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Abstract: For an engraving machine system with input dynamic disturbance and output random
measurement noise, a two-degrees-of-freedom proportional integral derivative (2-DOF PID) control
method based on the Kalman filter is firstly proposed in this paper, which can effectively reject
the input disturbance and ensure the set point tracking performance of the controller. The 2-DOF
controller consists of a disturbance rejection controller and a set point tracking controller. The
disturbance rejection controller is composed of a PID controller based on a disturbance observer and
expectation model. The parameters of the set point tracking controller are tuned using a differential
evolution algorithm (DE), and the cumulative absolute error value (IAE) is used as the fitness function
of the DE algorithm, which can improve the rationality of intelligent parameter tuning. In addition,
the Kalman filter is also applied to deal with the output noise to suppress the influence of the output
measurement uncertainty. Finally, compared with existing algorithms, the feasibility and superiority
of the proposed algorithm are verified using numerical simulation and an experimental test.

Keywords: engraving machine systems; two degrees of freedom PID control; disturbance rejection;
differential evolution algorithm; Kalman filter

1. Introduction

The engraving machine system plays an important role in the manufacturing industry,
and society has put forward high requirements for the engraving accuracy [1–3]. Engraving
machines are often based on multiple axes for cooperative control, and the structure and
characteristics of each axis are similar. Each axis is firstly controlled individually and
precisely and then cross coupling technology is used to realize the contour tracking. The
engraving machine system can be controlled using a variety of schemes, and the model-
based control strategy can achieve stable and accurate control [4]. However, when the
working environment or mode changes, it needs to be re-modeled, which will increase the
control work burden and reduce the adaptability of the control algorithm [5]. In contrast,
PID-based model-free control technology has a unique advantage: it only needs to build a
model that can reflect the main dynamic characteristics of the system, and the parameters
are tuned by using the built model to satisfy the control requirements [6]. During the
production process, the uncertain disturbance and random noise may reduce the control
performance of the controller [7]. The output measurement noise and input disturbance
need to be filtered and suppressed [8]. Therefore, the PID control strategy based on two
degrees of freedom and filter technology will be used to achieve precise control of the
engraving machine system in this paper.

PID control technology has the advantages of simple form, convenient parameter
adjustment, and easy implementation in engineering and is widely used in actual pro-
duction systems [9–11]. Domestic and foreign researchers have proposed many different
kinds of improved algorithms, which mainly include differential forward PID, fuzzy PID,
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expert PID, two degrees of freedom PID and so on [12]. PID and its improved algorithms
dominate more than 90% of the control loops in production process control [13]. However,
single-degree-of-freedom PID may exist with the defect being that it cannot ensure both
set point tracking and input disturbance resistance performance [14]. During the actual
production process, appropriate PID control parameters need to be taken reasonably [15].
In order to solve this shortcoming, a 2-DOF PID control algorithm with two PID controllers
is proposed. The inner loop PID controller is used to suppress disturbance through a
disturbance observer and expectation model, and the outer loop PID controller is used
to improve the set point tracking performance [16]. However, the 2-DOF PID control
algorithm contains five parameters to be tuned, which are difficult to be tuned manually
and usually need to be tuned using an intelligent optimization algorithm [17]. Compared
with the genetic algorithm, particle swarm optimization algorithm and other intelligent op-
timization algorithms, the differential evolution algorithm (DE) has better effectiveness and
robustness in solving nonlinear, non-differentiable, multi-extremum or high-dimensional
complex functions [18]. Therefore, the differential evolution algorithm will be used to
optimize the parameters of the 2-DOF PID controller.

