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Abstract: The external gear pump, like any other hydraulic component, is vulnerable to failure,
which may lead to downtime as well as the failure of other components linked to it, thereby causing
production loss. Therefore, establishing a condition monitoring system is crucial in identifying
failure at an early stage. Traditional condition monitoring approaches rely on experimental data
that are collected by means of sensors. However, the sensors utilized in the experiments may have
calibration issues, which lead to inaccurate measurements. The availability of experimental data
is also limited as it is difficult and expensive to create and detect a fault in a component. Hence, it
is essential to develop a simulation model that mimics the performance of the actual system. The
data generated from the model can be utilized to create the data source required for automated
condition monitoring. A new methodology based on a detailed geometric model for simulating the
External Gear Pump is described and compared to two models analyzed in the authors’ previous
work, namely Schlosser’s loss model and simple geometric model. In this paper, the three models are
compared with experimental data and the method utilized for fault injection. Schlosser’s loss model,
as well as the detailed geometric model, are found to be suitable in terms of validation; however, the
latter is a better candidate in terms of fault injection. Hence, the detailed geometric model can be
implemented as a tool to generate the data source for condition monitoring applications.

Keywords: geometric model; simulation model; model comparison; model complexity; external gear
pump; electric reach truck; condition monitoring; artificial intelligence

1. Introduction

External Gear Pumps (EGPs) can be found in several stationary as well as mobile
machine applications due to their low cost, simple, and robust design. EGP, like any
other component in the system, is susceptible to failure. There are four main modes of
failure, namely, internal leakage [1], external leakage [2], severe pressure ripples [3], and
overheating of the pump [4]. They occur due to the presence of cavitation [5], wear [6],
fluid contamination [7], and design and assembly errors. The unexpected failure of a pump
may lead to substantial production delays because of machine downtime. Therefore, it is
essential to develop an onboard condition monitoring system that can identify faults at an
incipient stage, thereby making the system more reliable.
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Earlier methods of condition monitoring relied on data sources developed with the aid
of sensors. The sensors utilized are accelerometers [8], pressure transducers [9], flow me-
ters [10], and displacement sensors [11] to name a few. The sensors, however, are expensive,
prone to failure, difficult to incorporate into existing system design, and lead to overfitting
of condition monitoring model [12]. Furthermore, there has been an attempt to develop
fault-tolerant control for an electro/hydraulic servo system that compensates for sensor
faults [13]. The development of an experimental setup that is suitable for fault injection
also poses some challenges, such as the fault may lead to failure of other components
within the system, high cost of setup, and introducing realistic fault can consume time
and resources. Therefore, it is essential to develop an automated condition monitoring
system that is capable of utilizing existing information, such as data from sensors within
the system, electric drive, and data source generated with the aid of a robust simulation
model for situations where it is difficult to obtain experimental data.

The required complexity of the simulation model to generate data sources for condition
monitoring applications is rarely investigated. It is expected that a detailed model can
represent an actual system more accurately. However, it is important to note that the
required parameters for a detailed model are higher than those required for a simple model.
According to a study performed in [14], the higher the complexity of a model, the higher
the accuracy of the model in most scenarios; however, there are a few instances where the
opposite is also true. A previous attempt at investigating the effect of model complexity
demonstrated in [15] that a simplified model performed better than the detailed model of
an EGP. However, it was addressed that the measurement of certain parameters might not
have been accurate and that further investigation is required regarding the detailed model.

Upon the development of a robust simulation model, the next step is to build an AI-
based condition-monitoring algorithm that can identify faults at an early stage. Simulation
data with data augmentation has been demonstrated in [16] as a tool to generate data for
condition monitoring of a variable displacement axial piston pump. A check valve failure
simulation model has been utilized in [17] for generating data to classify various faults at
different levels. The mixing of domain databases by combining data from a hydraulic press
and a simulation model is investigated in [18]. Simulation-driven fault classification of
bearing faults utilizing machine learning is demonstrated in [19]. A sparse linear parameter
varying vector auto-regression model was proposed and demonstrated high accuracy in the
fault detection of gearboxes under variable speed conditions [20]. Apart from applications
in condition monitoring strategies, the development of a robust simulation model can aid
in the development of a database that extends to better maintenance strategies such as
predictive and prescriptive maintenance [21].

