and pressure. After adjustment using the PID controller and decoupling compensator, it
also takes 50 s. The combination of the Obl-JSOA and the PID control algorithm greatly
accelerates the adjustment time of the controlled variable and improves the control effect.

As shown in Figure 2f, the current signal of the booster pump increases, and the return
water flow rate of the DN350 pipeline increases. At the same time, the opening of valve 01
decreases, while the opening of pressure relief valve 02 increases, as shown in Figure 2a,c,
maintaining a constant inlet flow rate in the heat exchanger. Due to an increase in circuit
water and a decrease in inlet water, the inlet water temperature of the heat exchanger
gradually increases. Finally, each controlled variable reaches the set value. Accurate control
of controlled variables in the gas turbine cooling system has been achieved.

In addition, there are some explanations that have to be mentioned:

(1) Whether in simulation or experiment, there may be situations where the pressure
exceeds 0.3 MPa. The system can accept it as long as it does not seriously exceed
0.3 MPa for a long time, as the strength and toughness of pipeline materials are
usually high.

(2) Plate heat exchangers and pipelines both dissipate heat towards the surrounding
environment, and the flow rate and heat transfer coefficient are not constant. The
temperature will not rise this fast in actual experiments.

(3) The coupling model is established based on on-site input and output signals, and
there are significant disturbances that result in inaccurate transfer function models
describing the system. There is an error between the model pressure output result and
the actual pressure output result. If the coupling between pressure and other variables
is strong, the existing error can lead to poor control effects, and even overload pressure.

The rise times, systematical errors, and overshoots for the four methods are shown in
Tables 3–5.
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Table 3. Rise times.

Variable Obl-JSOA JSOA PSO PID

Flow 0.09 s 0.13 s 0.23 s 0.57 s
Pressure 0.46 s 0.88 s 0.98 s 5.55 s

Temperature 1.58 s 2.13 s 5.53 s 49.14 s

Table 4. Systematic errors.

Variable Obl-JSOA JSOA PSO PID

Flow 0% 0% 0% 0.05%
Pressure 0.03% 0.067% 0.067% 0.47%

Temperature 0% 0% 0.045% 0.32%

Table 5. Overshoots.

Variable Obl-JSOA JSOA PSO PID

Flow 0% 0% 0% 2.35%
Pressure 1.8% 3.07% 2.7% 6.3%

Temperature 0.81% 0.77% 0% 0%

We performed performance testing on the optimized intelligent system of the Obl-JSOA.
Disturbance is added to flow control at 5 s, and pressure and temperature control at 20 s. The
control effects of each variable after adding disturbances are shown in Figures 16–18.
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As shown in the figures, the rate of flow, pressure, and temperature are significantly
disturbed at 5 s and 20 s, respectively. The loop that controls rate of flow has strong
stability and returns to normal indicators within 1 s. The loop that controls the pressure
returns to normal indicators after 2 s. In fact, although the actual system has strict pressure
requirements, the internal pressure of the pipeline is within the technical indicators during
simulation and experiments, and generally does not exceed the set range. The loop that
controls the temperature returns to normal indicators after 5 s. When there is disturbance
in the system, it can return to normal indicators after a short period of adjustment.

From the figures and tables, it can be seen that when an Obl-JSOA is applied to
optimize the PID controller parameters of the gas turbine cooling system, the rise time and
overshoot are significantly reduced. For flow control, compared to PID control, all three
indicators have been significantly improved. Compared to other optimization algorithms,
the Obl-JSOA has a faster rise time and does not generate overshoot. For pressure control,
the maximum overshoot does not exceed 0.01 Mpa, and rise time and systematical errors
are reduced. For temperature control, although the overshoot generated by the Obl-JSOA
is greater than other methods, it has a shorter rise time and faster adjustment time. In fact,
the overshoot is only 0.81%, not exceeding 0.2 ◦C. Significantly reducing the adjustment
time within other technical indicators can also demonstrate the superiority of the Obl-
JSOA. Through simulation verification, compared with other algorithms, the obtained PID
controller parameters of the Obl-JSOA are more suitable for gas turbine cooling systems.

5. Conclusions

There is strong coupling and randomness between variables in a gas turbine cool-
ing system, which makes it difficult to accurately control the controlled variables. The
combination of intelligent algorithms and control algorithms aims to improve the system
control effect. When tuning PID controller parameters with intelligent algorithms, due
to insufficient prior knowledge, the optimized PID controller parameters are not suitable
for gas turbine cooling systems, and there are still problems such as systematical errors,
overshoots, and long adjustment times. This article proposes an Obl-JSOA for parameter
tuning of PID controllers in gas turbine cooling systems. By integrating an opposition-based
learning strategy based on individual fitness values, the population individuals are mixed
and modified to form a new initial population, enabling the algorithm to obtain better prior
knowledge and improving the effectiveness and accuracy of simulation optimization. The
experimental results show that PID controller parameters optimized by Obl-JSOA with the
fusion of opposition-based learning strategy are more suitable for multivariable complex
systems such as gas turbine cooling systems. Compared with the JSOA, the adjustment
times for flow, pressure, and temperature of the Obl-JSOA have been accelerated by 0.48
s, 5.09 s and 47.56 s, respectively. Compared with traditional PID, the systematic errors
of flow, pressure, and temperature have been reduced by 0.05%, 0.44%, and 0.32%. The
overshoot of flow and pressure has been reduced by 2.35% and 4.5%. The designed gas
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turbine cooling system can improve the service life of the heat exchanger. In addition, the
combination of an opposition-based learning strategy, an intelligent algorithm, and a con-
trol algorithm also provides transplantation and reference significance for other complex
process control systems.
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