The production process will suffer from the unavoidable output noise or input distur-
bance [19]. The input disturbance will affect the fast tracking performance of the inner loop
controller. The output noise will affect the tracking accuracy and stability of the outer loop
controller [20]. The input disturbance needs to be estimated using disturbance observers
and combined with model estimation to obtain undisturbed inputs [21]. For output mea-
surement noise, it may be amplified when differentiating it with a classical differentiator.
The tracking differentiator can obtain a smooth differential signal while ensuring that the
output signal of the tracking differentiator tracks its input signal so as to achieve the effect of
filtering [22]. The tracking differentiator contains a filter factor parameter and a speed factor
parameter, which are difficult to adjust. If the two parameters are not selected properly, the
output signal of the tracking differentiator will diverge [23]. In contrast, the Kalman filter
is a recursive filter, which has the advantages of small computation, low storage and high
real-time performance and is suitable for long-term online estimation [24]. The Kalman
filter algorithm has no complicated parameter tuning and can estimate the optimal state of
the system according to the model and the actual observed values [25]. The Kalman filter
is not only suitable for linear systems but also the improved extended Kalman filter and
unscented Kalman Filter are suitable for nonlinear system estimation [26–28]. Therefore,
this paper will improve the control performance of the 2-DOF PID controller based on the
Kalman filter according to the actual demand of the engraving machine system.

For the engraving machine system with input disturbance and output noise, a two-
degrees-of-freedom PID control algorithm based on the Kalman filter is proposed in this
paper. For the design of the two-degrees-of-freedom PID control algorithm, a disturbance
suppression controller based on a disturbance observer and expectation model is used as the
disturbance suppression controller. The outer loop PID acts as a set point tracking controller,
and the parameters of the set point tracking controller are tuned using a differential
evolution algorithm. The Kalman filter is used to process the output sampled signal to
suppress the adverse effect of measurement noise. Finally, the proposed control algorithm
is verified using numerical simulation and experimentation.

2. Engraving Machine System

The engraving machine system works in a three-dimensional environment, which
can move freely forward and back, left and right and up and down. Considering that the
mechanism relationship of the three dimensions is almost identical, the operating state of a
single axis is considered in this paper. When the servo driver works in the speed mode, the
overall structure block diagram of the physical link of the single-axis servo system with the
speed as the output is shown in Figure 1.
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Figure 1. Engraving machine system mechanism.

The transfer function of the system from output V(s) to input U(s) can be obtained
using Mason’s equation

Gsys(s) =
U(s)
V(s)

= Ka
VKaKL/[s3(1 + Ka)JM JLN2

G + s2N2
G(JLKa

VKa + JMDL + JMKaDL)+
s(JLKL + N2

GKa
VKaDL + KaKL JL + KaKLDL) + KaKLDL]

(1)

where Ka
V is the speed amplification gain; Ka is the current loop gain; KL is the elastic coeffi-

cient; NG is the ball screw transmission ratio; JM is the moment of inertia of synchronous
servo motor; JL is the moment of inertia of load and DL is the coefficient of viscous friction.

The mechanism model shown in Equation (1) can represent the servo system speed
model. However, there are many unknown parameters which are difficult to determine
precisely. Under the condition of 1/20 rated speed to 1/3 rated speed, the overall structure
of the single-axis servo system with angular speed as the input signal and position as the
output signal can be effectively simplified, as shown in Figure 2. The simplified model
structure can be used to fit and describe the dynamic response of the complex engraving
machine system. In general, the system with integral factors can be described using a
transfer function, and this function model is not only simple in structure but also conducive
to modeling using identification technology.
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The transfer function relationship of the simplified model can be expressed as

Gsys(s) =
Y(s)
U(s)

=
Ke−Ts

s
(2)

where K is the gain and T is the time constant.
When the time constant T is small, Equation (2) can be approximated as

Gsys(s) =
Y(s)
U(s)

=
K

s(Ts + 1)
(3)

In the discrete domain, Equation (3) can be estimated using an output error model
with an integrating factor

y(k) = Gsys(z−1) =
B(z−1)

(1− z−1)A(z−1)
u(k) (4)

where A(z−1) = 1 + a1z−1 + · · ·+ ana z−na and B(z−1) = b1z−1 + · · ·+ bnb z−nb .