Considering the challenges addressed, the main contributions of this paper can be
summarized as follows:

(1) A new approach, which relies on a detailed geometric model for simulating the EGP,
is proposed.

(2) The approach is assessed by comparing two models that were previously examined,
with each model being validated against experimental data from the study case of an
electrified reach truck.

(3) A test classifier is developed to assess the data reliability from the top-performing
model for automated condition monitoring of EGP.

The remainder of the paper is organized as follows: Section 2 describes the methods
implemented and includes the description of EGP models, the electric reach truck co-
simulation model, and the experimental setup. Section 3 discusses and compares the results
obtained on performing model validation as well as the results obtained from a test classifier.
Finally, Section 4 contains the conclusion and future developments.

2. Methods

In this section, the mathematical models of EGPs are defined first. Next, the case of
an electrified reached truck is chosen, and the schematic and simulation model setup is



Actuators 2023, 12, 401 3 of 16

described. Finally, the experimental setup utilized to compare and validate the levels of
complexity of the simulation model is defined.

2.1. External Gear Pump Models

The first level of complexity model uses the displacement and efficiency data given by
the pump’s manufacturer coupled with Schlosser’s loss coefficient model [22] to evaluate
the laminar and turbulent leakages. The resulting volumetric flow equation is:

Q = Vn − Cs
V∆P
2πµ

− CstV
2
3

√
2∆P

ρ
, (1)

where V is the volumetric displacement of EGP, n is the rotational speed, Cs is the laminar
slip coefficient, ∆P is the delivery pressure, µ is the dynamic viscosity, Cst is the turbulent
slip coefficient, and ρ is the density.

The second level of the complexity model implements the same Schlosser’s loss
coefficient model to evaluate the leakages but coupled with a more detailed volumetric
displacement equation that requires actual geometric parameters of the pump, such as the
outer diameter of the gear, the gears width, and the gears center distance:

Vg =
bπ
(
r2

h − a2)
2

, (2)

where b is the gear width, rh is the outside diameter of gear, and a is the distance between
the gear centers.

Further details about these two models can be found in the authors’ previous work [15].
The third level of complexity is the model deeply analyzed in this work that was subject
to the new proposed methodology. In the previous work, the higher complexity model
coupled with Schlosser’s loss coefficient model produced lower accuracy than expected,
even lower than the intermediate model used. This unexpected result led to consider
the Schlösser’s loss coefficient model not being a good match for the volumetric displace-
ment equation implemented for the higher complexity model. The new methodology
proposed models the laminar and turbulent leakages by specific equations while using
the same volumetric displacement equation used in the highest complexity model of the
previous work.

The volumetric displacement equation Is based on the geometrical parameters of the
gear pump and evaluates the displacement volume of a tooth pair [23]:

Vgi =
bπ

z

[
r2

h1 +
r1

r2
r2

h2 − r1(r1 + r2)−
(

1 +
r1

r2

)
t2
0

12

]
, (3)

where b is the axial width of the gears, ri is the pitch diameter of each gear, z is the number
of teeth, rhi is the outer diameter of the gear, and t0 is the base pitch. These parameters could
be either from measuring the physical components after disassembly or from CAD files.

The new proposed methodology couples this volumetric displacement equation with
three different equations to model the internal leakages of the pump and obtain the flow
rate of the pump. The first equation models the radial leakages, which are the leakages in
the clearance between the front faces of the gears under the root diameter and the front
surface of the wear plates, as shown in Figure 1.
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The clearance that leads to radial leakage is modeled as a laminar rectangular orifice,
and for a couple of teeth, this results in a net flow rate equal to [24]:

Qr,i =
blh3

r
12µlr

∆P, (4)

where bl is the arc length between two adjacent teeth on the root diameter, hr is the gap
clearance between the gears and the wear plates, µ is the dynamic viscosity, lr is the
difference between the root and the shaft radius, and ∆p is the pressure difference between
the delivery and the suction line. The total flow rate for this type of leakage is the following:

Qr,tot = 2·2z·n·k1, (5)

where n is the number of rotations of the pump, z is the number of teeth. The two constant
factors encompass the two gears and the front and rear faces of the gears. Factor k1 considers
the fraction of the gears’ rotation where the couple of teeth is in connection with the inlet
part where the pressure difference is zero, thus giving no contribution. This factor is
equal to:

k1 =
2π − ε

2π
, (6)

where ε is the angle between the start and the end of the suction zone, as shown in Figure 2.
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The second typology of leakage considered is the leakages acting over the tip of the
teeth. This is a very important type of leakage that greatly influences the behavior of the
pump and is very difficult to model due to the many phenomena to consider. The flow rate
for each tooth is modeled as composed of a Poiseuille flow part (pressure-related) and a
Couette flow part (speed-related) [25,26]:

Qi,i−1 =
bh3

12µlt
∆p − buth

2
, (7)

where h is the variable gap distance between the tip and the housing, lt is the tip width,
and ut is the tangential speed. To obtain a correct representation of the event, it is necessary
to consider the variability of the gap distance along the sealing zone. This variability is due
to the eccentricity between the gears and the housing center created using pressure forces
acting on the gears. The modeled equation is again based on an equivalent rectangular
orifice geometry, so, for this reason, some evaluations are needed. The first is the need
to evaluate an equivalent value of the gap clearance along the sealing zone for a single
rotation. To obtain this equivalent parameter, an integral average is implemented based on
geometric and trigonometric techniques [23]:

havg = w +
1

(2π–ε)–ε

∫ 2π−ε

ε
e
(

cos ϕ +
e

4R
cos 2ϕ +

R
e
− e

4R

)
dϕ − rh, (8)

where ε is the angle between the start and the end of the outlet zone, equal to the inlet
one. The other parameters are illustrated in Figure 3, where the outer circle represents the
housing while the inner circle represents the outer diameter of the gears.
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The factor w represents the minimum value of the gap and is the fundamental param-
eter to control and simulate the wearing of the pump. The second and last evaluation to
be done is the linearization of the circular arc that encompasses the interaction between
the tooth tip and the housing inside the sealing zone. This is achieved by the following
equations:

lt = 2πR·k2 (9)

k2 =
π − ε

π
(10)

The total flow rate for this type of leakage is the following:

Qi,tot = 2z·n·
(

bh3
avg

12µlt
∆p −

buthavg

2
k2

)
(11)
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Finally, the last equation implemented estimates the lateral leakages concerning the
leakages between the gears’ teeth and the wear plate faces. This type of leakage is modeled
as a laminar orifice with an equivalent rectangular geometry, like the radial typology. The
net flow rate for a single tooth is:

Ql,i =
blh3

12µll
∆p, (12)

where bl is the difference between the outer and the root radius, ll is the tooth thickness on
the pitch diameter. The choice of tooth thickness is an overestimation of the true value, but
it permits considerable simplification and streamlines the evaluation without losing too
much accuracy. The total flow rate for this leakage is the following:

Ql,tot = 2·n ·2z· Ql,i (13)

The implemented leakages equation also allows us to evaluate in a simple way the
effect of the wearing of the pump on the performances. In fact, each of these equations
implements some tuning parameters that allow the simulation of the wearing of the pump.
Both radial and lateral leakages can simulate the progressive wearing using the variation
of the h parameter in Equations (4) and (12). This parameter represents the value of the
gap between the faces of the gears and the surfaces of the wear plate that increases over
time due to the wearing process. For tip leakages, the parameter w allows the simulation of
the progressive wearing of the housing due to the milling of the gears’ teeth, increasing
thus the gap and the relative leakages. Naturally, these parameters do not reflect the actual
measurement of the wearing, being tuning parameters, but can be associated with more
realistic values via validation with experimental tests and measurements. Finally, thanks
to these equations and tuning parameters, it is possible to implement a simplistic form of
fault injection, altering their values to simulate in the numerical model the effect of specific
pump faults on the performance. It is possible to simulate excessive wear of both the front
surface of the wear plates and of the housing at the start of the sealing zone. Both faults
are responsible for increasing the leakages, resulting in an unacceptable reduction of the
volumetric efficiency of the pump. The new proposed model permits the simulation of this
process and analyzes its impact on the performances of the EGPs.