Actuators 2023, 12, 399 4 of 19

During the actual process, the system may also be affected by random measurement
noise; Equation (4) is written as{

x(k) = B(z−1)
(1−z−1)A(z−1)

u(k)
y(k) = x(k) + v(k)

(5)

where x(k) is the noiseless output response and v(k) is the random measurement noise,
which is generally defined as Gaussian white noise whose mean is 0 and variance is σ2.

3. Design of 2-DOF PID Control
3.1. 2-DOF PID Control Structure

The basic structure of the 2-DOF PID control system adopted in this paper is shown in
Figure 3, where d(t) and v(t) are, respectively, input disturbance and output measurement
noise. G(s) is the system transfer function; Ca(s) is the set point tracking controller and is
also named as the outer loop controller or prefilter, which is used to ensure the set point
tracking performance and Cb(s) is the disturbance rejection controller and is also named as
the inner loop controller, which is used to reject the influence of input disturbance d(t) on
the system.
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3.2. Design of Disturbance Rejection Controller

The disturbance rejection (DR) controller Cb(s) is constructed based on the distur-
bance observer and the expectation model, as shown in Figure 4, where G(s) is a stable
transfer function

G(s) =
bn−lsn−l + bn−l−1sn−l−1 + · · ·+ b1s + b0

ansn + an−1sn−1 + · · · a1s + a0
(6)

where n is the denominator order; l is the difference between the numerator order and
the denominator order; H(s) = 1

τcs+1 is the expected model and τc is the time con-
stant of H(s); Q(s) = 1

τq+1 is the low-pass filter and τq is the bandwidth of the filter
Q(s). CPD(s) = kpd(1 + kds) is the compensator, and its role is to pre-compensate the
control input, which helps to enhance the stability of the system. The structure in Figure 4
can also be further represented by the structure in Figure 5, and the converted structure is
more convenient for parameter tuning.
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For different values of l in the transfer function (6), Figure 5 can be represented in the
following PID forms, respectively.

When l = 1, take kpd = an
bn−1τc

, kd = 0, then

CPID(s) = an
bn−1τq

(1 + 1
τcs )

= K(1 + ω
s )

(7)

In this case, the PID parameter can been expressed as
Kb

P = K
Kb

I = Kω

Kb
D = 0

(8)

where K = an
bn−1τq

determines the disturbance rejection performance of the PID and ω = 1
τc

determines the closed-loop response speed of the system.
When l = 2, take kpd = an

bn−l τcλ , kd = λ, then

CPID(s) =
an

bn−lτq
(

1
λ
+

1
τc

+
1

τcλs
+ s) (9)

and H(s)
Q(s) is a prefilter and used to suppress the system overshoot.
For Equation (9), generally, by taking τc = λ, it can be obtained as follows

CPID(s) = an
bn−l τq

( 2
τc
+ 1

τc2s + s)

= K(2ω + ω2

s + s)
(10)

In this case, the PID parameter can be expressed as
Kb

P = 2Kω

Kb
I = Kω2

Kb
D = K

(11)

The undetermined parameters K and ω can be taken in the following way:

(a) Determine ω according to the expected closed-loop speed.
(b) Gradually increase K, and gradually improve the control performance until the speed

and disturbance rejection performance satisfy the requirements.
(c) If the system is overshot, the filter H(s)

Q(s) is added to the reference input to suppress the
system overshoot.