2.2. Case

An electrified reach truck system is chosen as a case to implement the levels of
complexity into the simulation model and for validation. To simplify the system, the lifting
functionality of the electrified reach truck is only considered. The hydraulic schematic of
the electrified reach truck is illustrated in Figure 4.

An electric motor drives the fixed displacement external gear pump, which in turn
delivers oil from the tank to the three-by-two valve via a switching valve. A single-acting
cylinder is attached to the forks and is controlled by the three-by-two valve. The pump is
operational only during the lifting phase, while the lowering phase is controlled using a
load-holding valve. A pressure sensor, a flow sensor, and a height encoder are the sensors
present in the system.

MATLAB/Simulink environment is utilized to model the hydraulic system, electric
motor, and controller. The kinematics of the reach truck are modeled in a multi-body system
simulation software called Mevea and were realized in [27] by utilizing a multi-physics
co-simulation model. The co-simulation functionality is implemented with a functional
mockup interface (FMI) that enables simulation models to share parameters across different
software. In Figure 5, the co-simulation structure is illustrated. The reference speed
of the electric motor is calculated by feeding the joystick control input to the controller.
Considering the load applied to the system, the electric motor calculates the actual speed.
The cylinder force is calculated using the hydraulics model by utilizing the actual speed
from the electric motor model and the cylinder displacement and velocity from the Mevea
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kinematics model. The cylinder force is then fed to the Mevea kinematics model to complete
the loop.
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The translational load between the chassis, mast, and chain wheel is considered to
calculate the cylinder displacement and velocity in the Mevea model. The Runge Kutta
method is implemented in the solvers of Mevea and MATLAB/Simulink to solve ordinary
differential equations with a timestep of 0.2 ms and 0.1 ms, respectively. The Mevea software
is implemented as the controller, while MATLAB/Simulink is the agent. Additionally,
the parameters such as the viscosity and bulk modulus are set to a constant value for
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all operating conditions of the simulation. Thermal effects are not considered in the
simulation model.

2.3. Experimental Setup

The experimental setup is illustrated in Figure 6. It consists of the electric reach truck,
sensors, and data acquisition system. The sensors include a pressure transducer from
Trafag with a measuring range of up to 250 bar, a flow meter from Kracht with a measuring
capacity of up to 80 L/min, and a height encoder from SICK with a range of up to 10 m. The
sensor location can be found in Figure 4. A National Instrument (NI) based data acquisition
system that consists of a CompactRIO Controller 9045 coupled with two 9229 modules
is utilized. The system has a sampling rate of up to 50 kHz and supports simultaneous
sampling. A program based on Functional Programmable Gateway Arrays (FPGA) was
developed in LabVIEW software to acquire all sensor data. The duty cycle is defined as
lifting the forks of the reach truck with a load of 1000 kg and returning to the home position.
To avoid experimental uncertainty, the measurements are repeated several times, and the
average of multiple acquisitions is utilized as the experimental data for the validation of
simulation models. The systematic errors, however, have not been considered in this work
thanks to the proven experience in performing experiments with the utilized test rig. The
required geometric parameters of the pump are acquired from the manufacturer data sheet
as well as by detaching the pump from the system and measuring the parameters of interest.
The reference pump used to perform tests is an EGP with a die-cast aluminum body and
cast-iron front and rear covers. This construction permits high working operating pressures
while maintaining a compact size, relatively low weight, and low production cost. The
specific pump tested has a displacement of about 14.6 cm3/rev.
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3. Results and Discussion

In this section, the results from the model validation are illustrated and discussed
by comparing the three levels of complexity of the external gear pump simulation model.
Furthermore, a test classifier is developed and tested to identify if it is possible to utilize
the data generated from the simulation model as a reliable data source for condition
monitoring applications.
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3.1. Model Validation

The validation of the model is performed by comparing the results with experimental
data. The cylinder displacement, system pressure, and pump volumetric flow rate are
analyzed. The lifting phase involves the operation of the pump; however, the lowering is
controlled by a load balancing valve as a single-acting cylinder is present in the reach truck.