According to the basic PID structure of two degrees of freedom as shown in Figure 3,
the transfer function between the system output y(t) and the input disturbance d(t) is

Y(s)
D(s)

=
G(s)

1 + G(s)Cb(s)
(12)

This shows that the influence of input disturbance on system output is independent
of the set point tracker Ca(s). In order to facilitate designing the disturbance rejection
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controller Cb(s), the structure in Figure 3 can be equivalent to Figure 6. The controller Cb(s)
with disturbance rejection function can be obtained using the design method of the DR-PID
mentioned above. When there is overshoot in the system, the pre-controller Ca(s) should
be designed.
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3.3. Design of the Set Point Tracking Controller

The controller Ca(s) adopts the following PID form

Ca(s) = Ka
P + Ka

I /s + Ka
Ds (13)

The 2-DOF PID methods contains fives parameters to be adjusted, which are difficult
to adjust manually. For the three parameters of the set point tracking controller, the DE
algorithm with random heuristic characteristics is used to optimize these parameters
intelligently. The intelligent algorithm optimization steps are summarized as follows:

(a) Initialize population parameters:

(1) Population size M: Take the number of individuals M in the population ac-
cording to demand. In general, the larger the population, the more individuals,
the better the search ability. However, it may significantly increase the compu-
tation burden, and it is generally selected to be 20 to 50.

(2) Individual dimension n: Take the individual dimension of the population
according to the number of optimized parameters. Since the three parameters
Ka

P, Ka
I and Ka

D need to be adjusted, the n is taken as n = 3.
(3) Variation factor F: The F determines the population individual differential

growth and is used to control population diversity and convergence. The
value ranges between 0 and 1. Increasing F can increase the diversity of the
population, but it may reduce the convergence speed, and it is easy to jump
out of the local extreme value. Reducing F may reduce the difference step size,
and it can accelerate the convergence rate such that it will be easier to fall into
local optimal values.

(4) Cross factor CR: The CR plays a role in balancing global and local search
capabilities, and the value is generally between 0 and 1. Increasing CR can
improve the diversity of the population and speed up the convergence rate to a
certain extent, but too much crossover operation may have too much impact on
the population and reduce the convergence rate. However, reducing CR may
reduce the diversity of the population, which not only reduces the convergence
speed but also may fall into local optimal values. So, in this paper, the CR is
taken between 0.3 and 0.6.

(b) Generate the initial population: Randomly generate M individuals satisfying the
constraint conditions in a space with dimension n. The individual generation mode is

xi(j) = xmin(j) + (xmax(j)− xmin(j))randij(0, 1) (14)

where xi(j) is the jth chromosome; xmin(j) and xmax(j) of the ith individual are the upper
and lower bounds of the j chromosome, respectively and randij(0, 1) is the random number
between [0,1].

(c) Population variation: Three individuals xm1, xm2 and xm3 are randomly selected from
the population, and i 6= m1 6= m2 6= m3. The basic variation operation is
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hi(j) = xm1(j) + F(xm2(j)− xm3(j)) (15)

If there is no local optimization problem, two individuals xm2 and xm3 can be randomly
selected from the population, and the mutation operation can be written as

hi(j) = xb(j) + F(xm2(j)− xm3(j)) (16)

where xm2(j)− xm3(j) is the differentiation vector, and this difference operation is the key
to the differential evolution algorithm; F is the variation factor, indicating the degree of
scaling; and xb(j) is the j chromosome information of the best individual in the population
in the current generation. Since Equation (16) draws on the best individual chromosome
information in the current population, the convergence rate can be accelerated.

(d) Population crossover: The operation of crossover increases the diversity and random-
ness of the population. The specific operations are

vi(j) =
{

hi(j), rand lij ≤ CR
xi(j), rand lij > CR

(17)

where rand lij is the random number between [0,1]; CR is the crossover probability and
CR ∈ [0, 1].

(e) Selection operation: To determine whether xi(j) becomes a member of the next
generation, compare the fitness function of the crossed vector vi(j) and the target
vector xi(j).

xi(j) =
{

vi(j), f (vi(1), · · · , vi(n)) < f (xi(1), · · · , xi(n))
xi(j), f (vi(1), · · · , vi(n)) ≥ f (xi(1), · · · , xi(n))

(18)

Repeat steps 2–5 until the maximum evolutionary algebra G is reached.
Since the controller Ca(s) is mainly used to improve the set point tracking performance

of the system, the following fitness function equation is used to evaluate the performance
of the individuals in the population

f =
N

∑
k=1
|e(k)| (19)

where e(k) = r(k)− y(k); r(k) is the expected tracking value and y(k) indicates the system
output value. Considering that the prefilter is not set when the disturbance rejection
controller is designed to suppress the appearance of system overshoot, the fitness Function
(19) is modified as

f (k) =
{

f (k− 1)+|e(k)|, e(k) ≥ 0
f (k− 1) + η|e(k)|, e(k) < 0

(20)

When the system produces overshoot, which means e(k) < 0, η|e(k)|(η > 1) is used
to produce a larger fitness function value to punish the population individuals at this time,
thus inhibiting the overshoot.

During the actual production process, the system will not only be affected by the input
disturbance d(t), but also the output measurement data may contain random measurement
noise v(t), which will be suppressed by the Kalman filter algorithm in this paper. It should
be noted that the proposed control algorithm involves many undetermined parameters.
It is necessary to test the step signal or pulse signal of the system to obtain the dynamic
characteristics and types of the system. The tuning of PID parameters needs to consider
the rapidity, stability and accuracy of the system response. Then the intelligent differential
evolution algorithm is used for parameter optimization and tuning. Moreover, the param-
eters of the intelligent optimization algorithm should not only satisfy the optimization
requirements but also not have too long of a calculation time.
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4. Kalman Filtering Algorithm

Consider the following general state space model{
x(k) = Ax(k− 1) + B(u(k) + w(k))
z(k) = Hx(k) + v(k)

(21)

where x(k) and x(k− 1) are the system state at time k and time k− 1, respectively; u(k)
is the system input; z(k) is the observed quantity of the system; A is the state transition
matrix; B is the control input matrix; H is the state observation matrix; w(k) is the process
noise, which is used to compensate for the error between the estimated state and the real
state; and v(k) is the measurement noise.

Because precise information about the process noise and measurement noise is often
unknown, at k− 1 time, only one step recursion can be performed to obtain a prior estimate
of the state of k moment. Given

x̃−(k) = Ax̃(k− 1) + Bu(k) (22)

Define the best estimate as

x̃(k) = x̃−(k) + K(z(k)− Hx̃−(k)) (23)

where K is the Kalman coefficient, representing the weight of the prior estimate x̃−(k) and
the posterior observation z(k) in the final optimal estimate. Define the prior error as

e−f (k) = x(k)− x̃−(k) (24)

Define its covariance matrix as

P−(k) = E(e−f (k)e
−
f (k)

T) (25)

Define a posterior error
e f (k) = x(k)− x̃(k) (26)

Define its covariance matrix as

P(k) = E(e f (k)e f (k)
T) (27)

The P−(k) and P(k) are symmetric matrices. When the posterior error e f (k) reaches the
minimum and the best estimate x̃(k) is closest to the true value x(k), rewrite
Equation (26) as

e f (k) = x(k)− x̃(k)
= x(k)− (x̃−(k) + K(z(k)− Hx̃−(k)))
= (I − KH)e−f (k)− Kv(k)

(28)

Then
P(k) = E(e f (k)e f (k)

T)
= E(((I − KH)e−f (k)− Kv(k))∗

((I − KH)e−f (k)− Kv(k))T
)

(29)

Assume v(k) is Gaussian white noise with expectation 0 and variance R, then

P(k) = E(((I − KH)e−f (k) + Kv(k))∗
((I − KH)e−f (k) + Kv(k))T

)

= P−(k)− P−(k)HTKT − KHP−(k)+
K(HP−(k)HT + R)KT

(30)
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In order to minimize the error between the best estimate and the true value, the
objective function is taken as

J = mintr(P(k)) (31)

The partial derivative of Equation (31) with respect to the Kalman coefficient K can be
expressed as

∂tr(P(k))
∂K

= −2P−(k)HT + 2K(HP−(k)HT + R) (32)