The pump installed on the reach truck has a volumetric displacement of 14.6 cc,
as indicated by the manufacturer. In the level 1 model of complexity, the simulation
model applies Equation (1). In the level 2 model of complexity, the simulation model
applies Equation (2) to calculate the volumetric displacement. The level 3 model utilizes
Equation (3) for displacement calculation. The required parameters of the external gear
pump for geometric calculations are obtained from the manufacturers’ data sheet as well as
by disassembling the pump and performing measurements. A vernier caliper of 0.01 mm
precision is utilized for the measurements. The volumetric displacement for the simple
geometric and the complex geometric models are calculated to be 15.47 cm3/rev and
14.79 cm3/rev, respectively.

Figure 7 illustrates the comparison plot of cylinder displacement between the experi-
mental data and all levels of complexity of the simulation model. The experimental data
is represented by the blue solid line, the level 1 model is represented by the green dotted
line, the level 2 model is represented by the black dashed line, and the level 3 model is
represented by the red dash-dotted line, respectively. A consistent format is implemented
for the upcoming plots of system pressure and volumetric flow. It can be noticed that the
cylinder displacement is closest to the experimental data in the case of both level 1 and
level 3 models. The level 2 model is higher throughout the duty cycle when compared to
experimental data, which indicates that the calculated volumetric displacement is inaccu-
rate and has a value larger than that of the actual pump. At peak displacement, it is evident
that the level 1 model is slightly lower than the measured data while the level 3 model is
slightly higher, as can be visualized in the zoomed-in plot.
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In Figure 8, a comparison plot of system pressure between the experimental data
and all levels of complexity of the simulation model is illustrated. Based on the visual
comparison, it can be noted that the pressure signals in all simulation models have some
oscillations at the beginning. This is because the forks are touching the load in the case of
simulation while the forks are located a little lower than the load pallet. The oscillations
stop prior to one second, and the pressure values seem to be higher than the measured
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value during the lifting phase, which indicates that the simulation model requires further
tuning. The region beyond 7 s is not of interest as the pump is non-operational during
this phase of the cycle. Visually, all the simulation models tend to follow a similar trend,
and it is not distinguishable without performing other data analysis techniques. Upon
zooming into the plot, we can notice that the highest deviation from measured data is the
level 2 model, followed by level 3 and level 1 models, respectively.
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Figure 8. Model validation for all levels of complexity based on system pressure.

Figure 9 illustrates a comparison plot of the volumetric flow rate between the mea-
sured and all levels of complexity of the simulation model. Like the case of cylinder
displacement, the volumetric flow rate also seems to be closer to measured data in the case
of level 1 and level 3 models. The level 2 model is higher throughout the duty cycle when
compared to experimental data, which indicates that the calculated volumetric displace-
ment is inaccurate and has a value larger than that of the actual pump. Throughout the
lifting phase, it is evident that the level 1 model is slightly lower than the measured data,
while the level 3 model is slightly higher.
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To get a better understanding of the deviation from the measured data, a few evalua-
tion metrics, such as mean squared error (MSE) and root mean squared error (RMSE), are
calculated for several experiments with variation in the rotation speed of the pump. The
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average MSE and RMSE of all experiments are compared for all models with respect to the
measured data for the complete duration of the duty cycle and tabulated in Table 1.

Table 1. Calculated average of MSE and RMSE for all levels of the simulation model.

Model
Displacement Volumetric Flow System Pressure

MSE RMSE MSE RMSE MSE RMSE

Level 1 0.00018 0.01342 16.0788 4.0098 127.8042 11.3051

Level 2 0.00645 0.08031 22.1156 4.7027 110.3343 10.504

Level 3 0.00037 0.01923 16.1718 4.0214 97.3894 9.4847

The level 1 model has the least MSE and RMSE in comparison to all models with
respect to cylinder displacement and volumetric flow rate, while the level 3 model has the
least error in terms of system pressure. This implies that both level 1 and level 3 models are
good models that closely represent the actual system. However, in terms of fault injection,
the level 3 model is the best option as the developed equations to inject lateral, radial, and
tip leakage in the external gear pump are better in terms of understanding the level of
fault injected. In the level 1 model, the slip coefficients need to be obtained to avoid any
errors in the calculation. The slip coefficients also pose the challenge of varying drastically
at different rotation speeds of the pump. The limitation of the level 3 model is the high
number of gear parameter measurements required, which in this work was obtained from
the manufacturer data and few measurements. However, the implementation of a level
3 model on another pump could be difficult in case the required gear parameters are
difficult to obtain.

3.2. Test Classifier

The validation of different complexity levels of simulation is performed to identify
the best model that can mimic the behavior of the actual system as well as to generate data
sources suitable for AI-based condition monitoring applications. From the results of the
model validation, it is evident that the level 3 model is the best choice to generate the data
source. The data source is fed to a test classifier to identify if it is reliable for condition
monitoring. Time series data is generated from the simulation model and includes the
cylinder displacement, volumetric flow, and system pressure signals, respectively.

The sampling rate of the simulation model is 10 kHz, while the measured signals from
the experiment have a sampling rate of 100 Hz. Prior to feeding the data into the classifier,
the data requires some pre-processing to make the signals to be of similar format as well as
to extract features from the signals that may aid in classifying the data better. The sampling
rate of the simulation data is reduced from 10 kHz to 100 Hz by implementing down
sampling. Feature extraction is performed by calculating a total of 16 statistical parameters
for each signal by selecting an appropriate window size and applying the sliding window
technique. The selected window size is 100 data points, which is equivalent to one second
of the duty cycle, and the slide is made for every 10 data points. The parameters are the
minimum, maximum, mean, median, standard deviation, variance, skewness, kurtosis,
argmin, argmax, first location of minimum, first location of maximum, last location of
minimum, last location of maximum, sum of values, absolute energy, absolute sum of
changes, and mean absolute change. A total of 48 features are extracted per second of the
duty cycle.

The classification task requires the implementation of a machine learning or deep
learning-based algorithm. Linear discriminant analysis (LDA), decision tree (DT), random
forest (RF), K-nearest neighbor (KNN), and a deep learning-based neural network multi-
layer perceptron (MLP) are selected to develop the test classifier. The evaluation metric
selected is a balanced accuracy score to compare the algorithm performance. The advantage
of a balanced accuracy score is that it can work with imbalanced datasets and calculate the
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average recall for each class. Recall is defined as the number of true positive scenarios over
the number of true positive and false negative outcomes.

The test classifier is trained by feeding data from one cycle of measured healthy data,
one cycle of simulated healthy data, two cycles of simulated data with tip leakages, and
two cycles of simulated data with radial leakages. The total number of data points is
2793. The data is split into training and testing sets, where 85% of the data is selected
for training, and 15% of the data is selected for testing, respectively. The test classifier
is a multi-class classifier and differentiates between the healthy, tip leakage fault, and
radial leakage fault. The results of the balanced accuracy scores obtained for all the tested
algorithms are tabulated in Table 2.

Table 2. Balanced Accuracy Scores of selected classifier algorithms.

Classifier Balanced Accuracy Score (%)

LDA 63.43

DT 85.55

RF 88.95

KNN 66.46

MLP 71.68

From Table 2, it is evident that the best classifier based on the balanced accuracy score
is the RF classifier, followed by the DT classifier. The neural network-based classifier, MLP,
did not perform well as neural networks as they require a large training dataset. The
hyperparameters utilized in the MLP classifier were also tuned; however, the performance
was not affected significantly. The tuned hyperparameters include the number of hidden
layers, the number of neurons in each hidden layer, the activation function, and the solver.

The RF classifier has a balanced accuracy score of 88.95%. This implies that 88.95% of
the 419 test data points were classified accurately by the classifier, which was trained on
2374 training data points. To have a better understanding, a confusion matrix is plotted in
Figure 10 to visualize the same.