Set Equation (32) to zero and we have

K = P−(k)HT(HP−(k)HT + R)
−1

(33)

Substitute Equation (33) into Equation (30) and P(k) can be updated as follows

P(k) = (I − KH)P−(k) (34)

For P−(k), we have

P−(k) = E(e−f (k)e
−
f (k)

T)

= E((Ae f (k− 1) + Bw(k))(Ae f (k− 1) + Bw(k))T)
(35)

Assume that w(k) is Gaussian white noise with an expectation of 0 and a variance of
Q, then

P−(k) = E((Ae f (k− 1) + Bw(k))(Ae f (k− 1) + Bw(k))T)

= AP(k− 1)AT + BQBT (36)

The Kalman filtering algorithm steps are summarized as follows:

1. According to the discrete state space model of the system, the matrix A, B, H is
obtained, and P(0) and x̃(0) are initialized.

2. The covariance matrices Q and R of w(k) and v(k) are set reasonably according to the
system characteristics and actual environment.

3. Obtain a prior estimate

x̃−(k) = Ax̃(k− 1) + Bu(k) (37)

4. Update the prior covariance P−(k)

P−(k) = AP(k− 1)AT + BQBT (38)

5. Calculate the Kalman gain K

K = P−(k)HT(HP−(k)HT + R)
−1

(39)

6. Compute the best estimate (posterior estimate) x̃(k)

x̃(k) = x̃−(k) + K(z(k)− Hx̃−(k)) (40)

7. Update the posterior covariance matrix P(k)

P(k) = (I − KH)P−(k) (41)

8. Repeat steps 3–7 to achieve the desired target.

The block diagram of the proposed control algorithm can be summarized as shown in
Figure 7. Note that when designing the disturbance rejection controller Cb(s), the controlled
plant should be a linear system. Moreover, ref. [29] shows that that the nonlinear system
can be processed using linear approximation technology to satisfy the design requirements
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of the disturbance rejection controller. In addition, the extended Kalman filter or untraced
Kalman filter can be used to filter the nonlinear system. Furthermore, the parameter tuning
is solved using intelligent optimization technology, which can avoid the instability problem
of a manual parameter setting. Therefore, the control algorithm proposed in this paper can
ensure that the system is stable.
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5. Simulation and Experimental Verification
5.1. Numerical Simulation

Consider the following systems

y(z)
u(z)

=
0.01839z + 0.01321
(z− 1)(z− 0.3689)

(42)

They can be converted into the following discrete state space model

[
x(k− 1)
x(k)

]
=

[
0 1

1.3679 0.3679

][
x(k− 2)
x(k− 1)

]
+

[
0 0

0.01321 0.01839

][
u(k− 2)
u(k− 1) + w(k)

]
y(k) = [ 0 1 ]

[
x(k− 1)
x(k)

]
+ v(k)

(43)

where x(k) and x(k− 1) are the system state at time k and time k− 1, respectively; y(k) is
the output measurement value; and u(k− 1) and u(k− 2) are the system control inputs
at k− 1 time and k− 2 time, respectively. w(k) is Gaussian white noise with mean 0 and
variance 0.25. The sampling point is N = 150. The step is taken as ts = 0.05. The total
simulation time is taken as 7.5 s. d(k) is taken as

d(k) = 0.2 sin(2k) + 0.3 sin(4k) (44)

The dynamic input disturbance d(k) is shown in Figure 8.
The proposed 2-DOF PID control method based on the Kalman filter is used to control

the above system. Since the order difference between the numerator and denominator is
l = 2, Equation (10) is used to design the disturbance rejection controller Cb(s). By setting
K = 2 and ω = 5, Kb

P, Kb
I and Kb

D can be calculated as Kb
P = 20, Kb

I = 50 and Kb
D = 2 using

Equation (11). For the set point tracking controller Ca(s), the parameters of the differential
evolution algorithm are taken as variation factor F = 1.0, crossover factor cr = 0.8, number
of population individuals M = 30, number of iterations G = 50, fitness function is set
to the form shown in Equation (20) and η = 3. The parameters of the set point tracking
controller are calculated to be Ka

P = 13.3955, Ka
I = 49.9995 and Ka

D = 0.7328. The reference
signal r(k) is taken as

r(k) = 1 (45)
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Figure 8. Input disturbance sequence for numerical simulation.