Actuators 2023, 12, 401 12 of 16 
 

 

From Table 2, it is evident that the best classifier based on the balanced accuracy score 
is the RF classifier, followed by the DT classifier. The neural network-based classifier, 
MLP, did not perform well as neural networks as they require a large training dataset. The 
hyperparameters utilized in the MLP classifier were also tuned; however, the performance 
was not affected significantly. The tuned hyperparameters include the number of hidden 
layers, the number of neurons in each hidden layer, the activation function, and the solver. 

The RF classifier has a balanced accuracy score of 88.95%. This implies that 88.95% of 
the 419 test data points were classified accurately by the classifier, which was trained on 
2374 training data points. To have a better understanding, a confusion matrix is plotted in 
Figure 10 to visualize the same. 

 
Figure 10. Confusion matrix for random forest classifier. 

In Figure 10, the labels 0, 1, and 2 represent the healthy case, tip leakage case, and 
radial leakage case, respectively. It can be noticed that in five instances, the healthy data 
was misclassified as tip leakage. The tip leakage was misclassified in six instances as 
healthy and in 20 instances as radial leakage. The radial leakage was misclassified in two 
instances as healthy and in six instances as tip leakage. The misclassification could be due 
to idle states in the duty cycle, which would reflect the data to have a similar appearance. 
Overall, we can notice that the misclassification rate is quite small, and hence, the data 
source generated using the simulation model is quite robust. However, to ensure that the 
data source is reliable, faulty experimental data should also be tested. To generate faulty 
experimental data, an accelerated life test rig for an EGP is under development in which 
aluminum oxide particles will be introduced to accelerate the pump’s wear and obtain 
faulty measured data. Furthermore, an additional test utilizing experimental data that was 
not utilized to train the classifier is tested to evaluate the performance. It was found that 
a balanced accuracy score of 100% was obtained upon testing. This proves that the classi-
fier is capable of predicting the actual state of the EGP; however, further testing with faulty 
experimental data is essential to guarantee the robustness of the classifier. 

4. Conclusions 
This paper described a new approach to investigate the effect of model complexity of 

an external gear pump for artificial intelligence (AI) based classification. The new meth-
odology allows an increase in the level of complexity and a higher degree of flexibility in 
the choice of parameters to tweak to inject fault in the external gear pump. A simulation 
model of an external gear pump at three levels of complexity is developed using MATLAB 

Figure 10. Confusion matrix for random forest classifier.



Actuators 2023, 12, 401 13 of 16

In Figure 10, the labels 0, 1, and 2 represent the healthy case, tip leakage case, and
radial leakage case, respectively. It can be noticed that in five instances, the healthy data
was misclassified as tip leakage. The tip leakage was misclassified in six instances as
healthy and in 20 instances as radial leakage. The radial leakage was misclassified in two
instances as healthy and in six instances as tip leakage. The misclassification could be due
to idle states in the duty cycle, which would reflect the data to have a similar appearance.
Overall, we can notice that the misclassification rate is quite small, and hence, the data
source generated using the simulation model is quite robust. However, to ensure that the
data source is reliable, faulty experimental data should also be tested. To generate faulty
experimental data, an accelerated life test rig for an EGP is under development in which
aluminum oxide particles will be introduced to accelerate the pump’s wear and obtain
faulty measured data. Furthermore, an additional test utilizing experimental data that was
not utilized to train the classifier is tested to evaluate the performance. It was found that a
balanced accuracy score of 100% was obtained upon testing. This proves that the classifier
is capable of predicting the actual state of the EGP; however, further testing with faulty
experimental data is essential to guarantee the robustness of the classifier.

4. Conclusions

This paper described a new approach to investigate the effect of model complexity of
an external gear pump for artificial intelligence (AI) based classification. The new method-
ology allows an increase in the level of complexity and a higher degree of flexibility in
the choice of parameters to tweak to inject fault in the external gear pump. A simulation
model of an external gear pump at three levels of complexity is developed using MATLAB
Simulink, which is later validated using an experimental test campaign. The levels of
the simulation model are characterized by the method used to evaluate the volumetric
displacement of the pump. The first level applies the displacement assigned by the pump
manufacturer coupled with a model to calculate the total laminar and turbulent losses. The
second level estimates the volumetric displacement through a simple geometric equation
coupled with the same losses model of the previous level. The third level determines the
pump volumetric displacement, applying a more detailed geometric equation paired with
specific equations to evaluate the internal leakages. Data analysis is performed to validate
the simulation model by comparing the data generated on the model with measured data
on an electric reach truck equipped with the reference external gear pump. The results from
the data analysis show that the level 1 and level 3 models were close in representing the
measured data. However, in terms of fault injection capabilities, the better model would be
the level 3 model. The only limitation of the level 3 model would be in terms of the higher
number of gear parameter measurements required, which in this work was obtained from
manufacturer data and few measurements.

A test classifier was developed by implementing various machine learning and deep
learning algorithms and was evaluated using the balanced accuracy score metric. The data
fed to the training algorithm included one cycle of measured healthy data, one cycle of
simulated healthy data, two cycles of simulated data with tip leakages, and two cycles of
simulated data with radial leakages. The faults were injected by varying the tip leakage
parameter and radial leakage parameter on the level 3 model, respectively. The total
number of data points was 2793. The data is split into training and testing sets, where 85%
of the data is selected for training, and 15% of the data is selected for testing, respectively.
The test classifier was a multi-class classifier and differentiates between the healthy, tip
leakage fault, and radial leakage fault. The best classifier based on the balanced accuracy
was found to be the random forest classifier, with an accuracy score of 88.95%.

As for future development, several pumps of known operational hours will be tested
on the electrified reach truck to obtain more measured data to further validate the simula-
tion model. The information will also be utilized to build a relation between the operational
hour of the pump and the rate of wearing process on the planned accelerated life test rig
for the external gear pump. This, in turn, will aid in identifying the remaining useful life
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of the pump and extend the data generation for predictive and prescriptive maintenance
applications. Furthermore, additional fault-injecting techniques to apply to the simulation
model will be explored.
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Abbreviations

The following abbreviations are used in this manuscript:
AI Artificial Intelligence
CAD Computer Aided Drafting
DT Decision Tree
EGP External Gear Pump
FMI Functional Mockup Interface
FPGA Functional Programmable Gateway Arrays
KNN K-Nearest Neighbor
LDA Linear Discriminant Analysis
MLP Multi-Layer Perceptron
MSE Mean Squared Error
RF Random Forest
RMSE Root Mean Squared Error

Nomenclature

Symbol Description Unit
b Gear Width [m]
bl bl Root arc length [m]
CsCs Laminar Slip Coefficient
Cst Cst Turbulent Slip Coefficient
e e Eccentricity
h h Tooth tip gap clearance [m]
havghavg Mean value of Tooth tip gap clearance [m]
hr hr Radial gap clearance [m]
k1 k1 Rotational Inlet fraction
k2 k2 Sealing zone rotational factor
Ll ll Lateral orifice length [m]
lrlr Radial orifice length [m]
ltlt Tooth Tip orifice length [m]
n Rotational Speed [rad/s]
r1 r1 Pitch Diameter of Gear 1 [m]
r2 r2 Pitch Diameter of Gear 2 [m]
rh Outside Diameter of Gear [m]
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rh1 rh1 Outside Diameter of Gear 1 [m]
rh2 rh2 Outside Diameter of Gear 2 [m]
R Housing Diameter [m]
Q Volumetric Flow [m3/s]
P Pressure [Pa]
t0 Base Pitch [m]
ut Tangential speed [m/s]
V Volumetric Displacement [m3/rev]
Vg Geometric Displacement Volume [m3/rev]
Vgi Geometric Displacement Volume of tooth pair [m3/rev]
w Housing Wear parameter [m]
z Number of Teeth
Greek letter Description Unit
ε Suction angle [rad]
ϕ Rotational angle [rad]
µ Dynamic Viscosity [Kg/ms]
ην Volumetric Efficiency
ρ Density [Kg/m3]
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