The disturbance rejection performances of single-degree-of-freedom PID control and
2-DOF PID control are compared in Figures 9 and 10. When a disturbance d(k) is added to
the system, the control input signals of the two control algorithms are shown in Figure 8.
The control output response signals of the two control algorithms are shown in Figure 9. It
can be seen that the single-degree-of-freedom PID has the same input disturbance rejection
performance as the 2-DOF PID.
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Figure 9. Disturbance rejection performance for numerical simulation.

In order to compare the tracking performance of different algorithms for time-varying
signals, the reference control signal r(k) is taken as

r(k) =
{

1 , 0 ≤ k ≤ 50 , 100 ≤ k ≤ 150
2 , 50 ≤ k ≤ 100

(46)

The set point tracking capabilities of the two control methods are shown in Figure 11.
Figure 11 shows that the 2-DOF PID has better set point tracking performance.
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Figure 10. System output with input disturbance for numerical simulation.
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Figure 11. Comparison of set point tracking performance for numerical simulation.

In order to compare and highlight the output noise suppression performance of the
proposed control algorithm, it is assumed that the system is subjected to Gaussian white
noise v(k) with an expectation of 0 and a variance of 0.04. The tracking results of different
control algorithms for the system output with measurement noise are shown in Figure 12,
where the tracking differentiator speed factor is taken as δ = 100 and the filter factor is
taken as h0 = 0.12. The reference signal r(k) is taken as

r(k) = sin(0.1k) (47)

In order to quantitatively evaluate the control effect of different control algorithms,
the integral absolute error (IAE) of tracking error is defined as

GIAE(k) =
n

∑
k=1
|r(k)− y(k)| (48)

where r(k) is the reference signal and y(k) is the actual output signal.
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Figure 12. Control results of different control algorithms for numerical simulation.

The residual error values of different control algorithms are shown in Figure 13. The
cumulative control error results of different control algorithms are shown in Figure 14. We
can see that the single-degree-of-freedom PID control algorithm struggles to suppress the
influence of output measurement noise. Although the basic 2-DOF PID control algorithm
can take into account the performance of input disturbance rejection and set point tracking,
it makes up for the defect of the single-degree-of-freedom PID algorithm which can only
guarantee one performance. However, when the system output is subject to random noise,
the 2-DOF PID control algorithm cannot effectively suppress the uncertainty caused by the
output noise. When the output y(k) of the system is subjected to measurement noise, for
the 2-DOF PID control algorithm without the filter, the differential processing of y(k) by
the controller Cb may amplify the noise variance. The output y(k) with noise is processed
directly by the 2-DOF PID controller. Single-degree-of-freedom PID processes the difference
between the output y(k) containing noise and the reference signal r(k), which results in
less noise influence on the control result. The tracking differentiator is used to process the
system output; it can be seen from Figures 11 and 12 that there is still a large tracking error.
The proposed 2-DOF PID control algorithm based on the Kalman filter can not only retain
the input disturbance rejection performance and set point tracking performance of 2-DOF
PID but also effectively suppress the uncertainty influence caused by output noise.
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5.2. Experimental Example

The engraving machine system used for testing is shown in Figure 15. The detailed
parameter configuration of the experimental platform is shown in Table 1. When the driver
works in speed mode, the system can be regarded as a three-axis servo system with angular
speed as the input and position as the output. For the same actuator, the mechanism
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relationship of the three axes is the same, and the X-axis will be controlled in this paper.
The engraving machine system can be modeled by the discrete state space model

[
x(k− 1)
x(k)

]
=

[
0 1

0.6907 1.6907

][
x(k− 2)
x(k− 1)

]
+

[
0
1.2868 ∗ 10−4

]
(u(k− 1) + w(k))

y(k) =
[

1 0
][ x(k− 1)

x(k)

]
+ v(k)

(49)

where x(k) is the system state. The system input u(k) is the target torque (unit: one rated
torque in a thousand) stored in the register. The system output y(k) is the velocity (unit:
centimeter, cm). The portion of input and output data are at a sampling frequency of 100 Hz.
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Table 1. Parameter configuration of platform.

Parameter Name Configuration

CPU Core i5-4210M 2.6 GHz
RAM 8 GM

Operating system Windows10 64 bit
Embedded interface board chip STM32F407ZGT6 168M Hz

Ethernet communication rate 100 Mb/s
CAN communication rate 1 Mb/s

Sampling period 1 ms–5 ms
AC server DeltaASDA-A2

Permanent magnet synchronous motor DeltaECMA-C10604RS
Electronic gear ratio 1/128 (10,000 pulses/cycles)

Sensor position accuracy 5 × 10−4 mm
Range of liabilities for hysteresis −10 N–10 N

Because the difference between the numerator and denominator order of the transfer
function of the engraving machine system is l = 2, Equation (10) is used to design Cb(s).
Take K = 100, ω = 4.5. The parameters of controller Cb(s) are taken as Kb

P = 900, Kb
I = 2025

and Kb
D = 100. For the differential evolution algorithm, the parameters are taken as F = 1.0,

cr = 0.8, M = 30, G = 50 and η = 2. The parameters of controller Ca(s) can be obtained as
Ka

P = 705.9, Ka
I = 2025.8 and Ka

D = 149.6.
In order to highlight the disturbance rejection performance of different algorithms, the

input disturbance signal d(k) is artificially taken as

d(k) = 2 sin(0.5k) + sin(0.2k) (50)

The dynamic input disturbance d(k) is shown in Figure 16.
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The reference signal r(k) is taken as

r(k) = sin(0.05k) (51)

The parameters of the tracking differentiator are set to speed factor δ = 80 and filter
factor h0 = 0.1. The control results of different control algorithms are shown in Figure 17.
The residual error values of different control algorithms are shown in Figure 18. The
cumulative tracking errors generated by different algorithms are shown in Figure 19. It
can be seen that the proposed 2-DOF PID control algorithm can better suppress the input
disturbance and the output measurement noise. The experimental system test shows that
the proposed control algorithm has good industrial practicability. In contrast, it is difficult
for other control algorithms to obtain satisfactory control accuracy and control stability,
which seriously affects their practical application.
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Figure 18. Residual error values of different control algorithms for experimental example.
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6. Conclusions

For an engraving machine system with an integrating factor subject to input dis-
turbance and output measurement noise, a disturbance rejection controller based on an
observer and expectation model is designed to reject the influence of input disturbance.
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Based on the structure of the single-degree-of-freedom PID control strategy, a prefilter is
added to ensure the set point tracking performance of the system. The IAE is used as the
fitness function of the DE algorithm and the prefilter parameters are optimized intelligently.
The adaptive control error weight adjustment parameters are taken to suppress the possible
overshoot during the control process. The Kalman filter algorithm is used to process the
output measurement signal to suppress the adverse effects of the noise contained in the
output measurement signals, and the estimated signal of the system output is obtained
simultaneously. Finally, the effectiveness of the proposed 2-DOF PID control algorithm
has been verified experimentally by comparing it with existing algorithms. The linear
approximation technique can be used to simplify the nonlinear system, and the proposed
control algorithm can be used to design the controller. And the control effect can be effec-
tively improved by combining the extended Kalman filter or untraced Kalman filter. For
multi-input and multi-output systems, the control strategy presented in this paper can also
be studied by combining decoupling technology.
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